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Recently, traversable wormhole geometries were constructed in the context of f(R) gravity. The
latter is equivalent to a Brans-Dicke theory with a coupling parameter w = 0, which is apparently
excluded from the narrow interval, —3/2 < w < —4/3, extensively considered in the literature
of static wormhole solutions in vacuum Brans-Dicke theory. However, this latter interval is only
valid for a specific choice of an integration constant of the field equations derived on the basis of
a post-Newtonian weak field approximation, and there is no reason for it to hold in the presence
of compact objects with strong gravitational fields. In this context, we construct a general class
of vacuum Brans-Dicke wormholes that include the value of w = 0. Furthermore, we present the
general condition for the existence of vacuum Brans-Dicke wormhole geometries, and show that the
presence of effective negative energy densities is a generic feature of these vacuum solutions.
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Introduction: Wormholes are hypothetical tunnels in
spacetime and in classical general relativity are supported
by exotic matter, which involves a stress energy tensor
that violates the null energy condition (NEC) [1]. Sev-
eral candidates have been proposed in the literature, such
as solutions in Einstein-Gauss-Bonnet theory [2]; worm-
holes on the brane [3]; solutions in Brans-Dicke theory
[4-7], which will be further explored in this brief report;
wormhole solutions in semi-classical gravity [&]; exact
wormbhole solutions using conformal symmetries [9]; so-
lutions supported by equations of state responsible for
the cosmic acceleration [10]; and NEC respecting geome-
tries were further explored in conformal Weyl gravity
[11]); the possibility of distinguishing wormhole geome-
tries by using astrophysical observations of the emission
spectra from accretion disks was also explored [12], etc
(see Refs. [13,[14] for more details and [14] for a recent
review).

Recently, traversable wormhole geometries in the con-
text of f(R) modified theories of gravity were also con-
structed [15]. The matter threading the wormhole was
imposed to satisfy the energy conditions, so that it is the
effective stress-energy tensor containing higher order cur-
vature derivatives that is responsible for the NEC viola-
tion. Thus, the higher order curvature terms, interpreted
as a gravitational fluid, sustain these non-standard worm-
hole geometries, fundamentally different from their coun-
terparts in general relativity. Furthermore, we note that
f(R) modified theories of gravity are equivalent to a
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Brans-Dicke theory with a coupling parameter w = 0,
and a specific potential related to the function f(R) and
its derivative. However, the value w = 0 is apparently
excluded from the interval, —3/2 < w < —4/3, of the
coupling parameter, extensively considered in the litera-
ture of static wormhole solutions in vacuum Brans-Dicke
theory.

In Brans-Dicke theory, analytical wormhole solutions
were constructed [4-6]. It was shown that static worm-
hole solutions in vacuum Brans-Dicke theory only ex-
ist in a narrow interval of the coupling parameter [6],
namely, —3/2 < w < —4/3. However, this result is only
valid for vacuum solutions and for a specific choice of
an integration constant of the field equations given by
C(w) = —1/(w + 2). The latter relationship was derived
on the basis of a post-Newtonian weak field approxima-
tion, and it is important to emphasize that there is no
reason for it to hold in the presence of compact objects
with strong gravitational fields.

In this context, we construct a general class of vacuum
Brans-Dicke wormholes that include the value of w = 0,
and thus constructing a consistent bridge with the worm-
hole solutions in f(R) gravity found in [15]. Further-
more, we present the general condition for the existence
of Brans-Dicke wormhole geometries based on the NEC
violation, and show that the presence of effective nega-
tive energy densities is a generic feature of these vacuum
solutions.

General class of Brans wormholes: The matter-free ac-
tion in Brans-Dicke theory is given by
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where R is the curvature scalar, w is a constant dimen-
sionless coupling parameter, and ¢ is the Brans-Dicke
scalar. We adopt the convention 87G = ¢ = 1 through-
out this work.

The above action provides the following field equations:
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where G, is the Einstein tensor and [? = ¥, ,.
It is useful to work in isotropic coordinates, with the
metric given by

ds? = —e2*(M a2 4 2P ar? 4+ 2V (12 (dh? + sin? Ody?).
(4)
Throughout this work, we consider the Brans class I so-
lution, which corresponds to setting the gauge 8 —v = 0.
Thus, the field equations yield the following solutions
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where ag, 5o, B, C, and g are constants. Note that the
asymptotic flatness condition imposes that ag = 5y =0,
as can be readily verified from Eqs. (&) and (@]).

In order to analyze traversable wormholes in vacuum
Brans-Dicke theory, it is convenient to express the space-
time metric in the original Morris-Thorne canonical form
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where ®(R) and b(R) are the redshift and shape func-
tions, respectively. To be a wormbhole solution, several
properties are imposed [1], namely: The throat is located
at R = Ry and b(Rp) = Ry. A flaring out condition of the
throat is imposed, i.e., [bo(R) — Rb/(R)]/b*(R) > 0, which
reduces to b'(Rp) < 1 at the throat, where the prime
here denotes a derivative with respect to R. The condi-
tion 1 — b(R)/R > 0 is also imposed. To be traversable,
one must demand the absence of event horizons, so that
®(R) must be finite everywhere.

Confronting the Morris-Thorne metric with the
isotropic metric (), the radial coordinate r — R is rede-
fined as
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so that ®(R) and b(R) are given by
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respectively. The wormhole throat condition b(Ry) = Ro
imposes the minimum allowed r-coordinate radii vy given

by

rf=ao*B, =1-Q+/0Q-2). @13)
The values ROi can be obtained from Eq. ([I0) using Eq.
(@3). Note that R — co as r — 00, so that b(R)/R — 0
as R — oo. The condition b(R)/R < 1 is also verified for
all R > RE. The redshift function ®(R) has a singularit y
at r = rg = B, so that the minimum allowed values of rg
must necessarlly exceed rg = B. It can also be verified
from Eq. (I0) that r(jf > B which implies R(jf > 0.

The energy density and the radial pressure of the
wormhole material are given by [6]
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respectively, where Z is defined as
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Adding Eqs. ([Id) and (I3]), one arrives at
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which will be analyzed in the NEC violation below.
In [6], the authors considered negative energy densities,
which consequently violates the weak energy condition

(WEC). Now, Eq. ([4) imposes the following condition:
[Clw) +1]* > X(w), (18)

which can be rephrased as

C(w) [1 - %(“)} >0, (19)

by taking into account Eq. (8). Note that the function
C(w) is still unspecified.

However, it is important to emphasize that negative
energy densities are not a necessary condition in worm-

hole physics. The fundamental ingredient is the viola-
tion of the NEC, p + p, < 0, which is imposed by the



flaring out condition [1]. To find the general restriction
for p + pr < 0 at the throat ro, amounts to analyzing
the factor in square brackets in Eq. ([1), namely, the
condition AC(r3 + B?) + 2Bro(C +1 — A?) > 0. Using
Eqs. @) and (@3], the latter condition is expressed as:
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where s, = 0,1. Note that a necessary condition im-
posed by the term in the square root, in square brackets,
is precisely condition (). Thus, a necessary condition
for vacuum Brans-Dicke wormholes is the existence of
negative effective energy densities. However, we empha-
size that it is condition (20, i.e., the violation of the NEC
at the throat, that generic vacuum Brans-Dicke worm-
holes should obey.

A specific choice of C(w) considered extensively in the
literature, is the Agnese-La Camera function [4] given by

1
Cw) = TR (21)
Using this function, it was shown that static wormhole
solutions in vacuum Brans-Dicke theory only exist in a
narrow interval of the coupling parameter [G], namely,
—3/2 < w < —4/3. However, we point out that this re-
sult is only valid for vacuum solutions and for the specific
choice of C(w) considered by Agnese and La Camera |4].
As mentioned in the Introduction, relationship ([2I) was
derived on the basis of a post-Newtonian weak field ap-
proximation, and it is important to emphasize that there
is no reason for it to hold in the presence of compact ob-
jects with strong gravitational fields. The choice given by
1) is a tentative example and reflects how crucially the
wormbhole range for w depends on the form of C(w). Ev-
idently, different forms for C(w) different from Eq. (1))
would lead to different intervals for w.

Another issue that needs to be mentioned is that the
above-mentioned interval imposed on w was also obtained
by considering negative energy densities. In principle,
the violation of the WEC combined with an adequate
choice of C'(w) could provide a different viability and less
restrictive interval (including the value w = 0) from the
case of —3/2 < w < —4/3 considered in [G]. In this
context, we consider below different forms of C(w) that
allow the value w = 0 in the permitted range. Thus, to
satisfy the constraint (I9), both factors C(w) and [1 —
wC(w)/2] should both be positive, or both negative.

Consider the following specific choice

1
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Clw) = (22)
where a is a real constant. The requirement that A2 > 0,
ie., Eq. (8), is satisfied. The function C(w) is positive for
all real w, and the second term, in square brackets, of Eq.

(@), is positive everywhere for a> > 1/16. Therefore, for
this case, condition (IJ) is satisfied for all w. For a? <
1/16, [1-wC(w)/2] has two real roots, namely, w} = (1+
V1 —16a)/4; the lesser value is positive and thus both
the second term and condition (I9) will be positive at
w = 0. Thus, if a® < 1/16, the condition () is satisfied
for w € R — [w%;wYq]. Figure [l depicts condition (I9)
(depicted as a solid curve), i.e., negative energy densities,
and condition (20) (depicted as the dashed curves), i.e.,
the violation of the NEC, for a = 1. For the latter, only
the cases of (s,t) = (0,1) and (s,t) = (1,1) of condition
[0) are allowed; and are depicted in Fig. [l by the small
and large peaks, respectively.

FIG. 1: Plot of the energy conditions for C(w) = (w? +a?)™*
for a = 1. In particular, the WEC expressed by condition
(@ is given by the solid line; and the NEC, expressed by
the condition (20)), is given by the dashed curves. For the
latter, only the cases of (s,t) = (0,1) and (s,t) = (1,1) of
condition (20) are allowed; and are depicted by the small and
large peaks, respectively.

In the limiting case, C(w) — 0, AM(w) = 1 as w — oo,
one simply recovers the Schwarzschild exterior metric in
standard coordinates. This can be verified from Egs.
(@) and ([@2), which impose b(R) = 2M and ¥V'|,, = 0.
However, in this limit, the inequality (20 is violated, and
there are no traversable wormholes.

Consider a second specific choice given by

C(w) = Aexp (-“’;> . (23)

The requirement that A\? > 0, i.e., Eq. (), is also sat-
isfied. This function, for A > 0, is positive for all w.
Therefore, in order to satisfy condition (I9), the restric-
tion (1 — wC(w)/2) > 0 is imposed. We verify that if
0 < A < 2exp(1/2), then (1 — wC(w)/2) > 0 for all
w, so that conditions ([9) and (20) are both satisfied.
If A > 2exp(1/2), then the second term (1 — wC(w)/2)
will have two real positive roots, i.e., wg; > 0. For this
choice of A, we have the following range of allowed w:
R—]wo,w1[. Moreover, since wg > 0, the value w = 0 will
always be in the set of allowed values.



Figure [2] depicts condition () (depicted as a solid
curve), i.e., negative energy densities, and condition (20)
(depicted as dashed curves), i.e., the violation of the NEC
for A = 3exp(1/2). For the latter, only the cases of
(s,t) = (0,1) and (s,t) = (1,1) of condition (20)) are
allowed; and are depicted in Fig. [2 by the smaller and
larger peaks, respectively.
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FIG. 2: Plot of the energy conditions for C(w) =
Aexp(—w?/2), with A = 3exp(1/2). In particular, the WEC
expressed by condition ([I3)) is given by the solid line; and the
NEC, expressed by the condition (20, is given by the dashed
curve. For the latter, only the cases of (s,t) = (0,1) and
(s,t) = (1,1) of condition (20)) are allowed; and are depicted
by the smaller and larger peaks, respectively.

Conclusion: Recently, in the context of f(R) modified
theories of gravity, traversable wormhole geometries were
constructed. As f(R) gravity is equivalent to a Brans-
Dicke theory with a coupling parameter w = 0, one may
be tempted to find these solutions inconsistent with the
permitted interval, —3/2 < w < —4/3, extensively con-
sidered in the literature of static wormhole solutions in
vacuum Brans-Dicke theory. Thus the choice provided by
Eq. (1)), in addition to the WEC and NEC violation, re-
flects how crucially the range of w depends on the form of
C(w), and we have shown that adequate choices of C'(w)
provide different viability regions and less restrictive in-
tervals, that include w = 0. In this context, we have
constructed a more general class of vacuum Brans-Dicke
wormholes that include the value of w = 0, proving the
consistency of the solutions constructed in f(R) gravity.
Furthermore, we deduced the general condition for the
existence of vacuum Brans-Dicke wormhole geometries,
and have shown that the presence of effective negative
energy densities is a generic feature of these vacuum solu-
tions. It will also be interesting to generalize this analysis
in Brans-Dicke theory in the presence of matter. Work
along these lines is presently underway.
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