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We introduce quasi–local integral scalar variables for the study of spherically symmetric Lemâıtre–
Tolman–Bondi (LTB) dust models. Besides providing a covariant, and theoretically appealing, in-
terpretation for the parameters of these models, these variables allow us to study their dynamics
(in their full generality) by means of fluid flow evolution equations that can be handled with simple
numerical techniques and has a significant potential for astrophysical and cosmological applications.
These evolution equations can also be understood in the framework of a gauge invariant and covari-
ant formalism of spherical non–linear perturbations on a FLRW background. The covariant time
splitting associated the new variables leads, in a natural way, to rephrase the known analytic solu-
tions within an initial value framework in which covariant scalars are given by simple scaling laws.
By using this re–parametrization of the analytic solutions, we re–examine and provide an alterna-
tive outlook to various theoretical issues already treated in the literature: regularity conditions, an
Omega parameter, as well as the fitting of a given LTB model to radial profiles of density or velocity
at different cosmic times. Other theoretical issues and numeric applications will be examined in
separate articles.

PACS numbers: 98.80.-k, 04.20.-q, 95.36.+x, 95.35.+d

I. INTRODUCTION.

Spherically symmetric LTB dust models are among
the best known exact solutions of Einstein’s equations
[1]. Since they provide access to non–linear effects as-
sociated with inhomogeneous sources by means of ana-
lytic and/or tractable numeric solutions, they have re-
ceived widespread attention in the literature (see [2, 3]
for comprehensive reviews). These exact solutions are
used mostly to study cosmological inhomogeneities, as
for example the series of articles in the references [7–
10], but have also been employed to examine a variety of
issues, for example as useful toy models to describe grav-
itational collapse under a classical [4, 5] and quantum
[6] approach. LTB models have also been widely used
[11–18] in the context of the ongoing widespread theo-
retical and empiric effort to explore the possibility that
cosmic observations could be explained without resorting
to dark energy, but by taking into consideration the fully
non–linear effects of inhomogeneities in the context of
General Relativity (see [19] for a review). These models
are also helpful as theoretical tools to probe various aver-
aging techniques applied to cosmological inhomogeneities
[14, 15, 20–22], in particular, the scalar averaging formal-
ism developed by Buchert and coworkers [23]. One finds
in the extensive literature on these models a preferred
set of free functions and analytic solutions (implicit and
parametric) that has become a sort of standard [2, 3, 24]
(even in numeric work on these models [14–18]).

Given the success of these models and the fact that
their standard parametrization is adequate and works in
practice, then it is legitimate to ask for the justification
of an article proposing and discussing alternative vari-
ables. The answer to this question is simple: alternative

variables may provide or motivate either new theoretical
and empiric developments or allow us to grasp known
results under a different perspective, thus illuminating
possible unsuspected connections with other models or
theoretical issues. In this context, we propose an alter-
native description of LTB dust models that is based on
a set of covariant scalar variables defined by applying
to arbitrary scalars the same type of integral construct
that yields the Misner–Sharp quasi–local mass function
[26–28]. Hence, we find it natural to call these variables
quasi–local scalars.

The quasi–local scalars mentioned above have already
been used for a dynamical system study of dust LTB
models [29] and in the application of Buchert’s averaging
formalism to LTB models [21, 22], as well as in a numeric
study of inhomogeneous dark energy sources associated
with an LTB metric, but with an energy–momentum ten-
sor that is more general than dust [30, 31]. The pure dust
case merits the separate study that we provide here, not
only because dust is an adequate source to model cold
dark matter in cosmological scales (and a much less ar-
tificial source for an LTB metric than the fluid tensor in
[30, 31]), but because dust sources allow for a qualitative
analytic framework that complements numeric work and
yields very useful theoretical and practical information.

The potential of the quasi–local variables for ana-
lytic and qualitative work on LTB models follows read-
ily from parametrizing their known analytic expressions
in terms of these variables and their fluctuations. The
new variables lead in a natural way to an initial value
parametrization of LTB models, which in turn leads to
the introduction of a FLRW–like metric and scaling laws
for density, Hubble expansion, spatial curvature, shear
and all other covariant quantities of physical or geomet-
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ric relevance. Various elements of this parametrization
have been already considered in the literature [13–17],
but only as a useful coordinate ansatzes that are jus-
tified because the involved expressions resemble FLRW
parameters. In this article we provide an appealing the-
oretical and covariant context for these expressions that
could allow for new empiric or numeric results and/or a
better understanding of existing work.

The quasi–local scalar representation applied the LTB
dust case leads to a complete description of the dynamics
in the context of “fluid flow” (or “1+3”) evolution equa-
tions that are fully general, but can be handled by simple
numerical methods, and thus have a significant potential
for empiric modeling of cosmological dust sources. This
scalar representation also leads to a description of LTB
dust models in the framework of spherical, non–linear,
gauge invariant and covariant (GIC) perturbations over
a FLRW background (in the context of the fluid flow
perturbation formalism derived by Ellis and Bruni [32–
34]). The resulting perturbation framework is also con-
sistent with the traditional perturbation approach [37],
as the evolution equations of quasi–local scalars and their
fluctuations generalize the evolution equations of linear
perturbations of spherical dust sources in the comoving
gauge [38].

The plan of the article is described below. We sum-
marize in section II the metric, field equations, analytic
solutions and basic regularity of LTB models in the con-
ventional variables. In section III we introduce the rep-
resentation of local covariant scalars and their evolution
equations in the context of the covariant time slicing asso-
ciated with a fluid flow approach to the dynamics of the
models. The quasi–local scalars and their fluctuations
are introduced and discussed in section IV, while section
V deals with some theoretical and practical implications
of these scalars. In particular, the quasi–local scalars
lead naturally to an initial value approach in which ini-
tial value functions are given by the new variables eval-
uated at a fiducial (initial) hypersurface defined by the
1+3 time slicing. This approach leads to a FLRW–like
form for the LTB metric, which has been suggested previ-
ously (see [13, 14]) but as an ansatz without a theoretical
context. The initial value approach also leads to simple
scaling laws for all scalars and an intuitive gauge for the
radial coordinate. Hence, in section VI we rewrite the
analytic solutions of the models in terms of the above
mentioned initial value parametrization, which leads in
section VII to an elegant characterization of the coor-
dinate locus of the curvature singularities that is sim-
pler and more intuitive than that using conventional vari-
ables. In section VIII we rewrite the Hellaby–Lake con-
ditions [24, 39] to avoid shell–crossings in terms of the
initial value functions, while in section IX we rewrite the
analytic solutions in the same initial value approach, but
using a suitably defined Omega parameter and the quasi–
local expansion factor as initial value functions (which
can be used also to parametrize the Hellaby–Lake condi-
tions).

In section X we address (as an application) an inter-
esting theoretical issue raised by Hellaby and Krasinski
(see [7, 10, 18]), namely: the possibility of mapping by
an LTB model of a given density or velocity radial pro-
file at one cosmic time to another density or velocity
profile at a latter time. We show how the initial value
parametrization of the analytic solutions greatly simpli-
fies the understanding and handling of this problem. In
section XI we derive three equivalent systems of fluid
flow evolution equations for the quasi–local scalars and
their fluctuations. Each of these systems provides a full
description of the dynamics of the models, and all are
effectively equivalent to systems of ordinary differential
equations subjected to constraints, hence they are tech-
nically more accessible than (and as fully general as) the
system that arises for the local scalars in the 1+3 fluid
flow framework. We explain how initial conditions can be
set up and argue that these equations have a significant
potential for numeric computation of quantities of ob-
servational interest (null geodesics, red shift factor, area
and luminosity distances, etc). In section XII we show
how the quasi–local scalars, their fluctuations and their
evolution equations can be understood in the framework
of a gauge invariant and covariant formalism of spherical
non–linear perturbations.

In section XIII we derive a fourth system of fluid flow
evolution equations, but now for the Omega and Hub-
ble parameters introduced in section IX. These evolution
equations lead to a dynamical system (like the one in
[29]). We comment on the relation between the perturba-
tion formalism of section XII and these parameters (and
others proposed in the literature [16, 17]), thus provid-
ing a theoretical context for quantities given as coordi-
nate ansatzes on the basis of their resemblance to FLRW
Omega and Hubble parameters. We discuss in section
XIV various aspects of special LTB configurations, such
as: closed models, models with simultaneous big–bang or
collapsing singularities, simultaneous maximal expansion
and a mixed elliptic/hyperbolic configuration. Our con-
clusions and suggestions for future work are summarized
in section XV. In Appendix A we discuss various regular-
ity issues of the quasi–local scalars and their fluctuations,
while Appendix B discusses the relation between quasi–
local spatial curvature (which determines the kinematic
class: parabolic, hyperbolic, elliptic) and local spatial
curvature.

II. LTB DUST MODELS IN THE
CONVENTIONAL VARIABLES.

Lemaitre–Tolman–Bondi (LTB) dust models [1, 2] are
the spherically symmetric solutions of Einstein’s equa-
tions characterized by the LTB line element and the
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energy–momentum tensor

ds2 = −c2dt2 +
R′2

1 + E
dr2 + R2(dθ2 + sin2 θdϕ2), (1)

T ab = ρ c2 ua ub, ua = δa0 , (2)

where R = R(t, r), R′ = ∂R/∂r, E = E(r) and
ρ = ρ(t, r) is the rest–mass density. The field equations
reduce to

Ṙ2 =
2M

R
+ E, (3)

2M ′ = κρR2R′, (4)

where κ = 8πG/c2, M = M(r) and Ṙ = ua∇aR =
∂R/∂(ct).

A. Kinematic equivalence class and analytic
solutions.

It is common usage in the literature (see [2, 3, 24])
to classify the solutions of (3) in “kinematic equivalence
classes” given by the sign of E, which determines the
existence of a zero of Ṙ2. Since E = E(r), the sign of
this function can be, either the same in the full range of
r, in which case we have LTB models of a given kine-
matic class, or it can change sign in specific ranges of r,
defining LTB models with regions of different kinematic
class (see [24]). The solutions of the Friedman–like field
equation (3) for each kinematic class take the following
well known parametric form:

Parabolic models or regions: E = 0.

c(t− tbb) =
2

3
η3, R = (2M)1/3 η2, (5)

Hyperbolic models or regions: E ≥ 0.

R =
M

E
(cosh η − 1) , c(t−tbb) =

M

E3/2
(sinh η − η) ,

(6)
Elliptic models or regions: E ≤ 0.

R =
M

|E| (1 − cos η) , c(t−tbb) =
M

|E|3/2 (η − sin η) ,

(7)
where tbb = tbb(r) is called “big bang time”, as it marks
the coordinate locus of the central expanding curvature
singularity: R(t, r) = 0 for r ≥ 0. It emerges as an “in-
tegration constant” in the integration of (3). Notice that
the locus of central curvature singularity is distinct from
that of the center of symmetry R(t, 0) = 0 (see Appendix
A 1). Besides the kinematic class, LTB models that ad-
mit (at least) one symmetry center can be classified as
“open” or “closed”, respectively corresponding to the hy-
persurfaces of constant t being topologically equivalent to
R

3 or S
3 (see Appendix A 3).

In order to deal with a given specific model by means
of (5)–(7), we need to prescribe the three “conventional”
free functions

M(r), E(r), tbb(r). (8)

However, the metric (1) is invariant under rescalings of
the radial coordinate r = r(r̄), hence it is always possible
to eliminate one of the free functions in (8) by a suitable
choice of the radial coordinate, thus leaving only two ba-
sic irreducible free functions.

Given a choice of free functions (8), the solutions (5)–
(7) can be used to find the remaining relevant quantities
that may be required for a specific problem, a procedure
that has been used abundantly in the literature [2, 3].

B. Regular LTB models

We will assume henceforth the existence of (at least)
one symmetry center marked by r = 0 (see Appendix
A 1), and will denote by “regular LTB model” any LTB
configuration for which the condition

sign(R′) = sign(M ′) = sign(
√

1 + E), (9)

holds for all t and all r not marking a symmetry center
(since M ′(0) = 0, E(0) = 0 and R′(t, 0) = 1 [24, 25]).
Conditions (9) imply that if R′, M ′,

√
1 + E have a zero

under regular conditions, it must be a common zero of
the same order at some worldline r = rtv > 0. Violation
of (9), i.e. R′ = 0 for M ′ 6= 0,

√
1 + E 6= 0, results in a

shell crossing singularity for which ρ → ∞ occurs with
R > 0. Condition (9) together with (4) also implies
that ρ ≥ 0 holds everywhere and that it is bounded
everywhere except at the coordinate locus of a central
singularity (i.e. points for which R(t, r) = 0 holds
that are not the worldline of a symmetry center). The
restrictions on the free parameters (8) that guarantee
the fulfillment of (9) are the well known Hellaby–Lake
(necessary and sufficient) conditions [24, 25, 39] given by

Parabolic and hyperbolic models or regions:

R′ > 0 ⇔ {M ′ ≥ 0, E′ ≥ 0, t′
bb

≤ 0} , (10)

Elliptic models or regions:

±R′ > 0 ⇔ ±M ′ ≥ 0, ±t′
bb

≤ 0,

±
[

M ′

M
− 3

2

E′

E
+

ct′
bb
|E|3/2

2πM

]

≥ 0,

(11)

where only expanding configurations are considered in
(10) and the ± sign in (11) accounts for the fact that R′ <
0 occurs in elliptic models whose that admit a second
symmetry center (see Appendix A 3). The equal sign
holds only at symmetry centers and at values of r where
R′ = 0.
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III. COVARIANT OBJECTS AND THEIR “1+3”
EVOLUTION EQUATIONS.

The normal geodesic 4–velocity in (1)–(2) defines a
natural time slicing in which the space slices are the
hypersurfaces 3T [t], orthogonal to ua and marked by
arbitrary constant values of t[46]. The metric of the
3T [t] is simply hab = gab + uaub = gijδ

i
aδ

j
b (or (1) with

dt = 0). The proper volume element and 3–dimensional
Ricci scalar associated with these hypersurfaces are

dVp =
√

det(hab) d3x =
R2R′ sin2 θ dr dθ dϕ√

1 + E
, (12)

3R = −2(E R)′

R2R′
= − 2E′

R′R
− 2E

R2
, (13)

Given this time splitting, the covariant objects in dust
LTM models are ρ and 3R in (4) and (13), together with

the shear and electric Weyl tensors, σab = ∇̃(aub) −
(Θ/3)hab and EabucudC

abcd, where ∇̃a = hb
a∇b, and

Cabcd is the Weyl tensor, and the expansion scalar, Θ,
is given by

Θ = ∇̃au
a =

2Ṙ

R
+

Ṙ′

R′
. (14)

Since LTB models (as all spherically symmetric space-
times) are locally rotationally symmetric (LRS), all their
covariant objects are either scalars or entirely charac-
terized by covariant scalars [36]. Therefore, the spatial
trace–less shear and electric Weyl tensors can be given
in terms of single scalar functions, Σ, E , in a covariant
manner:

σab = Σ Ξab ⇒ Σ =
1

6
σab Ξab = −1

3

(

Ṙ′

R′
− Ṙ

R

)

,

(15)

Eab = E Ξab ⇒ E =
1

6
Eab Ξab = −κ

6
ρ +

M

R3
, (16)

where Ξab ≡ hab − 3χaχb and χa =
√
hrr δar is the unit

vector orthogonal to ua and to the 2–spheres orbits of
SO(3).

A description of the dynamics of LTB models, which
is an equivalent alternative to the field equations and
their analytic solutions (5)–(7), follows by considering
the following set of covariant scalars

A =
{

ρ, Θ, Σ, E , 3R
}

, (17)

which completely characterize these models. Hence, their
dynamics is completely determined by suitable evolution
equations and constraints for these scalars. Following
the “fluid flow” or covariant “1+3” framework of Ehlers,
Ellis, Bruni, Dunsbury and van Ellst [32–34, 36], and
considering (15) and (16), the 1+3 evolution equations

for the scalars (17) are

Θ̇ = −Θ2

3
− κ

2
ρ− 6Σ2, (18a)

ρ̇ = −ρΘ, (18b)

Σ̇ = −2Θ

3
Σ + Σ2 − E , (18c)

Ė = −κ

2
ρΣ − 3 E

(

Θ

3
+ Σ

)

, (18d)

while the spacelike and Hamiltonian constraints are

(

Σ +
Θ

3

)′

+ 3 Σ
R′

R
= 0,

κ

6
ρ′ + E ′ + 3 E R′

R
= 0,

(19)

(

Θ

3

)2

=
κ

3
ρ−

3R
6

+ Σ2, (20)

Solving this system of partial differential equations de-
termines the metric functions and remaining quantities
though the definitions (3), (4) and (12)–(16) that relate
these functions to the scalars in (17). However, it can
be a difficult system to use in numerical work because
time and radial derivatives cannot be (in general) de-
coupled. In the following section we will introduce an
alternative set of covariant scalars whose corresponding
evolution equations (see section XI) are wholly equivalent
to (18)–(20) but are easier to handle.

IV. QUASI–LOCAL SCALAR FUNCTIONS AND
FLUCTUATIONS.

The function M that appears in (3)–(4) is for LTB
models the Misner–Sharp quasi–local mass–energy func-
tion, which is an important invariant in spherically sym-
metric spacetimes [26–28]. It is basically the integral
along a spherical comoving domain of the field equation
(4), which will be well defined if we assume the existence
of a symmetry center (at r = 0) and can be given as

2M =
2G

c2

∫

D(r)

ρF dVp = κ

∫ r

0

ρR2R′dx, (21)

F ≡
√

1 + E =

[

Ṙ2 + 1 − 2M

R

]1/2

. (22)

where the spherical comoving domain D(r) is defined fur-
ther below and we have used the notation

∫ r

0 ...dx =
∫ x=r

x=0 ...dx. It is evident from (21) and (22) that M is a
proper volume integral “weighed” by the invariant scalar
F which generalizes the “γ” factor of Special Relativity
[27, 28]. The integral definition (21) motivates the in-
troduction of similar “weighed” proper volume integral
functions which turn out to be very useful in the study
of LTB models. In order to define such integrals, we re-
mark that every regular 3T [t] contains comoving regions
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(containing a symmetry center) that are diffeomorphic to
the product manifold

D(r) = ϑ(r)×S
2(θ, φ), ϑ(r) ≡ {x | 0 ≤ x ≤ r}, (23)

where x = 0 marks a symmetry center. Because of spher-
ical symmetry every scalar function on a domain D(r) is
equivalent to a real valued function on the real interval
ϑ(r).

A. Quasi–local scalar variables.

Consider now the following

Definition 1: Quasi–local scalar functions Aq . Let ϑ(r)

be a radial domain in a regular 3T [t]. For every scalar
function A[t0] : ϑ(r) → R, there is a “quasi–local dual
function” Aq[t0] : ϑ(r) → R such that

Aq[t0](r) =

∫ r

0
AF dVp

∫ r0
0

F dVp

=

∫ r

0
A(t0, x)R2(t0, x)R′(t0, x) dx
∫ r

0
R2(t0, x)R′(t0, x)dx

,

(24)
where F is given by (22). Since it is clear that t is an
arbitrary but fixed parameter in these integrals, we will
omit (unless it is necessary) to express explicitly the
time dependence of scalars A and Aq.

Comment 1: Definition (24) is invariant under arbitrary
rescalings of the radial coordinate r = r(r̄) that do not
violate (9) and (A7). In particular, the proper length
ℓ =

∫ √
grrdr can be used as the integration variable at

each 3T [t] (though it is not useful as a global integral
variable because ℓ = ℓ(t, r)).

Comment 2: In general, not all hypersurfaces 3T [t] in
LTB models are fully regular, since the central singular-
ities (expanding or collapsing) are not simultaneous and
will intersect some of the 3T [t]. For these 3T [t] the do-
main (23) must be suitably restricted and the integrals in
(24) must be treated as improper integrals. We discuss
this issue in A 5.

Comment 3. The quasi–local functions Aq in (24) are
not “averages”, as they do not comply with the prop-
erties of average distributions of a continuous random
variable. They can be recast as proper volume averages
with “weight factor” F if we define them as functionals.
See [22] for discussion and clarification of this issue.

B. Properties.

The definition (24) leads to the definition of a “quasi–
local volume” given by

Vq(r) =

∫

D(r)

F dVp = 4π

∫ r

0

R2R′dx =
4π

3
R3(r), (25)

so that

V̇q

Vq
=

3Ṙ

R
= Θq,

V ′
q

Vq
=

3R′

R
, (26)

where we expressed (14) as Θ = [ln(R2R′)]˙ and the com-
mutation of ∂/∂t with the integrals in (24). The quasi–
local functions comply with the following properties:

A′
q = (Aq)′ =

V ′
q

Vq
[A−Aq ] , (27a)

A(r) −Aq(r) =
1

Vq(r)

∫ r

0

A′ Vq dx, (27b)

Ȧq = (Aq)˙ = (Ȧ)q + (ΘA)q − ΘqAq, (27c)

C. A representation of covariant quasi–local
scalars.

The introduced quasi–local variables provide a com-
plete and very useful representation of covariant scalars
that is alternative to (17). Applying the definition (24)
to (3), (13) and (21) we obtain the quasi–local duals of
ρ, 3R and Θ

2mq =
2M

R3
, kq = − E

R2
, H2

q =
Ṙ2

R2
= 2mq−kq. (28)

where, to simplify notation, we have defined

2m ≡ κ

3
ρ, k ≡

3R
6

, H ≡ Θ

3
, (29)

Notice that M, R, Ṙ = ua∇aR and F =
√

1 + E are
invariants in spherical symmetry [26–28], hence mq, kq
and Hq are covariant quantities. As a consequence of
(28), the scalars Σ and E in (15) and (16), associated with
the shear and electric Weyl tensors, become expressible
as deviations or fluctuations of the local scalars H, m (or
Θ, ρ) with respect to their quasi–local duals:

Σ = − (H−Hq) , E = − (m−mq) . (30)

Since the shear and electric Weyl tensors are covariant
objects, then these fluctuations are also covariant.

D. Fluctuations of quasi–local duals.

A convenient way to relate the local covariant scalars
A in (17) and their quasi–local duals Aq follows by intro-
ducing the relative deviations (fluctuations)

δ(A) ≡ A−Aq

Aq
=

A′
q/Aq

3R′/R
=

1

Aq(r)

∫ r

0

A′ Vq dx, (31)

where we used (27a) and (27b). Considering (30) and
(31), each scalar A in (17) can be uniquely expressed in
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terms of its associated Aq and δ(A):

m = mq

[

1 + δ(m)
]

, H = Hq

[

1 + δ(H)
]

,

k = kq

[

1 + δ(k)
]

, Σ = −Hq δ
(H), E = −mq δ

(m).

(32)

By applying the definition (31) to the Friedman–like
equation for H2

q in (28) we obtain the following important
constraint

2H2
qδ

(H) = 2mq δ
(m) − kq δ

(k), (33)

while the relation between δ(m) and δ(k) and radial gra-
dients of the conventional variables M and E

M ′

M
=

3R′

R

[

1 + δ(m)
]

,
E′

E
=

3R′

R

[

2

3
+ δ(k)

]

, (34)

follows readily from (28) and (31).
Since m, k, H and mq, kq, Hq are all covariant scalars,

their δ(A) are also covariant. In fact, these fluctuations
can be understood in the context of a covariant gauge in-
variant and non–linear perturbation formalism (see sec-
tion XII and references [30, 31]). Hence, the set

{Aq, δ
(A)} = {mq, kq, Hq, δ

(m), δ(k), δ(H)}, (35)

constitutes a complete covariant scalar representation
that is equivalent and alternative to (17).

There are important regularity issues associated with
variables (35), which we discuss in detail in Appendix A.
For example, any one of the δ(A) might diverge if Aq → 0
under regular conditions (no violation of (9) and finite
curvature scalars). However, as we show in Appendix
A 4 this does not lead to a curvature singularity, as the
Riemann tensor frame components do not diverge (see
Appendix A 2). Also, the regular radial range of some
of the hypersurfaces 3T [t] is necessarily restricted by a
central singularity, which does not invalidate the regu-
larity of these scalars away from the singular coordinate
surface (see Appendix A 5). While these issues must be
taken into consideration, they do not affect the usage of
the variables (35).

V. SOME THEORETICAL AND PRACTICAL
IMPLICATIONS OF QUASI–LOCAL SCALARS.

The quasi–local variables and their relative fluctua-
tions introduced in the previous section lead in a natural
way to an initial value parametrization of LTB models,
which can be very helpful for numeric and qualitative
work. Various elements of this parametrization has been
already considered in the literature [14–17], but only as
a useful set of coordinate ansatzes whose justification is
merely their resemblance with FLRW parameters. How-
ever, these ansatzes can acquire a clear covariant meaning
by its relation with quasi–local scalars.

A. A FLRW–like metric and scaling laws for
covariant scalars.

Consider the dimensionless scale factor

L ≡ R

Ri
, (36)

where Ri ≡ R(ti, r) and t = ti marks a fiducial initial
hypersurface 3Ti = 3T [ti]. We shall denote henceforth all
quantities evaluated at t = ti by the subindex i. Bearing
in mind (36), we can re–write (28) as

mq =
mqi

L3
, kq =

kqi
L2

, (37)

H2
q =

L̇2

L2
= 2mq − kq =

2mqi − kqiL

L3
, (38)

which, if we identify L with a position dependent FLRW
scale factor, are formally identical to the scaling laws for
density, spatial curvature and Hubble factor in FRLR
dust universes. Applying this parametrization to the
LTB metric (1) yields the FLRW–like line element

ds2 = −c2dt2+L2

[

Γ2 R′
i
2

dr2

1 − kqi R2
i

+ R2
i

(

dθ2 + sin2 θdφ2
)

]

,

(39)
where the new dimensionless metric function Γ is

Γ ≡ R′/R

R′
i/Ri

= 1 +
L′/L

R′
i/Ri

, Γi = 1. (40)

The local density (m = κρ/3) and spatial curvature (k =
3R/6) satisfy the following scaling laws in terms of L, Γ
and initial value functions

m =
mqi

L3
[1 + δ(m)] =

mi

L3 Γ
, (41a)

k +
kqi
L2

[1 + δ(k)] =
ki

L2 Γ

[

1 +
Γ − 1

3 (1 + δ
(k)
i )

]

.

(41b)

where we used (4), (13) and (32). Comparing (41) with
(37), and bearing in mind (29) and (31), we obtain the
following scaling laws for δ(m) and δ(k)

1 + δ(m) =
1 + δ

(m)
i

Γ
, (42a)

2

3
+ δ(k) =

2/3 + δ
(k)
i

Γ
, (42b)

δ(m) − 3

2
δ(k) =

δ
(m)
i − (3/2)δ

(k)
i

Γ
. (42c)

Applying (31) to the Hamiltonian constraint (38) yields
the scaling law for δ(H)

2δ(H) =
2mq δ

(m) − kq δ
(k)

2mq − kq
=

2mqi δ
(m) − kqi L δ(k)

2mqi − kqi L
.

(43)
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Inserting (43) into (30) allows us to find scaling laws sim-
ilar to the ones above for H = 3Θ and the scalars Σ, E ,
respectively associated by (15) and (16) to the shear and
electric Weyl tensor. Using (31), we can express the scal-
ing laws (42) as relations between the gradients H′

q, m
′
q

and k′q and L′. Notice that it is always possible to use
(38) and (43) to eliminate any one of the three pairs
Hq, δ

(H) or mq, δ
(m) or kq and δ(k) in terms of the other

two.
The scaling laws (41), (42), and (43) depend on both

L and Γ. While the effects of their dependence on L is
easy to grasp because the qualitative time dependence
of L (for a fixed r) can be appreciated directly from the
Friedman–like equation (38), there is no simple way to
guess the qualitative behavior of Γ (either in the t or r
directions). As a consequence, there is not much we can
do with these scaling laws as long as we lack an expression
for Γ in terms of L and the initial value functions (we
obtain this expression in section VII).

B. A radial coordinate gauge.

The metric of LTB models in the form (39) is also in-
variant under an arbitrary rescaling r = r(r̄). Since L
and Γ are time dependent, it is natural when using (39)
to identify this radial coordinate gauge freedom with the
freedom to choose the initial value function Ri(r). How-
ever, because of (A6) and (A7), the choice for a function
Ri is not completely arbitrary: it depends on the topol-
ogy of the space slices 3T [t] (see [25] and Appendix A 3).

For open models (or LTB regions in which (9) allows for
R′ > 0 to hold everywhere) Ri can be any monotonously
increasing function complying with Ri(0) = 0 and R′

i > 0
for all r. Evidently, the simplest choice in these cases is

Ri = R0 r, (44)

where R0 is an arbitrary constant characteristic length
scale. The gauge (44) is a popular choice in the literature
[14–17], not only due to its simplicity, but because setting
r = Ri/R0 allows us to regard radial dependence as a
dependence on an fiducial value of an invariant quantity
(R) that has a clear physical and geometric meaning.
Also, the choice of R0 provides a physical length scale
for the radial coordinate.

However, other radial coordinate gauges are often used
(for example setting M as radial coordinate, as in [7–
10]). And, as pointed before, (44) cannot be used in cases
where a regular zero of R′ occurs. For closed models, Ri

must be selected so that it vanishes at both centers of
symmetry and R′

i has a common same order zero with
F =

√
1 + E (to avoid the surface layer singularity asso-

ciated with (123), see [40]). Moreover, even if we use the
parametrization associated with (39), we are not forced
to use the radial coordinate gauge for fixing Ri, it is still
possible to keep this initial value function unspecified and
use the gauge freedom to fix any one of the other initial
value functions.

VI. THE ANALYTIC SOLUTIONS IN TERMS
OF AN INITIAL VALUE APPROACH.

We rephrase in this section the analytic solutions (5)–
(7) in terms of {mqi, kqi}, which are related to the free
parameters M and E in (5)–(7) by

M = mqi R
3
i , E = −kqi R

2
i . (45)

A third free function (the “bang time”, tbb) necessarily
appears as an “integration constant” in both, the solu-
tions of L̇ in (38) and those of Ṙ in (3). However, as
we show below, if we rewrite (5)–(7) in the context of an
initial value problem associated with mqi, kqi and L (con-
sidering that Li = 1), the bang time tbb can be obtained
as a function of mqi, kqi.

Of course, other combinations of initial value functions,
such as {mqi, Hqi} or {kqi, Hqi}, can also be considered,
as (38) relates the three available functions. Since the
fluctuations follow from the gradients of these functions
from (31), any two of {mqi, kqi, Hqi} forms an irreducible
set of initial value functions. As we show in section XI,
these initial value functions provide also the basic initial
conditions for the evolution equations under a numeric
approach.

A. Parabolic models or regions: kqi = 0

We express M and R in terms of mqi and L from (36)
and (45) in (5), after re–arranging terms we get the fol-
lowing closed analytic expression for L

L =

[

1 +
3

2

√

2mqi c(t− ti)

]2/3

, (46)

where we are only considering expanding configurations
(L increases for t > ti). The bang time follows by setting
L = 0 and t = tbb in (46)

ctbb = cti −
2

3
√

2mqi

= cti −
2

3Hqi
. (47)

B. Hyperbolic models or regions: kqi < 0

We obtain the following implicit solution of the form
t = t(R) by eliminating the parameter η from the equa-
tion for R in (6) and substituting in the equation for t:

E3/2

M
c(t− tbb) = Zh(R̄), (48)

where R̄ = (E/M)R and Zh is the function

u 7→ Zh(u) = u1/2 (2 + u)
1/2 − arccosh(1 + u). (49)

We express then M, E and R in (48) in terms of mqi, kqi
and L from (36) and (45). The result is

yi c(t− ti) = Zh(xiL) − Zh(xi), (50)
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where

xi =
|kqi|
mqi

, yi =
|kqi|3/2
mqi

. (51)

Setting t = tbb and L = 0 in (50) and using (49) yields
the bang time as a function of mqi and |kqi|:

ctbb = cti −
Zh(xi)

yi
. (52)

C. Elliptic models or regions: kqi > 0

In this case, the implicit solution t = t(R) follows from
eliminating η from the first equation in (7) and substi-
tuting in the second one. The resulting implicit solution
has two branches, an “expanding” one (0 < η < π with

Ṙ > 0) and a “collapsing” one (π < η < 2π with Ṙ < 0):

|E|3/2
M

c(t− tbb) =

{

Ze(R̄) expanding phase
2π − Ze(R̄) collapsing phase

,

(53)
where R̄ = (|E|/M)R and Ze is given by

u 7→ Ze(u) = arccos(1 − u) − u1/2 (2 − u)1/2 . (54)

Proceeding as in the hyperbolic case, we transform (53)
into

yi c(t−ti)+Ze(xi) =







Ze(xiL) expanding phase

2π − Ze(xiL) collapsing phase

(55)
where

xi =
kqi
mqi

, yi =
k
3/2
qi

mqi
, (56)

It follows from (55)–(54) that L is restricted by 0 < L ≤
Lmax, where the maximal expansion is Lmax = 2/xi =

2mqi/kqi, characterized by L̇ = 0 and Hq = 0.
Setting t = tbb and L = 0 in the expanding phase

of (55) yields a bang time function, while t = tcoll and
L = 0 in the collapsing phase yields the “crunch” time
associated with the collapsing singularity. The maximal
expansion time follows by substituting t = tmax and L =
Lmax in either branch of (55). These times are given by

ctbb = cti −
Ze(xi)

yi
, (57a)

ctmax = ctbb +
π

yi
= cti +

π − Ze(xi)

yi
, (57b)

ctcoll = ctbb +
2π

yi
= cti +

2π − Ze(xi)

yi
. (57c)

Notice that (in general) tmax = tmax(r) and tcoll = tcoll(r),
so neither one coincides with a 3T [t] hypersurface (like

tbb(r)). For every comoving observer r = const., the time
evolution is contained in the range tbb(r) < t < tcoll(r).

Rewriting the analytic solutions (5)–(7) as in (46), and
as the implicit forms (50) and (55) is very useful, as it al-
lows us to relate (by implicit radial derivation) the gradi-
ents of L (and thus of R) with gradients of the intial value
functions miq, kiq (see section 11). Notice that the time
splitting associated with ua and the scaling of R with Ri

in L imposes on LTB models a constraint between tbb
and mqi, kqi, since (47) and (52) imply that any choice
of these functions uniquely determines the “age” ti − tbb
of the initial slice t = ti for any comoving observer. Also,
the initial slice t = ti in elliptic models always occurs in
the expanding phase [25].

VII. CURVATURE SINGULARITIES.

The new variables allow us to express the coordinate
locus of curvature singularities exclusively in terms of L
and Γ by means of (41), (42) and (43). Notice that for
reasonable initial value functions (bounded and contin-
uous), all scalars Aq = mq, kq, Hq diverge as L → 0,
whereas local scalars A = m, k, H can also diverge if
Γ → 0 (even if L > 0). Following the standard criteria
that define a curvature singularity and considering (A4),
we can identify two known possible singular surfaces

L(t, r) = 0, central singularity (58a)

Γ(t, r) = 0 shell crossing singularity. (58b)

Notice that if Γ > 0, then all scalars A and Aq only
diverge at the central singularity L = 0, but if Γ →
0, then all the relative fluctuations δ(A) diverge (with
Aq 6= 0), so that local scalars A diverge while their quasi–
local duals Aq remain bounded. This is an obviously
unphysical effect of shell crossings that must be avoided.

It is important to remark that characterizing the cur-
vature singularities as in (58a) and (58b) represents an
improvement in clarity over the conventional variables.
In these latter variables “R = 0” can be either a regular
symmetry center, or a curvature singularity. Likewise,
“R′ = 0” can be either a shell crossing singularity or a
regular “turning value” r = rtv associated with a closed
model. There is no such ambiguity in our parametriza-
tion, since L > 0 holds at a symmetry center and Γ > 0
holds at the turning value.

In order to test the avoidance of (58b) we need to
compute Γ. For this purpose, we derive both sides of
the solutions (46), (50) and (55), then we use (31) and
L′/L = (1−Γ)R′

i/Ri to eliminate m′
qi, k

′
qi and L′ in terms

of δ
(m)
i , δ

(k)
i and Γ. The result is

• Parabolic models or regions.

Γ = 1 + δ
(m)
i − δ

(m)
i

L3/2
. (59)
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• Hyperbolic and elliptic models or regions.

Γ = 1 + 3(δ
(m)
i − δ

(k)
i )

(

1 − Hq

Hqi

)

−3Hq c(t− ti)

(

δ
(m)
i − 3

2
δ
(k)
i

)

, (60)

where Hq and Hqi follow from (38), while c(t− ti)
is given by (50) and (55).

Inserting (59) or (60) (depending on the kinematic class)
into (41), (42) and (43) leads to closed analytic expres-
sions for all these scaling laws in terms of L and ini-
tial value functions in the context of the initial value
approach described in previous sections. The functional
forms of Γ and Hq in (38) and (59) allow us to obtain
analytic expressions for all the scaling laws of covariant
scalars (as functions of L and initial value functions).

From (9), (31), (40) and (42a) applied to A = m, con-
dition (9) for standard regularity that avoids (58b) now
reads

Γ > 0 ∀ (ct, r) such that L > 0 (61)

The fulfillment of this condition is examined in the fol-
lowing section.

VIII. THE HELLABY–LAKE CONDITIONS.

We obtain in this section the Hellaby–Lake conditions
(10)–(11) that fulfill the regularity condition (61) [24, 25,
39], but now as restrictions on the initial value functions.
These conditions guarantee absence of shell crossings for
all t. Notice from (9) and (40) that avoidance of this
singularity already excludes a surface layer singularity
associated with (123).

In order to examine the Hellaby–Lake conditions in the
initial value parametrization, we need to relate the gra-
dients M ′ and E′ appearing in (10)–(11) with the initial
fluctuations by specializing (34) to t = ti

M ′

M
=

3R′
i

Ri

[

1 + δ
(m)
i

]

,
E′

E
=

3R′
i

Ri

[

2

3
+ δ

(k)
i

]

. (62)

We will also need an expression for the radial gradient t′
bb

in terms of our initial value functions. This expression
follows by differentiating both sides of (47) and (52) with
respect to r:

ct′
bb

3R′
i/Ri

= c(ti − tbb) δ
(m)
i =

2 δ
(m)
i

3
√

2mqi

, parabolic

(63a)

ct′
bb

3R′
i/Ri

=
δ
(m)
i − δ

(k)
i

Hqi
− c(ti − tbb)

(

δ
(m)
i − 3

2
δ
(k)
i

)

,

hyperbolic and elliptic (63b)

where tbb in (63b) is given by (52) with Zh(xi) or Ze(xi),
respectively, for hyperbolic and elliptic models. As men-
tioned before, Ri can be always be prescribed as a radial
coordinate gauge.

A. Parabolic models/regions.

From (59), if L → 0 then Γ → −δ
(m)
i /L3/2, while Γ →

1 + δ
(m)
i for L → ∞. Considering (42a), the necessary

and sufficient condition for (61) to hold is simply

− 1 ≤ δ
(m)
i ≤ 0, (64)

which from (31) implies m′
qi ≤ 0. It is evident from (62)

and (63a) that (64) implies t′
bb
/R′

i ≤ 0 and M ′ ≥ 0, and
so it is equivalent to the Hellaby–Lake conditions (10).

B. Hyperbolic models/regions.

For a fixed r all initial value functions are finite, con-
sider then ti > t1 > tbb but t1 ≈ tbb, so that L ≈ 0 and
Hq → ∞, and thus (60) becomes

Γ ≈ −3Hq

Hqi

[

δ
(m)
i − δ

(k)
i −Hqi c(ti − t1)

(

δ
(m)
i − 3

2
δ
(k)
i

)]

= −3Hq

[

ct′
bb

3R′
i/Ri

+ c(t1 − tbb)

(

δ
(m)
i − 3

2
δ
(k)
i

)]

,

(65)

where we used (63b). Now consider t → ∞ so that L →
∞ for all r. From (38) and (50) we have in this limit
Hq → 0 and

Hqc(t− ti) ≈ 1+
Zh(xi) + ln(2xiL) − 2

xiL
+O(L−2), (66)

hence Γ in (60) becomes

Γ ≈ 1 +
3

2
δ
(k)
i + O(L−2). (67)

Bearing in mind, from (9) and (A6), that R′
i > 0 for

hyperbolic models/regions and that (61) must hold as
t1 → tbb in (65), and since the scaling law (42a) and
(65)–(67) must hold for all t and r, the conditions for
(61) are [47]

ct′
bb

≤ 0, δ
(k)
i ≥ −2

3
, δ

(m)
i ≥ −1. (68)

where t′
bb

is given in terms of our initial value functions
by (63b). Notice, from (42b), that all regular hyperbolic
models comply with δ(k) ≥ −2/3 for all their time evolu-
tion. From (34) and (62), it is evident that (68) are com-
pletely equivalent to the Hellaby–Lake conditions (10).
Since these conditions are necessary and sufficient, (68)
are also necessary and sufficient [24, 25, 39].

C. Elliptic models/regions.

We look again at Γ in (60), but now considering that
Hq changes sign (from positive to negative) at some t =
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tmax where L = Lmax = 2mqi/kqi = 2/xi, so that 0 < L ≤
Lmax and we have the presence of a second (collapsing)
singularity as L → 0 when t → tcoll, with tmax and tcoll
given by (57). Near the maximal expansion L → Lmax

and so Hq → 0, while c(t − ti) → c(tmax − ti). Thus, we
have in this limit the following necessary (not sufficient)
condition for (61):

Γ = 1 + 3(δ
(m)
i − δ

(k)
i ) > 0. (69)

Near the initial singularity (bang) we have Hq → ∞ as
t → tbb, while near the collapsing singularity we have
Hq → −∞ as t → tcoll with tcoll given by (57). We
consider t = t1 such that ti > t1 > tbb but t1 ≈ tbb, as
well as t = t2 such that tcoll > t2 > ti with t2 ≈ tcoll. For
these times Γ takes the form

Γ ≈ −3Hq

Hqi

[

δ
(m)
i − δ

(k)
i −Hqi c(ti − t1)

(

δ
(m)
i − 3

2
δ
(k)
i

)]

= −3Hq

[

ct′
bb

3R′
i/Ri

+ c(t1 − tbb)

(

δ
(m)
i − 3

2
δ
(k)
i

)]

,

(70)

Γ ≈ 3
|Hq|
Hqi

[

Hqi c(t2 − ti)

(

δ
(m)
i − 3

2
δ
(k)
i

)

+ δ
(m)
i − δ

(k)
i

]

= 3|Hq|
[

ct′
bb

3R′
i/Ri

+ c(t2 − tbb)

(

δ
(m)
i − 3

2
δ
(k)
i

)]

,

(71)

Since (70) must hold as t1 → tbb and (71) must hold as
t2 → tcoll, each expression furnishes a second and third
necessary condition for (61). Since both conditions that
follow from (70) and (71) must hold for all t in the range
tbb(r) < t < tcoll(r) for all r, these two conditions taken
together are then the necessary and sufficient conditions
for the fulfillment of (61), which can be written as

ct′
bb

3R′
i/Ri

≤ 0,
ct′

coll

3R′
i/Ri

≥ 0, δ
(m)
i ≥ −1, (72)

with

ct′
coll

3R′
i/Ri

=

(

δ
(m)
i − 3

2
δ
(k)
i

)

c(tcoll − tbb) +
ct′

bb

3R′
i/Ri

, (73)

where we used c(tcoll− ti) = c(tcoll− tbb)−c(ti− tbb), with
tbb and tcoll given by (57), and the equal sign holds only
at a symmetry center. The fact that one of the three con-
ditions in (72) to avoid shell crossings in elliptic models
is basically a sign condition on the gradient t′

coll
has not

been, apparently, noticed in the extensive literature that
uses the conventional variables. The reader is requested
to compare the simplicity and elegance of (72) with the
cumbersome form (11).

Conditions (72) imply the following necessary (but not
sufficient) condition for (61)

δ
(m)
i − 3

2
δ
(k)
i ≥ 0, (74)

which, because of (42c), implies that δ(m)−(3/2)δ(k) ≥ 0
necessarily holds for all times if (61) holds. Since condi-
tion (74) implies (69), then the latter (also necessary but
not sufficient) follows from (72) too.

It is straightforward to show from (31), (57), (62),
(63b) and (73) that conditions (72) are equivalent to
the Hellaby–Lake conditions (11). We have expressed

these conditions in terms of mqi, kqi, δ
(m)
i , δ

(k)
i , but it

is straightforward to rewrite them in terms of other sets

initial value functions, like mqi, Hqi, δ
(m)
i , δ

(H)
i . Because

of (A6) and (40), we do not need to express (72) in terms
of the ± signs for R′, as it is understood that the signs
of t′

bb
and t′

coll
must be, respectively, the same and the

opposite of the sign of R′
i (which because of (A6) will be

the same as the sign of R′).

IX. OMEGA AND HUBBLE EXPANSION
PARAMETERS.

The fact that Hq behaves in (38) as a Hubble scalar of a
FLRW dust universe, has motivated some authors [15, 16]
dealing with cosmological and astrophysical applications
to define an “Omega” parameter analogous to that of a
FLRW dust cosmology

Ω̂ ≡ κρq
3H2

q

=
2mq

H2
q

=
2mq

2mq − kq
=

2mqi

2mqi − kqiL
, (75)

so that

Ω̂ − 1 =
kq

2mq − kq
=

kqiL

2mqi − kqiL
, (76)

where we use the symbol Ω̂, and not Ωq, because this
quantity is not the quasi–local dual of the scalar 2m/H2

under the definition (24) (see section XIII). The following

FLRW–like scaling laws hold for Ω̂ and Ω̂ − 1:

Ω̂ =
Ω̂i

Ω̂i − (Ω̂i − 1)L
, Ω̂ − 1 =

(Ω̂i − 1)L

Ω̂i − (Ω̂i − 1)L
,

(77)
while the Hamiltonian constraint (38) can be rewritten
as an analogue of the FLRW Hubble expansion

H2
q = H2

qi

[

Ω̂i

L3
+

1 − Ω̂i

L2

]

. (78)

The relative fluctuation (43) of the quasi–local Hubble
factor, δ(H), takes the appealing form

2δ(H) = Ω̂ δ(m) + (Ω̂ − 1) δ(k), (79)

which can be given in terms of metric functions L, Γ

and initial value functions Ω̂i, δ
(m)
i and δ

(H)
i by means of

(42a), (42b), (43) and (77).

We can identify Ω̂i in (77), (78) and (79) as analogous
to an r−dependent FLRW Omega factor at a fiducial
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cosmic time ti

Ω̂i =
2mqi

H2
qi

=
2mqi

2mqi − kqi
, Ω̂i−1 =

kqi
H2

qi

=
kqi

2mqi − kqi
,

(80)

Notice that the sign of Ω̂i − 1 in any region of r deter-
mines the sign of Ω̂ − 1 for all times, which is the same
as with kqi and kq. Hence, Ω̂ − 1 behaves as the FLRW

Omega factor for spatial curvature, so that Ω̂i − 1 deter-
mines the kinematic class: parabolic if Ω̂i = 1, elliptic if
Ω̂i > 1 and hyperbolic if 0 < Ω̂i < 1. Also, irrespective
of the kinematic class we have for every LTB model or
region: Ω̂ → 1 as L → 0 (near the central curvature

singularity). For all hyperbolic models or regions Ω̂ is

bounded between 0 and 1 for all choices of Ω̂i, Hqi (or

mqi, kqi), hence: Ω̂ → 0 as L → ∞, whereas for elliptic

models or regions Ω̂ → ∞ as L → Lmax because Hq → 0.

A. Analytic solutions in terms of Ω̂i

It is straightforward to parametrize the analytic solu-
tions in terms of Ω̂i, Hqi. For the parabolic case we have

Ω̂i = 1, and thus we just obtain (46) with
√

2mqi = Hqi.
For the hyperbolic and elliptic models or regions we sub-

stitute

mqi = H2
qi Ω̂i, kqi = H2

qi (Ω̂i − 1), (81)

in (50) and (55). Since Ω̂i, Hqi are roughly equivalent
to inhomogeneous generalization of fiducial Omega and
Hubble factors, parametrizing the analytic solutions with
these initial value functions could be more intuitive than
doing it with the density and spatial curvature profiles
mqi, kqi. The solutions (50) and (55) become

• Hyperbolic models or regions: Ω̂i − 1 ≤ 0.

c(t− ti) =
W −Wi

Hqi
. (82)

• Elliptic models or regions: Ω̂i − 1 ≥ 0.

Hqi c(t− ti) =















W −Wi expanding phase

πΩ̂i(Ω̂i − 1)−3/2 −W −Wi

collapsing phase

(83)

where the functions W and Wi are

Hyperbolic models or regions

W =

[

Ω̂i + (1 − Ω̂i)L
]1/2

L1/2

1 − Ω̂i

− Ω̂i

2(1 − Ω̂i)3/2
arccosh

(

2L

Ω̂i

+ 1 − 2L

)

, (84a)

Wi =
1

1 − Ω̂i

− Ω̂i

2(1 − Ω̂i)3/2
arccosh

(

2

Ω̂i

− 1

)

. (84b)

Elliptic models or regions

W =
Ω̂i

2(Ω̂i − 1)3/2
arccos

(

2L

Ω̂i

+ 1 − 2L

)

−

[

Ω̂i − (Ω̂i − 1)L
]1/2

L1/2

Ω̂i − 1
, (85a)

Wi =
Ω̂i

2(Ω̂i − 1)3/2
arccos

(

2

Ω̂i

− 1

)

− 1

Ω̂i − 1
. (85b)

Setting t = tbb and L = 0 in (82) and in the expanding
phase of (83) yields the bang time for hyperbolic and
elliptic configurations

ctbb = cti −
Wi

Hqi
, (86)

while the maximal expansion and collapse times, t = tmax

and t = tcoll, given by (57) are

tmax = ctbb +
πΩ̂i

2Hqi[Ω̂i − 1]3/2
, (87a)

tcoll = ctbb +
πΩ̂i

Hqi[Ω̂i − 1]3/2
. (87b)

We can also parametrize Γ, as well as the Hellaby–Lake
conditions, in terms of Ω̂i, Hqi and their gradients. For
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the parabolic case, we substitute into (59) and (64)

δ
(m)
i =

2H′
qi/Hqi

3R′
i/Ri

, (88)

while for hyperbolic and elliptic models or regions we
substitute into (60), (68) and (72) equation (81) plus

δ
(m)
i =

Ri

3R′
i

[

Ω̂′
i

Ω̂i

+
2H′

qi

Hqi

]

, (89a)

δ
(k)
i =

Ri

3R′
i

[

Ω̂′
i

Ω̂i − 1
+

2H′
qi

Hqi

]

, (89b)

where Ri can be specified as a choice of radial coordinate.
The initial value functions Ω̂i, Hqi can also be used

in the analytic solutions given in the forms (5)–(7), in
terms of the parameter η. For this purpose, we eliminate
M and E by means of

Ω̂i =
2M

2M + E Ri
, H2

qi =
2M + E Ri

R3
i

, (90)

where Ri can be prescribed as a radial coordinate gauge.
The bang time is then given by (86).

X. MAPPING OF DENSITY TO DENSITY OR
VELOCITY TO VELOCITY PROFILES.

Krasiński and Hellaby [7, 10] have examined an inter-
esting proposal: the possibility that arbitrary radial pro-
files of density (or velocity or density and velocity) given
at two different cosmic times for a finite radial range can
be fit (or “mapped”) by a unique LTB model. The initial
value parametrization of the analytic solutions is ideally
suited to examine this issue, which can also be under-
stood in terms of the equivalence of boundary and initial
conditions to solve the evolution equations of sections
XI and XIII. Our aim here is to illustrate how the ini-
tial value parametrization can be helpful, hence we only
examine in detail the mapping between the quasi–local
density profiles by a hyperbolic model, since all other
similar mappings can be handled in the same manner.

Consider two radial profiles of mq. Since t = ti is
arbitrary, then mqi can be one of the profiles, while we
take mqj = mq(ctj , r) for some tj > ti as the second
profile. If mqi and mqj are known, then

Lj(r) = L(ctj , r) =

(

mqi

mqj

)1/3

(91)

follows from (37) (remember that Li = 1). For a
parabolic model, we have from (46)

c(tj − ti) =
2

3
√

2mqi

[

(

mqi

mqj

)1/2

− 1

]

, (92)

a constraint that will not be satisfied unless mqi and mqj

have very restricted forms. For a hyperbolic model we
rewrite (50) as

F (|kqi|) ≡
Zh(α|kqi|) − Zh(β|kqi|)

β|kqi|3/2
= c(tj − ti), (93)

where Zh is given by (49) and

α =
1

m
2/3
qi m

1/3
qj

, β =
1

mqi
. (94)

Since a unique LTB model is determined by prescribing
mqi and |kqi|, and we assume mqi and mqj known, then
(93) becomes a constraint to find the missing initial value
function |kqi| that determines the LTB model. Solving
this constraint for known mqi, mqj and c(tj−ti) can only
be done numerically, but by looking at the properties of
the function F (|kqi|) we can find the conditions for the
existence of this solution, as it was done in [7, 10].

Considering that in an expanding model we have mqi >
mqj for tj > ti, we have α > β in general, and since Zh is
monotonously increasing, then the left hand side of (93)
is positive (like the right hand side). We also have

F (|kqi|) ≈
√

2

3β

(

α3/2 − β3/2
)

+ O(|kqi|), |kqi| ≈ 0,

(95a)

F (|kqi|) ≈
α− β

β|kqi|
+ O(|kqi|−3/2), |kqi| → ∞,

(95b)

which, together with similar expansions of dF/d|kqi|,
show that F (|kqi|) is monotonously decreasing and
bounded by

0 < F (|kqi|) ≤
√

2

3β

(

α3/2 − β3/2
)

=

√
2

3

[

m
−1/2
qj −m

−1/2
qi

]

(96)
Hence, considering (91), a unique solution of (93) must
exist if

1 +
3

2

√

2mqic(tj − ti) <

(

mqi

mqj

)1/2

= L
3/2
j , (97)

which is the same result found in [7]. Comparison with
(46) shows that the density-density mapping requires the
LTB model that maps mqi to mqj to expand faster than
a parabolic model. For the elliptic case we follow the
same method: using the solution (55) (in the expanding
and collapsing phases) as a constraint to find the missing
initial value function kqi. If the local density profiles mi

and mj are known (instead of mqi and mqj), then we
have to use the scaling law (41a) with Γ given by (40)

3mi

mj
R2

iR
′
i = 3Lj Γj R

2
iR

′
i = (R3

i L
3
j) ′, (98)
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which yields Lj by integration (as mi and mj are known
and Ri can be fixed as a coordinate gauge). It is straight-
forward to show that the analytic solutions for the hy-
perbolic class yield a unique LTB model mapping these
profiles if (97) holds.

Krasiński and Hellaby also examined the mapping of
profiles of velocities defined as v ≡ Ṙ/Ri = LHq. To deal
with this case we eliminate kqi as kqi = 2mqi − H2

qi, so
that the initial value functions are mqi and Hqi. Then,
from the Hamiltonian constraint (38) we obtain

Lj =
2mqiR

2
i

v2j − v2i + 2mqiR2
i

, (99)

which inserted in the solutions (50) and (55) yields the
constraints needed to obtain the missing initial value
function mqi. We can also obtain the LTB model that

results from assuming that the profiles Ω̂i and Ω̂j are
known. In this case we obtain Lj from (77)

Lj =
Ω̂i

Ω̂j

1 − Ω̂j

1 − Ω̂i

, (100)

which substituted in the solutions (82) and (83) yields
the missing initial value function Hqi by means of the
constraint

Hqi =
W (Ω̂i, Ω̂j) −Wi(Ω̂i)

c(tj − ti)
, (101)

where W and Wi take the forms (84a)–(84b) or (85a)–
(85b) with L given by (100) for hyperbolic or elliptic
models or regions. Evidently, obtaining the missing ini-
tial value function by means of constraints like (93) and
(101) does not guarantee the fulfillment of regularity con-
ditions (like absence of shell crossings). This has to be
verified independently by means of the Hellaby–Lake con-
ditions once the LTB model mapping the profiles has
been found.

The issue of mapping two profiles can also be under-
stood in terms of the systems of evolution equations that
we derive in the following section. These systems are
partial differential equations, hence initial and boundary
conditions are given as functions of r (or radial profiles).
The selection of two initial value functions is sufficient
to determine a unique solution. These functions can be,
either mqi,Hqi or mqi, kqi or Ω̂i, Hqi. Hence if we know
only one of these functions (evaluated at t = ti) and the
same function at t = tj , then we may use one of the avail-
able constraints to find the second initial value function,
and thus guarantee (if the constraint has a solution) that
the evolution system yields a unique LTB model. We
have proceeded in this section (following [7, 10]) by us-
ing the analytic solutions as the constraints that link the
boundary and initial conditions through L. The results
are the same as those of [7, 10], but the initial value
parametrization of the solutions makes the whole proce-
dure a lot more natural and straightforward.

XI. EVOLUTION EQUATIONS FOR A
NUMERICAL TREATMENT.

The analytic solutions, either in terms of the con-
ventional variables M, E, ctbb, R or the initial value
parametrization mqi, kqi, Ri, L that we have presented,
are mostly useful for qualitative work (as illustrated in
the previous section). We remark that these solutions
are either parametric or implicit, and thus a pure ana-
lytic framework based on them is necessary limited. For
concrete applications in models of less idealized cosmo-
logical inhomogeneities and observations there is no other
way but to consider a numeric framework.

The 1+3 fluid flow system (18)–(20) discussed in sec-
tion IV provides a fully covariant description and can be
used to determine the dynamics of LTB models by means
of numeric techniques. However, the associated spacelike
constraints (19) are partial differential equation on r that
are not easy to solve, making it difficult (in general) to
decouple the time and radial derivatives. As we show in
this section, the quasi–local scalars and their fluctuations
(in the initial value parametrization) provide more con-
venient variables for a numeric treatment of LTB models.

A. Quasi–local evolution equations.

An alternative system to the evolution equations (18)–
(20) follows by considering a 1+3 fluid flow evolu-
tion equations for the quasi–local scalars (35), involv-
ing mq, Hq and their corresponding relative fluctuations

δ(m), δ(H). This system can be obtained by eliminating
ρ, Θ, Σ and E in (18) in terms of the new variables by
means of (32) and using (31) to deal with the constraints
(19). Considering the notation (29): H = Θ/3, m =
κρ/3 and k = 3R/6, this framework leads to the follow-
ing evolution equations

ṁq = −3mqHq, (102a)

Ḣq = −H2
q −mq, (102b)

δ̇(m) = −3(1 + δ(m))Hqδ
(H), (102c)

δ̇(H) = −(1 + δ(H))Hqδ
(H) +

mq

Hq
(δ(H) − δ(m)),

(102d)

while the spacelike constrains (19) become the equations
defining δ(m) and δ(H) through (27a) and (31), and the
Hamiltonian constraint (20) reduces to (38). This is the
particular case of pure dust in [30, 31].

The system (102) is equivalent to (18), but it is much
more practical and easier to use in a numerical treat-
ment, as it is not necessary to solve any radial differen-
tial equation as a precondition to solve it. In practice,
we can handle it as a system of non–linear autonomous
ordinary differential equations, where r enters as a pa-
rameter (see Appendix B of [29]). Notice that once we
have solved (102) all local scalars in (17) can be deter-
mined by means of (32), (38) and (43).
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Since δ(H) diverges as Hq → 0, as the maximal expan-
sion ct = ctmax is reached in elliptic models or regions
(see A 4), it is better to use in these cases the alterna-
tive variable Σ = −Hqδ

(H) (see (32)). This leads to the
alternative system

ṁq = −3mqHq, (103a)

Ḣq = −H2
q −mq, (103b)

δ̇(m) = −3(1 + δ(m)) Σ, (103c)

Σ̇ = −2 ΣHq + Σ2 + mq δ
(m), (103d)

which is entirely equivalent to (102), and has the advan-
tage (besides its use for recollapsing configurations) that
Σ is the scalar associated with the shear tensor by (15).

We may supplement either (102) or (103) with the fol-
lowing extra pair of differential equations

L̇ = LHq, (104a)

Γ̇ = 3 ΓHqδ
(H) = −3 Γ Σ, (104b)

which follow directly from (32), (38) and (40). By includ-
ing these extra equations we can use the systems above
to determine numerically the metric functions in (39).
In fact, if we substitute the scaling laws (37)–(38), (41),
(42) and (43) into (104) we can work only with these two
evolution equations given as

L̇ =
[2mqi − kqiL]1/2

L1/2
, (105a)

Γ̇ = −3

2

2mqi [δ
(m)
i + 1 − Γ] − kqiL [δ

(k)
i + 2

3 (1 − Γ)]

[2mqi − kqiL]1/2
,

(105b)

whose solution (L and Γ) allows us to compute all scalars
by means of these scaling laws. However, from a numeric
point of view it might be more convenient and practical
to work with (102) or (103) supplemented by (104) than
with (105).

Solving any one of the systems of evolution equations
described above is needed to find radial null geodesics
and their corresponding red shift factor, z, which are in
turn needed for computing observable quantities (lumi-
nosity distance, etc). Given a numerical solution of either
system, radial geodesics ct = ctN (r) in the past null cone
and z follow from solving [3]

c dtN (r)

dr
= − R′

N

(1 + E)1/2
= − LN ΓN R′

i

[1 − kqiR2
i ]1/2

,

(106a)

d

dr
ln(1 + z) =

Ṙ′
N

(1 + E)1/2

=
LN ΓN HqN (1 + 3δ

(H)
N )R′

i

[1 − kqiR2
i ]1/2

, (106b)

where the subindex N means evaluation at the null curve
ct = ctN (r), i.e. AN = A(ctN (r), r). Since the systems

(102) or (103) or (105) can be handled in practice as
constrained ordinary differential equations, solving nu-
merically (106) can be achieved with simple numerical
techniques.

B. Initial conditions.

An obvious choice of initial value functions for the sys-
tems (102)–(104) or (103)–(104) is

mqi, Hqi, δ
(m)
i =

m′
qi/mqi

3R′
i/Ri

,

δ
(H)
i =

H′
qi/Hqi

3R′
i/Ri

or Σi = −
H′

qi

3R′
i/Ri

(107)

where we used (31) and Ri can be prescribed as a radial
coordinate gauge.

Since kqi determines the solutions of (38) (or (3) for
R = RiL), this initial value function is closely related to
the kinematic evolution of the models (or specific regions
of them). Hence, it is more practical and intuitive to
choose instead of (107) the initial value functions

mqi, kqi, δ
(m)
i =

m′
qi/mqi

3R′
i/Ri

, δ
(k)
i =

k′qi/kqi

3R′
i/Ri

.

(108)
These initial conditions are sufficient to solve (105), but
to solve (102)–(104) or (104)–(103) we also need Hqi and

δ
(H)
i or Σi, which readily follow from (38) and (43)

Hqi = [2mqi − kqi]
1/2,

δ
(H)
i =

2mqiδ
(m)
i − kqiδ

(k)
i

2[2mqi − kqi]

or Σi = −2mqiδ
(m)
i − kqiδ

(k)
i

2[2mqi − kqi]1/2
,

(109)

The main advantage of using (108) as initial conditions
is the fact that they are exactly the same initial value
functions that we employed in the parametrization of the
analytic solutions and in the forms of Γ in (59)–(60), and
the Hellaby–Lake conditions. Hence, given a choice of
these functions, a time evolution free from shell crossings
can be immediately tested by means of (64), (68) and
(72).

The evolution equations (103) and have already been
used for a dynamical systems approach to LTB mod-
els [29], while a suitable generalization of (102) was
employed for a numeric study of cosmological models
endowed with the LTB metric but with an energy–
momentum tensor of an anisotropic fluid [31].

A comprehensive numeric study of LTB models by
means of the systems (102), (103) or (105) is beyond
the scope of this article, and thus is presently under ex-
amination in a separate work. Our purpose has been
to show how these systems, constructed with quasi–local
variables, are potentially promising for this purpose.
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XII. GAUGE INVARIANT AND COVARIANT
SPHERICAL PERTURBATIONS ON A FLRW

BACKGROUND.

The connection between the system (102) and a per-
turbation formalism on a FLRW background is clearly
suggested by the fact that the evolution equations (102a)
and (102b) for the quasi–local scalars mq, Hq are for-
mally identical to the energy balance and Raychaudhuri
equations of a dust FLRW cosmology. Also, from (28),

(29), (37) and (38), we have k̇q = −2kqHq, which is the
same evolution equation for 3R in a FLRW spacetime,
while the δ(A) defined by (31) and its relation with the
scalars in (32) clearly highlights a sort of perturbation
definition. We provide in this section a rigorous charac-
terization of this intuitive resemblance.

A perturbation formalism between an idealized space-
time, S̄ (a dust FLRW cosmology), and an “lumpy” uni-
verse model, S (a dust LTB model), follows by defining
a “background model” in S, constructed by objects (in
S) that are the images of a suitable map Φ between ob-
jects in S̄ to objects in S [32]. Though, perturbations
in general are not uniquely defined by such an abstract
map Φ, because of the ambiguity of the gauge freedom
associated with choices of coordinates and hypersurfaces.
This fact requires carefully defining perturbed variables
that are “gauge–invariant” [37]. However, in the specific
case that concerns us we face a simpler task, as both the
idealized FLRW and the perturbed LTB spacetimes are
LRS (locally rotationally symmetric) and can be com-
pletely described by scalar functions [36]. Hence, Φ can
be a map of scalars to scalars, while the fact that both
spacetimes are spherically symmetric and are given in the
same normal geodesic coordinate (or frame) representa-
tion, greatly suppresses most of the gauge freedom that
we would find for a general S.[48]

The map Φ can be defined rigorously as follows. Let
X̄ and X be, respectively, the sets of smooth integrable
scalar functions in S̄ and S, then for all covariant FLRW
scalars Ā ∈ X̄ (we denote FLRW objects with an over–
bar) the map

Φ : X̄ → X, Ā 7→ Φ(Ā) = Aq ∈ X, (110)

defines a “background model” (associated to a FLRW
cosmology) in LTB models through the quasi–local
scalars Aq (which are LTB objects satisfying FLRW dy-
namics). Given their common normal geodesic represen-
tation and considering the perturbations

δ(A) =
A− Φ(Ā)

Φ(Ā)
(111)

associated with (110), LTB models characterized by the
metric (1) and source (2) can be considered then as spher-
ical non–linear “perturbed” dust FLRW cosmologies in
the “comoving” gauge.

The perturbation scheme that we described fits nat-
urally to the gauge invariant and covariant (GIC) ap-
proach of Dunsbury, Ellis and Bruni [32, 33]. Following

these authors, a perturbation scheme on FLRW cosmolo-
gies is covariant if the “lumpy” model S is described
by variables defined in the framework of the 1+3 fluid
flow variables associated with the system (18). Although
our description of LTB spacetimes is not based on these
scalars (the representation (17)) but on the quasi–local
representation (35), it is still a covariant description be-
cause mq and Hq, are covariant scalars by virtue of their
connection with the invariants M, R and their deriva-
tives in (28). Hence, the formalism based on mq and Hq

would also be covariant.
As commented by Ellis and Bruni [32], by virtue of the

Stewart–Walker gauge invariance lemma [35], all covari-
ant objects in S that would vanish in the background S̄ (a
FLRW cosmology in this case) are gauge invariant (GI),
to all orders, and also in the usual sense (as in [37]). The
tensorial quantities in LTB models that vanish for a dust
FLRW cosmology in the 1+3 formalism are the shear and
electric Weyl tensors σab and Eab, given by (15) and (16)
in terms of the scalar functions Σ and E , which from (30),
can be written in terms of the fluctuations m−mq and
H−Hq. From (31), it is evident that these fluctuations

and δ(A), as well as the radial gradients m′
q and H′

q are
all “first order” quantities (in the perturbation scheme)
that are GI to all orders, though mq, Hq are not (which
is expected because these are “zero order” background
variables). As a consequence, the fluid flow dynamics of
LTB models in the quasi–local scalar representation (35)
also provides a rigorous characterization of LTB models
as spherical, non–linear GIC perturbations on a FLRW
background.

We note that spatial curvature k = 3R/6 and its quasi–
local dual kq = 3Rq/6 do not appear in the dynamic
equations (102a)–(102d), though they can be used when
specifying initial conditions as in (108) (see also the ap-
pendices of [31]). Spatial curvature is GI only if the
FLRW cosmology S̄ is spatially flat, but its associated
variables δ(k) and k′q are GI. In fact, from (33), (37) and
(38) we can always eliminate either one of mq, Hq or

δ(m), δ(H) in terms of kq and δ(k), and construct a sys-
tem of evolution equations equivalent to (102a)–(102d),
but describing the dynamics in terms of spatial curvature
kq and its perturbation δ(k).

Given the correspondence between (102) and the dy-
namics of non–linear perturbations on a FLRW back-
ground, it is important to examine the connection with
linear perturbation theory of dust sources. For this pur-
pose we derive a second order equation for the density
perturbation δ(m) by differentiating both sides of (102a)
and use the remaining equations (102b)–(102d) to elimi-

nate all derivatives except δ̈(µ) and δ̇(m). We obtain

δ̈(m) − [δ̇(m)]2

1 + δ(m)
+ 2Hq δ̇

(m) − κ

2
ρq δ

(m)
(

1 + δ(m)
)

= 0,

(112)

which is an exact non–linear equation for δ(m) (a sim-
ilar equation was obtained in [41]). For near homoge-



16

neous conditions, as assumed in linear perturbations with
“small” perturbations |δ(m)| ≪ 1, (112) reduces to

δ̈(m) + 2Hq δ̇
(m) − κ

2
ρq δ

(m) = 0, (113)

an equation that is formally identical to the evolution
equation for linear density perturbations of a dust source
around a FLRW background (characterized by ρq, Hq) in
the comoving gauge [38], which for dust is a synchronous
gauge as well.

XIII. A THEORETICAL CONTEXT FOR THE
OMEGA PARAMETER.

The parameter Ω̂ that we discussed in section IX has
been introduced in the literature [15, 16] (together with
Hq) as useful ansatzes justified by their resemblance to
the corresponding FLRW Hubble and Omega parame-
ters. Another generalization of the FLRW Hubble factor,
suggested by Moffat and Tartarsky [42] and used in var-
ious articles [17], follows by defining two expansion fac-
tors, a radial and an azimuthal one, which can be given
in terms of Hq and δ(H) as:

H⊥ ≡ Ṙ

R
=

L̇

L
= Hq, (114a)

H‖ ≡ Ṙ′

R′
=

L̇

L
+

Γ̇

Γ
= Hq − 3Σ = Hq(1 + 3δ(H)),

(114b)

Evidently, H⊥ and H‖ correspond, respectively, to ex-
pansion factors of proper lengths in the direction orthog-
onal and parallel to radial rays orthogonal to the orbits
of SO(3). Moffat and Tartarsky define from these expan-
sion factors an “effective” Hubble parameter as

H2
eff = H2

⊥ + 2H⊥H‖ = HqH = H2
q(1 + δ(H)), (115)

so that an Omega parameter follows as Ωeff = κρ/(3H2
eff).

However, both pairs Hq, Ω̂ and Heff, Ωeff are basically
useful quantities in the qualitative or numeric application
of LTB models, since the proper local covariant general-
ization of the FLRW Hubble parameter to LTB models
is neither Hq, nor Heff, but the expression given by equa-
tion (41) of [43]. Nevertheless, it is still interesting to
discuss the theoretical assumptions underlying these ex-
pressions.

While both Hq and Heff are covariant quantities, the
theoretical context for Hq may be easier to justify, as this
scalar is the quasi–local dual of the fluid flow expansion
scalar H = Θ/3, and thus it is a GIC background variable
in the perturbation formalism discussed in section XII (it
is the image of the FLRW Hubble parameter under the
map (110)). However, H2

q is not the quasi–local dual of

H2, since the definition (24) implies that (H2)q 6= (Hq)2,

hence H2
q (and thus) Ω̂ are not images under the per-

turbation map (110) of the Omega and squared Hubble

parameters of a FRLW dust spacetime. As a consequence
Ω̂ is not a background variable in the perturbation for-
malism, though its gradient defined as

∆ ≡ Ω̂′/Ω̂

3R′/R
= δ(m)−2δ(H) = (1−Ω̂) (δ(m)−δ(k)), (116)

is a GIC perturbation in this formalism (since δ(m) and

δ(H) are), though we have ∆ 6= (Ω − Ω̂)/Ω̂ in general
(this relation only holds in the linear limit). On the other
hand, it is hard to find a theoretical context for Heff, Ωeff

besides their resemblance to FLRW quantities and their
utility in computations.

A. Evolution equations in terms of Ω̂ and ∆.

Since Ω̂ and Hq in (75) and (78) are constructed from
mq and kq, both quantities can easily be computed from
a numeric solution of the systems (102) or (103). The
initial value functions mqi and kqi in (107), (108) and

(109) can be given in terms of Ω̂i and Hqi from (81),

while δ
(m)
i and δ

(k)
i follow from (89).

However, given the practical utility of Ω̂ and the con-
nection of its gradient ∆ to the perturbation formalism
of section XII, it is still useful to construct a system of
evolution equations that include evolution laws for these
quantities. Rewriting the system (102) in terms of Ω̂ and
∆ yields the following dimensionless system

∂H

∂τ
= −H2

(

1 +
1

2
Ω̂

)

, (117a)

∂Ω̂

∂τ
= H Ω̂

(

Ω̂ − 1
)

, (117b)

∂∆

∂τ
= H

[(

δ(H) + ∆
)

Ω̂ −
(

1 + 3∆ + 4δ(H)
)

δ(H)
]

,

(117c)

∂δ(H)

∂τ
= −H

[

(

1 + δ(H)
)

δ(H) +
1

2

(

δ(H) + ∆
)

Ω̂

]

,

(117d)

where we have introduced the dimensionless variables

H ≡ Hq

H0
, τ ≡ H0 c(t− ti), (118)

with H0 an inverse length scale (cm−1), which can be
identified as the cosmological Hubble scale at a specific
fiducial cosmic time (we can also identify R0 = H−1

0 when
specifying the radial coordinate gauge through Ri). The

initial conditions for this system are basically Hqi, Ω̂i

and their radial gradients, which makes their specifica-
tion very intuitive and practical, as these initial value
functions could tend at a given asymptotic limit to the
Hubble and Omega factors in a FLRW background at a
fiducial cosmic time. The system (117) can also be sup-
plemented by the differential equations (104) for L and
Γ.



17

B. A dynamical system

The system (117) clearly suggests a dynamical systems
approach, as discussed in [44] for FLRW and Bianchi
models. This approach is based on the fluid flow equa-
tions [32–34] and an Omega parameter constructed as
the ratio of density to the the squared expansion scalar
H2 = Θ2/9. As shown in [44], if the evolution parameter
is defined by ∂/∂ξ = (1/H)∂/∂τ the Raychaudhuri equa-
tion decouples from the remaining evolution equations,
leading to a reduced system that can be analyzed qualita-
tively: critical points, invariant subspaces, etc. For LTB
models associated with evolution equations like (117), it
is more convenient (see [29]) to define ξ in terms of H in
(118) by means of the coordinate transformation [29]

τ = τ(ξ, r̄), r = r̄, ξ = ln H (119)

so that for every scalar A(τ, r) = A(τ(ξ, r), r) = A(ξ, r)
and derivatives associated with the 4–velocity flow ∂/∂τ
(with r constant) become

[

∂A

∂τ

]

r

=
∂A

∂ξ

[

∂ξ

∂τ

]

r

=
∂A

∂ξ
H

⇒ ∂

∂ξ
=

1

H

∂

∂τ
=

1

Hq

∂

c∂t
. (120)

Hence, the three equations (117b)–(117d) become inde-
pendent of H and effectively decouple from (117a), lead-
ing to the reduced system

∂Ω̂

∂ξ
= Ω̂

(

Ω̂ − 1
)

, (121a)

∂δ(H)

∂ξ
= −

(

1 + δ(H)
)

δ(H) − 1

2

(

δ(H) + ∆
)

Ω̂,(121b)

∂∆

∂ξ
=
(

δ(H) + ∆
)

Ω̂ −
(

1 + 3∆ + 4δ(H)
)

δ(H),

(121c)

which is very similar to that analyzed in [29] (where
δ(m) and a dimensionless Σ were used instead of ∆ and
δ(H)). Notice that this dynamical system is character-
ized by a 3–dimensional phase space parametrized by
{Ω̂, ∆, δ(H)}, which contains the FLRW dust case as an

invariant set given by the line [Ω̂ = Ω̂(ξ),∆ = 0, δ(H) =
0]. Therefore, this dynamical systems approach also pro-
vides a nice and appealing theoretical context to justify
the role of Ω̂ as an inhomogeneous generalization of the
FLRW dust Omega parameter.

XIV. REGULARITY OF SPECIAL LTB
CONFIGURATIONS.

A. Closed elliptic models and regular zeroes of
R′ = 0.

In closed elliptic models the 3T [t] are homeomorphic to
S
3 (see Appendix A 3). There are two symmetry centers,

at r = 0 and r = rc. Since R(t, 0) = R(t, rc) = 0 for
all t, then R′(rtv) = 0 where 0 < rtv < rc must hold
for all t. The regularity conditions (A6) and (A7) imply
that for all r the sign of R′ is the same for all 3T [t].
Hence, (9) requires the function Ri(r) to be selected so
that Ri(0) = Ri(rc) = 0 and R′

i(rtv) = 0, with

R′
i > 0 and 0 < F ≤ 1 for 0 < r < rtv,

R′
i < 0 and − 1 ≤ F < 0 for rtv < r < rc,

(122)

where F = ±
√

1 + E, with F(0) = 1, F(rc) = −1 and
F ′(0) = F ′(rc) = F(rtv) = 0. Since R, R′ and F are
bounded, if (9) holds then the maximal coordinate range
is 0 ≤ r ≤ rc in all regular 3T [t].

Equations (122) provide the coordinate ranges where
the “+” or “−” signs hold in specifying the Hellaby–Lake
conditions (11) in the conventional variables. However,
the ± signs are no longer needed with the initial value
parametrization, as it is clear that fulfillment of (72) (the
equivalent of (11)) implies by its construction that t′

bb
and

t′
coll

must have, respectively, the opposite and same sign
(and a common zero) as R′

i/Ri, and from (A6), this sign
will be the same for R′/R at all 3T [t].

If only the first sign equality in (9) holds, then there
would exist a range of r for which

sign(R′
i) = sign(M ′) 6= sign(F), (123)

so that M ′ and R′
i have a common zero, but either F

has a zero that is not common to that zero, or F has
no zeroes. In these situations, ρ in (4) remains bounded,
and so there is no curvature singularity, but we have a
surface layer discontinuity at r = rtv [24, 25, 40]. This
is the reason why when R′ vanishes regularly at some
r = rtv, this worldline must lie, either in an elliptic model
or in an elliptic region. Besides the surface layer, (123)
also implies an ill–defined metric coefficient grr in (1) and
(39) (which leads in turn to an ill–defined proper radial
length between different comoving dust layers becomes).

Once these issues are taken under consideration, initial
conditions complying with the Hellaby–Lake conditions
(72) can be provided for this class of models, whether for
analytic/qualitive or numeric work.

B. Simultaneous big–bang.

In general, the initial curvature singularity given by
(58a) is not simultaneous, since it is marked by the curve
ct = ctbb(r) in the (ct, r) coordinate plane. For parabolic

models, the condition ct′
bb

= 0 in (63a) implies δ
(m)
i = 0,

and thus m′
qi = 0, which corresponds to the FLRW limit.

However, non–trivial hyperbolic and elliptic LTB models
follow by setting the initial value functions so that ctbb is
a constant (see [10]). In order to examine these cases, we
use (52), (57) and (63b) to rewrite Γ in (60) in terms of

ctbb and ct′
bb

, which after setting t′
bb

= 0 and tbb = t
(0)
bb =
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constant, leads to

Γ = 1 + 3(δ
(m)
i − δ

(k)
i ) − 3Hq c(t− t

(0)
bb )

(

δ
(m)
i − 3

2
δ
(k)
i

)

,

(124)
where Hq follows from (38) and

c(t− t
(0)
bb ) =

{

Zh(xi L)/yi hyperbolic
Ze(xi L)/yi elliptic

, (125)

with xi, yi, Zh and Ze given by (51), (49), (56) and (54).
Since xi and yi depend only on mqi and kqi, a simulta-
neous big–bang t′

bb
= 0 implies the following constraint

on these initial value functions

c(ti − t
(0)
bb ) =

{

Zh(xi)/yi hyperbolic
Ze(xi)/yi elliptic

, (126)

which, in turn, implies (by differentiation) the following

constraint between the δ
(m)
i and δ

(k)
i (hence, between the

gradients m′
qi and k′qi)

δ
(m)
i

[

1 −Hqic(ti − t
(0)
bb )
]

= δ
(k)
i

[

1 − 3

2
Hqic(ti − t

(0)
bb )

]

.

(127)
As a consequence of (126), a simultaneous big–bang al-
lows us to prescribe only one of the two functions mqi

and kqi, the other one must be found by solving the al-
gebraic constraint (126) or solving (127) as a differential
equation for dkqi/dmqi (the function Ri(r) remains free
and can be fixed as a radial coordinate gauge). Since
we need both functions mqi and kqi to solve (102) or
(103), finding previously a numeric solution of the alge-
braic constraint (126) is not a problem (it is part of the
work needed to provide appropriate initial conditions).
However, assuming that mqi is selected and bearing in
mind that

0 < Zh(xi) for xi > 0, (128a)

0 < Ze(xi) < π for 0 < xi < 2, (128b)

it is evident that the hyperbolic branch of (126) does not
appear to be restrictive at all to find |kqi|. For the elliptic
branch, a necessary condition for a solution of (126) that
yields kqi is

0 < c(ti − t
(0)
bb )k

3/2
qi < πmqi, (129)

which, again, does not seem to be restrictive (see [10] for
comparison). Still, since we cannot solve (126) analyti-
cally, nor invert (125) to find L, the case of a simultane-
ous big–bang may be easier to handle analytically with
the conventional variables M, E and R by means of (48)

or (53), since we only need to fix tbb = t
(0)
bb and then pre-

scribe the functions M and E taking care to fulfill the
Hellaby–Lake conditions (10) and (11). Nevertheless, we
can still use mqi and kqi to examine qualitatively these
regularity conditions in these models through (124).

• Hyperbolic models

We examine (124) in the limits L ≈ 0 and L → ∞
along constant but arbitrary r (so that the time
dependence is concentrated on L). Consider the

following series expansions of Hqc(t− t
(0)
bb ):

Hqc(t− t
(0)
bb ) ≈ 2

3
+

x
1/2
i

15
L + O(L3/2)

for L ≪ 1, (130a)

Hqc(t− t
(0)
bb ) ≈ 1 +

2 − ln(2xiL)

xiL
+ O(L−2)

for L ≫ 1. (130b)

where we used (49), (38) and (125). Taking the
leading terms in these expansions, Γ in (124) be-
comes

Γ ≈ 1 + δ
(m)
i (L ≪ 1),

Γ ≈ 1 +
3

2
δ
(k)
i (L ≫ 1),

leading to the following conditions for the fulfill-
ment of (61)

δ
(k)
i ≥ −2

3
, δ

(m)
i ≥ −1. (131)

which are the same as (68) with t′
bb

= 0.

• Elliptic models

The behavior of Γ in (124) around L ≈ 0 for t ≈ t
(0)
bb

follows from an expansion similar to (130b), but
using Ze instead of Zh. This yields also Hqc(t −
t
(0)
bb ) ≈ 2/3 + O(L), and lead to Γ ≈ 1 + δ

(m)
i .

Considering now L ≈ 0 but in the collapsing phase,

so that t ≈ tcoll, we have Hqc(t − t
(0)
bb ) → −∞.

Hence, Γ in this limit takes the form

Γ ≈ 3|Hq|c(t− t
(0)
bb )

(

δ
(m)
i − 3

2
δ
(k)
i

)

, (132)

while Γ for t ≈ tmax takes the form (69). Therefore,
the conditions for the fulfillment of (61) are simply

δ
(m)
i ≥ −1, δ

(m)
i − 3

2
δ
(k)
i ≥ 0. (133)

Notice, by comparing with (73), that the second
condition above is equivalent to ct′

coll
≥ 0, hence

(133) are simply (72) with t′
bb

= 0. It is important
to notice that a simultaneous big–bang t′

bb
= 0 does

not imply a simultaneous collapsing singularity or
maximal expansion (t′

coll
and t′

max
are not zero).

C. Simultaneous maximal expansion and
simultaneous collapsing time.

These elliptic LTB configurations follow by setting the
maximal expansion and collapse times, tmax, tcoll, in (57)
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to constants. They have been examined in [10], hence
the reader can compare the treatment of these cases in
this reference with our treatment in this subsection.

The condition for t′
max

= 0 in elliptic models follows
directly from (57) as

ctmax = cti + γ0, π − Ze(xi) = γ0yi, (134)

where γ0 is a positive constant and xi, yi and Ze are
given by (54) and (56). As in the case t′

bb
= 0, we can only

prescribe one of mqi and kqi, with the other one obtained
by solving numerically the constraint (134). If mqi is
prescribed, then a necessary condition for the existence of
a solution for kqi follows directly from (128b) and (134):

0 < γ0k
3/2
qi < πmqi, (135)

which looks like (129) and also does not appear to be
restrictive at all. Still, it is necessary to work (134) nu-
merically or to make further assumptions on mqi or kqi to
get more information. The locus of the big–bang and col-
lapse singularities are now given by inserting (134) into
(57)

ctbb = cti + γ0 −
π

yi
, ctcoll = cti + γ0 +

π

yi
, (136)

which indicates a time symmetric location of tbb and tcoll
with respect to tmax. The gradients of tbb and tcoll are

ct′
bb

3R′
i/Ri

=
π

yi

(

3

2
δ
(k)
i − δ

(m)
i

)

,

ct′
coll

3R′
i/Ri

=
π

yi

(

δ
(m)
i − 3

2
δ
(k)
i

)

. (137)

where we used (56) and (31).
If t′

coll
= 0, then (57) implies the following constraint

similar to (134)

ctcoll = cti + ǫ0, 2π − Ze(xi) = ǫ0yi, (138)

where ǫ0 is a positive constant. Again, we can only pre-
scribe one of mqi and kqi, and obtain the other by solving
(138). From (128b) we have π < 2π−Ze(xi) < 2π, hence,
if we prescribe mqi a necessary condition for finding kqi
as a solution of (138) is

π < ǫ0
k
3/2
qi

mqi
< 2π, (139)

which, again, does not seem to be restrictive, though fur-
ther information requires either numerical work on (138)
or making assumptions on mqi or kqi. The big–bang and
maximal expansion times and their gradients are

ctbb = cti + ǫ0 −
2π

yi
,

ctmax = cti + ǫ0 −
π

yi
, (140a)

ct′
bb

3R′
i/Ri

=
2π

yi

(

3

2
δ
(k)
i − δ

(m)
i

)

,

ct′
max

3R′
i/Ri

=
π

yi

(

δ
(m)
i − 3

2
δ
(k)
i

)

, (140b)

By comparing (137) and (140b) with (72), then suffi-
cient conditions to fulfill (61) in either case ct′

max
= 0 and

ct′
coll

= 0 are simply (133). As with the case ct′
bb

= 0,
it is not problematic to work out these cases in solving
(102) or (103) numerically. As in the case t′

bb
= 0, these

cases are easier to handle analytically with the conven-
tional variables, since for a given choice of M and E, we
have yi = |E|3/2/M , and thus ctbb follows directly from
(136) or (140a). Of course, the three free parameters
must comply with the Hellaby–Lake conditions (11).

D. Mixed hyperbolic/elliptic configurations.

LTB models admit more than one kinematic class in
their full radial domain. This type of “mixed” configu-
rations can be constructed either by smoothly matching
LTB regions with one kinematic class to regions of an-
other (as in [24]), or simply by choosing the initial value
function kqi (which determines the kinematic class) so
that it changes sign in its radial domain.

A particularly interesting mixed configuration is an el-
liptic region surrounded by a hyperbolic exterior given
by the choice

kqi







> 0 for 0 ≤ r < rb, elliptic region
= 0 for r = rb, interface
< 0 for r > rb, hyperbolic region

. (141)

The fact that δ
(k)
i → −∞ if kqi → 0 (from its definition,

see Appendix A 4), and thus δ(k) → −∞ for all t, signals
a potential problem in using the quasi–local variables to
study an elliptic/hyperbolic model. However, we notice

that δ(k) does not appear in (102) nor in (103). Also, δ
(k)
i

only appears in the initial conditions (108) in the form

kqiδ
(k)
i , which does not diverge as kqi → 0. Hence, this

behavior of δ
(k)
i has no consequences for the numerical

integration of these evolution equations for these config-
urations.

For analytic or qualitative work, the limit kqi → 0 must
be handled carefully [24]. While regularity conditions for

these mixed models follow also from (60), even if δ
(k)
i →

−∞ as kqi → 0, we cannot simply set kqi = 0 in (60).
Instead, we examine Γ at constant values of r as r → rb
(or kqi → 0). The following series expansions around
kqi = 0 hold in this limit

Hq c(t− ti) ≈ 2

3

(

1 − 1

L3/2

)

+ O(kqi), (142a)

1 − Hq

Hqi
≈ 1 − 1

L3/2
+ O(kqi), (142b)

so that Γ in (60) takes the form

Γ ≈ 1 +

(

1 − 1

L3/2

)

δ
(m)
i + O(kqi), (143)
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which (up to leading order) is the form of Γ in (59).
Hence, Γ passes smoothly from its elliptic to its hyper-
bolic form, approaching the form for parabolic models
wherever kqi ≈ 0 for r ≈ rb.

Since the limit kqi → 0 implies xi → 0 in either the
elliptic (r < rb) or hyperbolic side (r < rb), we should
also obtain for L the approximated parabolic form (46)
for r ≈ rb from the analytic solutions (50) and (55) in
the limit xi → 0. Expanding Zh(u) and Ze(u) around
u = 0 yields

Zh(u) ≈
√

2

3
u3/2 +

√
2

6
u5/2, (144a)

Ze(u) ≈
√

2

3
u3/2 −

√
2

6
u5/2, (144b)

Hence, taking only the leading term in Zh and Ze and
substituting into (50) and the expanding phase of (55)
yields for both elliptic and hyperbolic sides

L3/2 ≈ 1 +
3

2

√
mqic(t− ti) + O(xi), (145)

which up to the leading term coincides with (46). We
did not consider the collapsing phase in (55) because,
from (57), we have ctmax → ∞ as kqi → 0, hence the
worldline marking the interface r = rb is contained in
the expanding phase for all t.

The conditions for the fulfillment of (61) can be ob-
tained jointly for the elliptic and hyperbolic regions,

bearing in mind that for r ≈ rb we have δ
(k)
i → −∞ but

also Γ and L take the forms (143) and (145). For both
the elliptic and hyperbolic regions we have as r → rb

ct′
bb

3R′
i/Ri

≈ δ
(m)
i

3
√
mqi

, (146)

hence δ
(m)
i ≤ 0 (with δ

(m)
i = 0 only at r = 0) is a suf-

ficient condition for ct′
bb

< 0 in (68) and (72) to hold in
the full radial range (note, from (31), that this condition
is equivalent to m′

qi ≤ 0). Since ctcoll(r) → ∞ as r → rb,
the collapsing singularity is contained entirely in the el-
liptic region, hence the existence of the hyperbolic region
for r > rb has no effect on the condition ct′

coll
≥ 0 in (72).

The only remaining condition is δ
(k)
i ≥ −2/3 in the

hyperbolic region. Evidently, this condition does not hold

in the limit r → rb because δ
(k)
i → −∞, but in this limit

Γ has the form (143), and so (61) is not violated. As

long as δ
(k)
i remains negative we have k′qi > 0 (from (31)

with kqi < 0), and thus E′ > 0 holds, hence condition
(10) (equivalent to (61)) also holds. In the elliptic side,
we have kqi → 0 with k′qi < 0, which implies from (B3)

that E′ > 0 and ki = 3Ri/6 < 0 near rb. In fact local
spatial curvature k = 3R/6 is negative for all times near
r = rb, even if kq > 0 all the way up to r = rb. This
follows directly by applying the integral property (27b)
with r = rb as integration limit and considering that

k′(t, rb) ≤ 0 and kq(t, rb) = 0 hold for all t:

k(t, rb) =
1

R3(t, rb)

∫ rb

0

k′(t, x)R3(t, x)dx < 0. (147)

This provides an example of how elliptic dynamics does
not (necessarily) imply positive local curvature (see Ap-
pendix B).

Notice that if instead of a hyperbolic region in (141),
we have a parabolic region (kq = 0) for r > rb, then the
results above still apply to the elliptic region in 0 ≤ r <
rb. Hence, we would still have k < 0 near r = rb in this
region, and thus k < 0 would also hold in the parabolic
region. This is an example of how local spatial curvature
can be negative in a parabolic region not containing a
symmetry.

XV. CONCLUSION AND FURTHER WORK.

We have provided a comprehensive examination of
LTB dust models in terms of quasi–local scalars and their
fluctuations, which are covariant objects that can be re-
lated to covariant scalars in the “fluid flow” or “1+3”
formalism. The motivation, and contents of the article,
together with a summary of previous work, concepts and
ideas, have been given in detail in the introduction. As
we have shown throughout the article, the initial value
parametrization that emerges from these scalars is use-
ful in analytic, qualitative and numerical studies of the
models. The “fluid flow” evolution equations for these
scalars are an appealing and practical alternative to the
analytic solutions conventionally used in the literature,
as they are fully general and at the same time techni-
cally simple: they can be effectively handled as ordinary
differential equations, and thus can be very handy for a
numeric treatment of the models. These evolution equa-
tions can also be understood in terms of a gauge invariant
and covariant (GIC) perturbation formalism, consistent
with the covariant fluid flow approach of Ellis et al [32–
34], as well as the traditional gauge invariant approach
[37]. Under this formalism, the dynamics of LTB mod-
els can be cast in terms of the dynamics of spherical,
non–linear GIC perturbations on a FLRW background.

Regarding analytic and qualitative work, the quasi–
local scalar representation and its associated initial value
description provide an appealing theoretical context to
understand the conventional parameters of the models,
leading to an understanding and appreciation of previ-
ous work under a new perspective. This is specially evi-
dent in the fact that all scalars can be expressed by sim-
ple scaling laws that can be analyzed qualitatively, as
well as in the formulation of regularity conditions (the
Hellaby–Lake conditions [24, 25, 39]) as restrictions on
initial value functions. We have also looked at the prob-
lem, proposed by Krasiński and Hellaby [7, 9], of finding
the existence of a unique LTB model that is consistent
with the “mapping” of arbitrary radial profiles of den-
sity or velocity at different cosmic times. Also, we have
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provided a theoretical context for an Omega parameter
for LTB models, which has been defined in the literature
as an ansatz [15, 16]. Given the widespread use of LTB
dust solutions for dealing with a wide variety of prob-
lems and models in General Relativity and Cosmology,
the new approach to these solutions presented here has
a significant potential for applications.

In this article we have mostly introduced, discussed
and justified the use of a new scalar representation for
studying LTB models. However, the formalism that we
have presented is potentially useful in future work using
these models, hence we are looking at its direct applica-
tion in separate articles, on the make, dealing with new
results on important theoretical and practical issues, such
as: (i) the asymptotic properties and boundary condi-
tions of scalars in the radial direction, (ii) the conditions
for constructing LTB models with scalars having radial
profiles of “clumps” or “voids”, (iii) the conditions for
the existence of a positive “back–reaction” in LTB mod-
els, which would allow us to mimmic the effect of an
accelerated cosmic expansion in the context of Buchert’s
scalar averaging [21, 22]. Together with these articles
under elaboration, we are also conducting a comprehen-
sive numeric study of the models, based on the evolu-
tion equations derived here. Finally, as shown by [45],
the extension of the formalism of quasi–local scalars can
be suitably modified in order to apply it to the quasi–
spherical Szekeres spacetimes. The main justification
of the present article is then to motivate and induce
researchers to consider the introduced variables in the
study and application of LTB models, as well as to serve
as the theoretical reference for the use of these variables.

Appendix A: Regularity issues of the new variables.

The regularity of LTB models in the conventional
variables has been extensively discussed in the litera-
ture [2, 3, 24, 25, 39]. We examine this issue in terms of
the quasi–local variables and their fluctuations.

1. Symmetry centers.

We have only considered in this article LTB models
having (at least) one symmetry center, which is a regular
timelike worldline corresponding to a fixed point of the
rotation group SO(3). This is a sufficient condition for
integrals in (24) to be finite in a domain ϑ(r) defined by
(23). The symmetry center can be marked as r = 0 (and
r = rc if there is a second one). The following conditions

hold: R(t, 0) = Ṙ(t, 0) = 0. Considering (36) and (40)
and R′ → 1 as r → 0, we can mark the symmetry center
by a zero of Ri(r) (distinct from the locus of a curvature
singularity: L = 0) [25]. Hence

L(ct, 0) > 0, Γ(ct, 0) = 1. (A1)

Since E(0) = M(0) = M ′(0) = E′(0) = 0, then mqi(0) =
mi(0) and kqi(0) = ki(0) must hold, and thus Hqi(0) =
Hi(0). For any scalar A and its dual function Aq we have

A(t, 0) = Aq(t, 0), A′(t, 0) = A′
q(t, 0) = 0, (A2)

The same conditions hold at a second symmetry cen-
ter r = rc in closed elliptic models (see Appendix A 3).
Notice that a central singularity is now associated with
L(ct, r) = 0.

2. The Riemann tensor.

Regardless of which parameters or variables we may
use, the regularity at each spacetime point or surface
in LTB models can be characterized by the continu-
ity and finiteness of the Riemann tensor R(e)(f)(g)(h) =

Rabcdea(e) eb(f) ec(g) ed(h), in an orthonormal tetrad basis ea(e)
[3, 24]. Considering the natural tetrad associated with
the LTB metric in its form (39)

ea(0) = ua, ea(1) =

√

1 − kqiR2
i

 L ΓR′
i

δar ,

ea(2) =
1

LRi
δaθ , ea(3) =

1

LRi sin θ
δaφ, (A3)

the nonzero Riemann tensor basis components are given
readily in terms of the new variables mq and δ(m) by

R(0)(1)(0)(1) = 3m− 2mq = mq(1 + 3δ(m)),

R(1)(2)(1)(2) = 3m−mq = mq(2 + 3δ(m)),

R(0)(2)(0)(2) = mq, R(2)(3)(2)(3) = 2mq.

(A4)

These basis components also involve other scalars like
H, Hq, k, kq and δ(H), δ(k), which are related to m, mq

and δ(m) by the constraints (37), (38), (33) and the
Hamiltonian constraint (20) for the local covariant
scalars

H2 = 2m− k + Σ2 = 2m− k + (Hqδ
(H))2. (A5)

Clearly, it is sufficient for the regularity of LTB models
based on (A4) that all the involved scalars (not only m
and mq) are bounded and continuous, but it is not a nec-
essary condition, since H and Hq could diverge because
k and kq diverge, with m and mq remaining bounded.

Also, we note that the relative fluctuations δ(A) might
diverge in some cases when A and Aq are bounded.

3. Topology of the space slices.

Given the existence of (at least) one symmetry center,
the admissible topologies (homeomorphic classes) of the
3T [t] are
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• “Open models” : 3T [t] homeomorphic to R
3.

There is only one symmetry center, at r = 0.
As a consequence of the regularity condition (9),
R′ > 0 and E > −1 must hold for all r, and so this
topology is compatible with regions or models of all
kinematic classes (hyperbolic, parabolic or elliptic
with −1 < E < 0). We discuss the asymptotic
radial regime associated with this topology in a
separate article.

• “Closed models” : 3T [t] homeomorphic to S
3.

There are two symmetry centers, at r = 0 and
r = rc. Since R(t, 0) = R(t, rc) = 0 for all t,
then there must exist a turning value of R so that
R′(rtv) = 0 where 0 < rtv < rc.

Since (9) is valid in each 3T [t] and F =
√

1 + E does not
depend on t, a zero of F (characteristic of S3 topology)
or the fulfillment of F > 0 (characteristic of R3 topology)
will be common to all 3T (t). Hence, all 3T [t] belong to
the same topological class and thus

sign[R′(ti, r)] = sign[R′(tj , r)], (A6)

must hold for every r and for any arbitrary pair of distinct
hypersurfaces 3T [ti],

3T [tj ]. As consequence, (9) can be
given as an initial condition

sign (R′
i) = signM ′ = signF , (A7)

specified on an arbitrary fiducial or “initial” hypersurface
3T [ti].

4. Possible blowing up of the δ(A).

From their definition (31), it is evident that relative
fluctuations δ(A) will diverge under certain regular con-
ditions (i.e continuous and finite A and Aq) if in the
integration domain ϑ(r) of (24) Aq has a zero that is not
a common same order zero of A. This situation occurs
in various situations that do not violate regularity, such
as the zero of Hq at t = tmax as elliptic models or regions
pass from expansion (Hq > 0) to collapse (Hq < 0), or in
mixed elliptic/hyperbolic configurations where kq passes
from positive to negative at some comoving radius r = rb
(see section XIV D). However, the quantities δ(m), δ(k)

and δ(H) in all basis components in (A4) only appear in
terms such as mqδ

(m), kqδ
(k) and Hqδ

(H), which do not
diverge at a zero of mq, kq or Hq. Hence, the blowing up

of δ(H) and δ(k) because of zeroes of kq or Hq does not
affect the regularity of the solutions, as conveyed by the
continuity and finiteness of (A4). Nevertheless, in these
cases it will be preferable to use Aqδ

(A), instead of δ(A),
for studying the time evolution of scalars (which justifies
the use of (103) over (102) for numeric work involving
expanding/collapsing regions or models).

5. Restrictions of the radial range due to a
curvature singularity.

When we introduced the quasi–local scalars in (24), we
assumed that the integration range ϑ(r) defined by (23)
was fully regular. However, in general, the coordinate
locus (58a) of the central singularity (expanding or col-
lapsing) is not simultaneous (i.e. not marked by t = tbb =
const., so that t′

bb
6= 0). Consider the case of an expand-

ing non–simultaneous singularity (big bang), marked by
the curve [tbb(r), r], with t′

bb
≤ 0, in the (ct, r) coordinate

plane, so that L(tbb(r), r) = 0 (the collapsing singularity
is analogous). The hypersurfaces 3T [t] for t ≤ tbb are
only regular for the semi open subset

ϑ̄(r) ≡ {x | rbb < x ≤ r} ⊂ ϑ(r), (A8)

where rbb is the intersection of tbb(r) and the constant t
value associated with the 3T [t]. As a consequence, the
integration range in the definition (24) for these 3T [t]
must be ϑ̄(r), not ϑ(r). For a collapsing singularity in
elliptic models we have exactly the same situation, but
the involved hypersurfaces are those with t ≥ tcoll(r),
with the lower radial bound given by r = rcoll marking
the intersection of tcoll(r) and the 3T [t].

However, this range restriction has no consequence in
the definition and usage of the quasi–local scalars Aq,
as the involved integrals can be treated simply as stan-
dard improper integrals. We define at each 3T [t] with
t ≤ tbb(r) the incumbent integrals with their lower in-
tegration limit as y = rbb + ǫ, for an arbitrarily small
ǫ > 0, and then obtain the limit as ǫ → 0. Off course,
since scalars like m, k, H diverge in this limit, mq, kq and
Hq might diverge as well, but the functions are well de-
fined and behaved in the range ϑ̄(r). This restriction only
prevents the Aq from taking values r < rbb for t ≤ tbb(r),
and so all results that involve these scalars can be trivially
extended to include hypersurfaces 3T [t] for t ≤ tbb(r) and
t ≥ tcoll(r).

Appendix B: Local vs. quasi–local spatial curvature.

The kinematic class of LTB models is determined by
the sign of the initial quasi–local spatial curvature kqi (or
E = −kqiR

2
i ). From (37), the sign of kqi determines the

sign of kq. It is evident that parabolic models (contain-
ing a symmetry center) are spatially flat, as kqi = ki = 0
trivially implies kq = k = 0. However, it is not obvi-
ous if a given sign of kq in regular hyperbolic or elliptic
LTB models also determines the sign of the local spatial
curvature k = 3R/6. In order to examine this point, we
rewrite (41b) as

k = kq

[

1 + δ(k)
]

=
kqi

3ΓL2

[

Γ + 3

(

δ
(k)
i +

2

3

)]

. (B1)

We examine the relation between kq and k and their
initial values for hyperbolic and elliptic models.
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Negative spatial curvature: hyperbolic models

In hyperbolic models or regions containing a center,

Γ > 0 and δ
(k)
i ≥ −2/3 hold everywhere (conditions (61)

and (68)), therefore, as a consequence of (37) and (B1),
we have:

kq < 0 ⇒ k < 0, (B2)

Hence, since all regular hyperbolic models or regions
comply with kq < 0, then all these models or regions have
also negative local spatial curvature. As explain further
below, the converse is not true, as local spatial curvature
can be negative in certain elliptic regions in which kq ≥ 0.

Elliptic models and positive spatial curvature.
The relation between kq and k is more complicated

in elliptic models or regions, since standard regularity
(conditions (61) and (72)) do not place a lower bound

on δ
(k)
i . Hence, the possibility that δ

(k)
i < −2/3 occurs

cannot be ruled out, and so k < 0 can happen in regions
where kq > 0. It is straightforward to show from (62)

that δ
(k)
i ≤ −2/3 can only occur in a regular elliptic

model or region (Γ > 0) if E′ = 0 for some 0 < rtv < r in

a domain ϑ(r). As a consequence, we have δ
(k)
i > −2/3

for all regular elliptic models in which E′ ≤ 0 holds for all
r (with E′ = 0 only at the symmetry center), and so (B1)

implies in this case that kq > 0 ⇒ k > 0 everywhere.

If there is a zero of E′ at some r = r∗, then δ
(k)
i < −2/3

will hold in some regions without violating regularity con-
ditions. Since −1 ≤ E ≤ 0 and E(0) = 0, then for r ≈ 0
we must have E′ < 0. Thus, the only possible configu-

ration is: E′ ≤ 0 and δ
(k)
i > −2/3 for 0 ≤ r < r∗, with

E′ ≥ 0 and δ
(k)
i < −2/3 for r > r∗. Further insight into

this situation comes from rewriting (13) as

E′ = RR′ (kq − 3k) = −4RR′

[

kq +
k′q/kq

2R′/R

]

. (B3)

If the regularity condition (A7) holds, then R′/
√

1 + E >
0, and so for E′(r∗) = 0 to occur the local curvature
k must decrease sufficiently to reach k(r∗) = kq(r∗)/3,

hence E′ > 0 (or δ
(k)
i < −2/3) leads to further decreas-

ing of k, so that k(r∗) < kq(r∗)/3 holds for r > r∗. A
situation in which k < 0 occurs with kq > 0 can easily be
conceived: since k′ and k′q are both monotonously nega-
tive, we have a curvature clump and so kq > k, thus, if
kq decays to zero sufficiently fast k might become neg-
ative. This happens in the elliptic side of the mixed el-
liptic/hyperbolic configuration examined in section XIV
D.
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