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Relativistic Bose–Einstein Condensates:

a New System for Analogue Models of Gravity
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In this paper we propose to apply the analogy between gravity and condensed matter physics
to relativistic Bose–Einstein condensates, i.e. condensates composed by relativistic constituents.
While such systems are not yet subject of experimental realization, they do provide us with a very
rich analogue model of gravity. In particular we show here that they are characterized by several
novel features with respect to their non-relativistic counterpart. First they are characterized by two
(rather than one) quasi-particle excitations, a massless and a massive one, the latter disappearing in
the non-relativistic limit. Secondly, the metric associated to the massless mode is a generalization of
the usual acoustic geometry allowing also for non-conformally flat spatial sections. This is relevant,
as it implies that these systems can allow the simulation of a wider variety of geometries. Finally,
while in standard Bose–Einstein condensates the transition is from Lorentzian to Galilean relativity,
these systems represent an emergent gravity toy model where Lorentz symmetry is present (albeit
with different limit speeds) at both low and high energies. Hence they could be used as a test field
for better understanding the phenomenological implications of such milder form of Lorentz violation
at intermediate energies.

PACS numbers: 03.75.Kk, 05.30.Jp, 04.62.+v, 04.70.Dy
Keywords: relativistic Bose–Einstein condensate; analogue models of gravity

I. INTRODUCTION

Analogies in physics have often provided deep insight
and inspiration to deal with fundamental problems. In
the last twenty years, Analogue Models of Gravity [1] had
this role with respect to pressing issues in gravitation the-
ory, such as the mechanism of Hawking radiation, the fate
of Lorentz invariance at ultra-short distances, the nature
of spacetime and gravity as possibly emergent phenom-
ena.
The general idea behind analogue models of gravity

is that in many physical systems it is possible to iden-
tify suitable excitations which propagate as fields on a
curved spacetime. In particular there is a wide class of
condensed matter systems which admit a hydrodynami-
cal description within which it is possible to show that
acoustic disturbances propagate on an effective geometry,
the so called “acoustic metric”[2]. In fact, the propaga-
tion of excitations in the hydrodynamical regime can be
described through a relativistic equation of motion in a
curved spacetime. So even starting from non-relativistic
equations one can show that excitations are endowed
with a Lorentz invariant dynamics where the Lorentz
group is generally associated with an invariant speed co-
inciding with the speed of sound. Furthermore, these
systems generically show a breakdown of such acoustic
regime leading to Lorentz violation at high energies (as
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expected from the Newtonian nature of the fundamental
equations). The richness and power of this analogy has
led in recent years to several applications.

There is nowadays a vibrant activity toward the re-
alization in laboratories of analogue black holes [3] and
toward the observation of the associated Hawking radi-
ation [4]. Acoustic metrics showing black hole horizons
are found in many of the different systems proposed to
realize this analogy: phonons in weakly interacting Bose–
Einstein condensates [5], Fermi gases [6], superfluid He-
lium [7], slow light [8], non-linear electromagnetic waveg-
uides [9], ions ring [10]. In [11] a possible mapping to
transform the acoustic metric into a metric conformally
equivalent to the Schwarzschild one has been pointed out.
There are attempts to create also some analogue of rotat-
ing black hole geometries, with the main aim to predict
super-radiance of the modes [12], an amplification of the
modes due to the presence of an ergoregion [13]. In this
direction, however, the analogy is limited by the fact that
the spatial sections of acoustic geometries are necessar-
ily conformally flat.1 Expanding universes can be simu-
lated with such systems, but, for similar reasons, only de
Sitter spacetime, or in general, flat (k = 0) Friedmann–
Robertson–Walker (FRW) (see e.g. [1, 15] and references
therein) spacetimes can be cast in the acoustic form. This
experiment-directed work had also motivated a wealth
of theoretical studies regarding the robustness of Hawk-
ing radiation against UV Lorentz symmetry breaking [16]

1 In [14] a partial mapping of the analogue metric into a Kerr
black hole geometry has been done. Being the spatial part of the
acoustic metric conformally flat, the mapping was possible just
for the equatorial slice of the Kerr metric.
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and on its possible signatures [17].

While the above subjects have represented what we
might call the main stream of the research in analogue
models, in more recent years there has been a growing
attention to their application as toy models for emergent
gravity scenarios [18]. The latter are driven by the idea
that gravity could be an intrinsically classical/large scale
phenomenon similar to a condensed matter state made
of many atoms [19]. In this sense gravity would not be a
fundamental interaction but rather a large scale/number
effect, which emerges from a quite different dynamics of
some elementary quantum objects. In this sense, many
examples can be brought up, starting from the causal set
proposal [20], passing to group field theory [21] or the re-
cent quantum graphity models [22] and other approaches
(see e.g. [23, 24]).

Analogue models, and in particular Bose–Einstein con-
densates, have represented in this sense a very interesting
test field as they are in many ways ideal systems where
the mechanism of emergence of symmetries, spacetime
and possibly gravitation-like dynamics, can be compre-
hensively studied and understood. In particular, much
attention has be devoted in the past to Lorentz sym-
metry breaking and its possible role in leading to viable
mechanisms of emergent dynamics (see e.g. the related
discussion in [25]).

However, except for the very recent work on Abelian
Higgs model [26], generically the analogue models con-
sidered so far are characterized by non-relativistic fun-
damental equations. This would imply, in the emergent
gravity perspective, a transplanckian world characterized
by a preferred system of reference and a Newtonian ab-
solute space and time. In this work we are going to con-
sider a new analogue gravity system, namely a relativistic
Bose–Einstein condensate (RBEC) for which the above
issue is not present, and we shall show that also in this
case an emergent spacetime structure can be found. From
the point of view of emergent gravity analogues, this sys-
tem can then be studied as an alternative to the standard
case of a transition from Lorentzian to Galilean relativ-
ity in the UV, showing instead a transition from Lorentz
to Lorentz symmetry encoded in the different invariant
speeds at different regimes. Moreover, we shall show that
these systems are richer than their non-relativistic coun-
terparts as they are characterized by two kinds of propa-
gating modes, a massless and a massive one (which disap-
pears in the non-relativistic limit), with just the former
being described by a generalized Klein–Gordon equation
in a curved spacetime. Finally, we will show that the
analogy with gravity can be applied to RBECs also, and
that the resulting metric allows to produce and investi-
gate novel classes of metrics, as, for example, the k = −1
Friedmann–Robertson–Walker metric that we propose in
the final part of the paper. Moreover the spatial slices
of the resulting acoustic metric are not conformally flat,
possibly permitting much wider mapping.

The plan of the paper is the following. In Section II the
relativistic description of a BEC is given. The equation

describing the perturbations in such a system is described
in Section III, and their dispersion relation is studied in
Section IV in different regimes. In Section V is shown
the emergence of an acoustic metric. As an application,
in Section VI a possible mapping of the relativistic met-
ric into a FRW geometry with k = −1 is proposed and
commented. We finally conclude with some remarks in
Section VII, discussing what lesson can be learnt from
such a model.

II. RELATIVISTIC BEC

Bose–Einstein condensation, i.e. the macroscopic oc-
cupation of a single state, may occur both for relativis-
tic and non-relativistic bosons: the main differences be-
tween their thermodynamical properties at finite tem-
perature are due both to the different energy spectra
and also to the presence, for relativistic bosons, of anti-
bosons. These differences result in different conditions
for the occurrence of Bose–Einstein condensation, which
is possible, e.g., in two spatial dimensions for a homoge-
neous relativistic Bose gas, but not for its non-relativistic
counterpart – and also, more importantly for our pur-
poses, in the different structure of their excitation spec-
tra. In this Section we briefly recall the thermodynami-
cal properties of a relativistic Bose gas [27–32], discussing
how the non-relativistic limit is obtained and comparing
with the results for non-relativistic Bose–Einstein con-
densates [33, 34]. The study of the excitation spectrum
for a (generally moving and inhomogeneous) condensate
is presented in the following Section III.
The Lagrangian density for an interacting relativistic

scalar Bose field φ̂(x, t) may be written as

L̂ =
1

c2
∂φ̂†

∂t

∂φ̂

∂t
−∇φ̂† · ∇φ̂

−
(

m2c2

~2
+ V (t,x)

)

φ̂†φ̂− U(φ̂†φ̂;λi) , (1)

where V (t,x) is an external potential depending both
on time t and position x, m is the mass of the bosons
and c is the light velocity. U is an interaction term and
the coupling constant λi(t,x) can depend on time and
position too (this is possible, for example, by changing
the scattering length via a Feshbach resonance [35]). U
can be expanded as

U(φ̂†φ̂;λi) =
λ2
2
ρ̂2 +

λ3
6
ρ̂3 + · · · (2)

where ρ̂ = φ̂†φ̂. The usual two-particle λ2φ̂
4-interaction

corresponds to the first term (λ2/2)ρ̂
2, while the second

term represents the three-particle interaction and so on.
Since the Lagrangian (1) is invariant under the global

U(1) symmetry, it is possible to define the corresponding
Noether current and conserved charge: the latter corre-
sponds to N − N̄ , where N (N̄) is the number of bosons
(anti-bosons).
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Then, in the case of ideal gas, when both U and V
vanish, the relation between the chemical potential µ and
the temperature T ≡ 1/(kBβ) is given by [27]

N − N̄ =
∑

k

[nk(µ, β)− n̄k(µ, β)] , (3)

where nk(µ, β) = 1/[eβ(|Ek|−µ)−1] is the average number
of bosons in the state of energy ±|Ek|, with

E2
k = c2~2k2 +m2c4 .

Similarly, n̄k(µ, β) = 1/[eβ(|Ek|+µ)−1] is the correspond-
ing number of anti-bosons.
Introducing the number density n = (N−N̄)/Ω (where

Ω is the volume of the system), one obtains in d dimen-
sions for non-interacting bosons the following relation be-
tween the critical temperature Tc and the charge density
n [27, 31]:

n = C

∫ ∞

0

dkkd−1 sinh (βcmc
2)

cosh (βc | Ek |)− cosh (βcmc2)
, (4)

where C = 1/(2d−1πd/2Γ(d/2)) is a numerical coefficient.
From (4) one can readily derive the non-relativistic

and the ultra-relativistic limits: the former is obtained
when kBTc ≪ mc2. In this limit the contribution of
anti-bosons to (3) can be neglected (so n ≈ N/Ω) and
one gets

kBTc =
2π~2

n

(

n

ζ(d/2)

)2/d

(5)

(ζ denotes the Riemann zeta function), which is the usual
result for the critical temperature of a non-relativistic
ideal Bose gas [33, 34].
In the ultra-relativistic limit, kBTc ≫ mc2, one gets

(kBTc)
d−1 =

~
dcd−2Γ(d/2)(2π)d

4mπd/2Γ(d)ζ(d − 1)
n . (6)

The comparison of Eqs. (5) and (6) makes clear that
the homogeneous ideal relativistic Bose gas condenses for
d ≥ 2, while its non-relativistic limit only for d ≥ 3 (as
ζ(1) = +∞). From now on, we focus on the case d = 3.
At T ≪ Tc, when the relativistic bosons condense, it is

then possible to describe the dynamics of the condensate
at the mean-field level by performing the substitution

φ̂→ φ: the order parameter φ satisfies then the equation

1

c2
∂2φ

∂t2
−∇2φ+

(

m2c2

~2
+ V (t,x)

)

φ

+ U ′(ρ;λi(t,x))φ = 0 , (7)

where ρ = φ∗φ and ′ denotes the derivative with re-
spect to ρ. The non-linear Klein–Gordon (7) gives
the dynamics of the relativistic condensates, and in the
non-relativistic limit the Gross–Pitaevskii equation is re-
trieved.

Adopting the standard definition for the box operator
in flat spacetime,

� = ηµν∂µ∂ν = − 1

c2
∂2t +∇2 , (8)

Eq. (7) can be written as

�φ−
(

m2c2

~2
+ V

)

φ− U ′(ρ;λi)φ = 0 , (9)

III. ANALYSIS OF PERTURBATIONS

In this Section we study the excitation spectrum of per-
turbations on a a condensate obeying the classical wave

function equation (9). The field φ̂ can be written as a
classical field (the condensate) plus perturbation:

φ̂ = φ(1 + ψ̂) . (10)

It is worth noticing now that the expansion in Eq. (10)
can be linked straightforwardly to the usual expansion [1,

33, 34] in phase and density perturbations θ̂1, ρ̂1, noting
that

ρ̂1
ρ

=
ψ̂ + ψ̂†

2
, θ̂1 =

ψ̂ − ψ̂†

2i
.

The equation for the quantum field ψ̂ describing the per-
turbations is

�ψ̂ + 2ηµν(∂µ lnφ)∂ν ψ̂ −U ′′(ρ;λi)ρ(ψ̂ + ψ̂†) = 0 . (11)

It is now quite convenient to adopt a Madelung repre-
sentation for the complex mean field φ and decompose it
into two real fields, its modulus

√

ρ(x, t) and its phase
θ(x, t)

φ =
√
ρ eiθ , (12)

the logarithm in Eq. (11) then becomes

∂µ lnφ =
1

2
∂µ ln ρ+ i ∂µθ . (13)

For convenience we define the following quantities:

uµ ≡ ~

m
ηµν∂νθ , (14)

c20 ≡ ~
2

2m2
U ′′(ρ;λi)ρ , (15)

Tρ ≡ − ~
2

2m
(�+ ηµν∂µ ln ρ ∂ν) = − ~

2

2mρ
ηµν∂µρ ∂ν ,

(16)

where the derivatives act on everything on their right, c0
encodes the strength of the interactions and has dimen-
sions of a velocity and Tρ is a generalized kinetic operator
which reduces, in the non-relativistic limit c → ∞ and
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for constant ρ, to the standard kinetic energy operator
T :

Tρ → − ~
2

2mρ
∇ρ∇ = − ~

2

2m
∇2 = T . (17)

A straightforward physical interpretation can be given
to the four-vector u. One can in fact introduce the con-
served current

jµ ≡ 1

2i
(φ∂µφ

∗ − φ∗∂µφ) , (18)

and show that

jµ = ρ∂µθ = ρ
m

~
uµ , (19)

hence relating uµ to the current associated with the U(1)
symmetry.
In terms of these quantities and using the phase-

density decomposition, the equation for the condensate
classical wave function, Eq. (9), becomes:

∂µ(ρu
µ) = 0 , (20)

− uµu
µ = c2 +

~
2

m2

[

V (xµ) + U ′(ρ;λi(x
µ))− �

√
ρ

√
ρ

]

.

(21)

The first equation is a continuity equation, which tells
that the current jµ defined above is conserved. The sec-
ond one allows to determine the zero-component of u
and, equivalently, the chemical potential, as a function
of the spatial part of the fluid velocity, the strength of
the interaction and the condensate density ρ.
Multiplying Eq. (11) by ~

2/2m, one can rewrite the
equation for perturbations in a RBEC as

[

i~uµ∂µ − Tρ −mc20
]

ψ̂ = mc0ψ̂
† . (22)

Taking the hermitian conjugate of this equation we can

eliminate ψ̂†, obtaining a single equation for ψ̂:

[

−i~uµ∂µ − Tρ −mc20
] [

i~uµ∂µ − Tρ −mc20
]

ψ̂

= m2c40 ψ̂ , (23)

and, with some simple manipulations, we obtain:

{

[i~uµ∂µ + Tρ]
1

c20
[−i~uµ∂µ + Tρ]

−~
2

ρ
ηµν∂µρ ∂ν

}

ψ̂ = 0 . (24)

This is the generalization to a relativistic condensate of
the equation describing the propagation of the linearized
perturbations on top of a BEC [38].

As an application of (24), we consider a moving con-
densate with homogeneous density, V (t,x) = 0 and λi
constant both in space and time. Let us choose

φ(t,x) = φ0e
i(q·x−µt/~) , (25)

one has

µ ≡ mcu0 , (26)

q ≡ mu/~ , (27)

uµ∂µ = (µ/mc2)∂/∂t+ (~/m)q · ∇ . (28)

Moreover Eq. (21) reduces to

µ2 = ~
2c2q2 +m2c4 + ~

2c2U ′(ρ0;λi) , (29)

where ρ0 = φ0φ
∗
0.

Note that the component µ is the relativistic chemical
potential of the condensate, which is related to the non-
relativistic one µNR via the identity µ = mc2 + µNR.
In particular, from Eq. (29), in the non-relativistic limit
µNR ≪ mc2 and µ ≈ mc2. In the general case, when the
fluid is not homogeneous, the same argument implies,
from Eq. (21) that u0 ≈ c.

Setting ψ ∝ exp[i (k · x− ωt)] one gets from Eq. (24)

(

− ~

m
q · k+

u0

c
ω − ~

2mc2
ω2 +

~

2m
k2
)(

~

m
q · k− u0

c
ω − ~

2mc2
ω2 +

~

2m
k2
)

−
(c0
c

)2

ω2 + c20k
2 = 0 . (30)

For a condensate at rest (q = 0), the spectrum (30) was
derived in [27, 32, 36].

The non-relativistic limit of (24) can be recovered
sending c → ∞. This implies µ = mc2 + µNR ≈ mc2,
and, equivalently u0 ≈ c. In this limit the mode equa-

tion becomes

{

[i~ (∂t + u · ∇) + TρNR]
1

c20
[−i~ (∂t + u · ∇) + TρNR]

−~
2

ρ
∇ρ∇

}

ψ̂ = 0 , (31)
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where

TρNR ≡ − ~
2

2mρ
∇ρ∇ . (32)

Eq. (31) describes now exactly the propagation of per-
turbations in a non-relativistic BEC [38].

IV. THE DISPERSION RELATION

Before showing how the propagation of phonons in a
RBEC can be described through an effective metric, it
is worthwhile to analyze the dispersion relation of such
perturbations. In order to do that, one has to perform
an eikonal approximation. This is basically equivalent to
assume that the background is locally flat. Therefore we
assume in this section that u, µ, ρ, and c0 are constant
both in space and in time. For simplicity we start to
analyze the case of background fluid at rest, u = 0. In
this case Eq. (24) becomes

[(

i
u0

c
∂t −

~

2m
�

)(

−iu
0

c
∂t −

~

2m
�

)

− c20 �

]

ψ̂ = 0 ,

(33)
which can be rewritten expanding the � operator as

[(

i
u0

c
∂t +

~

2mc2
∂2t − ~∇2

2m

)

×
(

−iu
0

c
∂t +

~

2mc2
∂2t − ~∇2

2m

)

+
(c0
c

)2

∂2t − c20 ∇2

]

ψ̂ = 0 . (34)

The previous equation can be solved exactly for Fourier
modes e−iωt+ikx

(

u0

c
ω − ~

2mc2
ω2 +

~

2m
k2
)

×
(

−u
0

c
ω − ~

2mc2
ω2 +

~

2m
k2
)

−
(c0
c

)2

ω2 + c20k
2 = 0 , (35)

whose solution is:

ω2
± = c2

{

k2 + 2

(

mu0

~

)2 [

1 +
( c0
u0

)2
]

±2

(

mu0

~

)

√

k2 +

(

mu0

~

)2 [

1 +
( c0
u0

)2
]2






. (36)

The above equation represents the dispersion relation
for the modes in a RBEC and it is the generalization of
the non-relativistic Bogoliubov dispersion relation.
One sees from (36) that ω2

± ≥ 0, i.e. there is no dynam-
ical instability: in Fig. 1 we plot (36) for the interaction

0.01 0.1 1 10 100

0.001

0.01

0.1

1

10

100

ÈkÈ

ÈΩ
È

0.01 0.1 1 10 100

0.01

0.1

1

10

100

ÈkÈ

ÈΩ
È

0.01 0.1 1 10 100

0.01

0.1

1

10

100

ÈkÈ

ÈΩ
È

0.01 0.1 1 10 100

10.0

5.0

2.0

20.0

3.0

15.0

7.0

L

D
Ω

FIG. 1: Plot of the excitation spectrum of (36) (solide line:
gapless branch ω−, dashed line: gapped branch ω+) for a con-
densate at rest (q = 0) with interaction U(ρ) = λ2ρ

2/2 for
different values Λ = 0.01, 1, 100 of the dimensionless param-
eter Λ = ℓ2λ2ρ0, where ℓ = ~/mc: ω is in units of mc2/~,
and k in units of 1/ℓ. Bottom right: plot of the the gap at
∆ω(k = 0) = ω+(k = 0) − ω−(k = 0), which in these units is
given by ∆ω(k = 0) =

√
4 + 3Λ.

U(ρ) = λ2ρ
2/2 for different values of the dimensionless

parameter Λ2 ≡ ℓ2λ2ρ0, where ℓ = ~/mc. In Fig. 1
we also plot the gap at k = 0 between ω+(k = 0) and
ω−(k = 0) = 0.
The dispersion relation (36) is sufficiently complicate

to prevent an obvious understanding of the regimes al-
lowed for the excitation of the system. Nonetheless, it
should be evident that different regimes are determined
by the relative strength of the the first two terms on the
right hand side of (36) (note that the same terms enter in
the square root). Hence in what follows we shall analyze
the RBEC excitations dispersion relation (36) in some
significant limits. The results are summarized at the end
of this section in Table I.

A. Low momentum limit

We begin our study by looking at what one might refer
to as the low momentum limit of the dispersion relation
(36) characterized as

|k| ≪ mu0

~

[

1 +
( c0
u0

)2
]

≡ mu0

~
(1 + b), (37)

where, for later convenience, we have introduced the di-
mensionless parameter b ≡ (c0/u

0)2.
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Under the above assumption (37), the square root in
Eq. (36) can be expanded such that:

ω2
± ≈ c2

[

k2 + 2

(

mu0

~

)2

(1 + b)

±2

(

mu0

~

)2

(1 + b)± k2

1 + b
∓ k4

4(mu0/~)2(1 + b)3

]

.

(38)

1. Gapless excitations

Let us focus for the moment on the branch correspond-
ing to the lower signs in the above dispersion relation.
One obtains

ω2
− ≈ c2

[

b

1 + b
k2 +

k4

4(mu0/~)2(1 + b)3

]

. (39)

This is the dispersion relation of a massless quasi-particle
and has the same form of the Bogoliubov dispersion re-
lation in a non-relativistic BEC. Let us study now when
the k2 term dominates over the k4 one and viceversa and
check if the conditions obtained for these two regimes are
compatible with Eq. (37).
a. Phononic (IR relativistic) regime: It is easy to

see that the quartic term k4 term can be neglected when-
ever

|k| ≪ 2
mc0
~

(1 + b) . (40)

This condition is always compatible with Eq. (37). De-
pending on the value of b, they can be written in the
compact form

|k| ≪ mu0

~
(1 + b)min{1, 2 c0

u0
} . (41)

In this limit the dispersion relation reduces to the usual
phonon dispersion relation

ω2
− = c2sk

2 , (42)

where the speed of sound cs is defined as

c2s ≡ (c c0/u
0)2

1 + (c0/u0)2
=

c2b

1 + b
, (43)

b. Newtonian (UV Galilean) regime: The opposite
regime, in which the k2 can be neglected with respect to
k4, is defined by the following condition

|k| ≫
(mc0

~

)

(1 + b) . (44)

This regime is present only in the low-coupling case when
b ≪ 1, since only in this case Eq. (44) and Eq. (37) are
compatible. They can be summarized as:

mc0
~

≪ |k| ≪ mu0

~
, (45)

Under these assumptions the dispersion relation becomes

~ω− =
(~k)2

2mu0/c
=

(~k)2

2µ/c2
, (46)

which represents the newtonian dispersion relation for
massive particles with effective massmu0/c = µ/c2. This
is not surprising, since it is known from non-relativistic
BEC that, decreasing the wavelength of the perturbation,
the atomic structure of the condensate emerges.
In this case (a RBEC) we see that, even if the struc-

ture of the Lagrangian is fully relativistic, when the en-
ergy of the perturbations is not very high with respect to
the chemical potential, the bosons are moving with non-
relativistic speed, and the dispersion relation is Newto-
nian. Noticeably, the mass of the non-relativistic quasi-
particles is not the mass of the bosons m, but it is an
effective mass µ/c2, the rest mass corresponding to an
energy equal to the chemical potential µ. This is not sur-
prising since the chemical potential actually represents
the energy needed to add a particle to the condensate.
c. The non-relativistic limit: We discuss the non-

relativistic limit of the gapless dispersion relation
Eq. (38) starting from the behavior of the parameter
b = (c0/u

0)2. As shown in Sect. III, u0 → c in this limit,
when the fluid has a velocity much less than the speed of
light. Moreover, in the same limit, the interaction must
be weak, namely c0 ≪ c, such that

b ≈ (c0/c)
2 ≪ 1 . (47)

In this sense we can say that b measures the relativis-
tic nature of the condensate, taking into account both
the strength of the interaction and the velocity of the
fluid [see Eq. (21)]. Using Eq. (47) in Eq. (38) it is easy
to obtain the Bogoliubov dispersion relation for a non-
relativistic BEC (see, for reference, [1])

ω2
− ≈ c20

[

k2 +
k4

(2mc0/~)2

]

. (48)

It is worth noticing that cs [Eq. (43)] is in general differ-
ent from the speed of sound c0 in a non-relativistic BEC,
but, as it is evident from the above equation, cs reduces
correctly to c0 in this non-relativistic limit. This, how-
ever, does not mean that a “phononic observer” would
have any way to become aware of the relativistic nature
of the condensate, since the dispersion relation of Eq. (42)
in this regime is always linear.
Finally, let us also note that in this limit, condi-

tion (41), defining the phononic regime, reduces to the
usual

|k| ≪ 2
mc0
~

, (49)

where mc0/~ is the inverse of the healing length. When
this condition is satisfied one obtains the phononic dis-
persion relation

ω2 = c20k
2 , (50)
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while, in the opposite regime, the dispersion relation de-
scribes Newtonian particles with mass m

(~ω) =
~
2k2

2m
, (51)

as expected taking directly the non-relativistic limit of
Eq. (46) and putting µ ≈ mc2.

2. Gapped excitations

A very different situation appears for the upper sign
solution in Eq. (38):

ω2
+ ≈ c2

[

4

(

mu0

~

)2

(1 + b)

+
2 + b

1 + b
k2 − k4

4(mu0/~)2(1 + b)3

]

. (52)

It is easy to check that the only regime allowed is now the
one in which the k2 term dominates over the k4 term.2

In this limit Eq. (52) becomes

ω2
+ =

m2
eff c

4
s,gap

~2
+ c2s,gapk

2 , (53)

where we have defined

c2s,gap ≡ 2 + b

1 + b
c2 , (54)

meff ≡ 2
(1 + b)3/2

2 + b

u0

c
m = 2

(1 + b)3/2

2 + b

µ

c2
. (55)

Eq. (53) is the dispersion relation for a massive relativis-
tic particle of effective mass meff and limit speed cs,gap.
Note that, when Eq. (37) holds, and for b ≪ 1, the k2

term is always dominated by the mass term. That is, this
mode represents non-relativistic particles with massmeff .
When instead b≫ 1, the k2 term can be of the same order
of magnitude of the mass term, and the fully relativis-
tic dispersion relation with mass gap becomes important.
The k2 term dominates when:

mu0

~

2(1 + b)√
2 + b

≪ |k| ≪ mu0

~
(1 + b) . (56)

Let us now spend a few words about the physical mean-
ing of this massive mode. Let us assume, for simplicity,
that b can be neglected. In this case, from the above
formulas, the gap is ∆ω ≈ 2mc2/~. This is an excitation
of completely different nature with respect to previously
discussed phonons. The mass gap of 2m indicates that

2 In fact, this latter term would dominate if k2 ≫ 4(mu0/~)2(1 +
b)2(2+b) > 8(mu0/~)2(1+b)2, but the above condition is clearly
not satisfied when Eq. (37) holds.

the lowest possible excitation in this mode requires to cre-
ate a couple boson-antiboson. When k 6= 0 the massive
excitation propagates: this can be seen as the creation of
a couple of particles, then annihilated, while its energy
is used to create another couple close to the former one
and so on. Note that, apparently, this mode can make
energy travel faster than light. However, one should con-
sider that the dispersion relation (53) is valid only for
sufficiently low k, satisfying Eq. (37). It is easy to check
indeed that under this condition for k, the group velocity
∂ω/∂k always remains smaller than c.
The non-relativistic limit of the gapped dispersion re-

lation (52) is trivial. The zero-order term in k2 be-
comes now 4m2c4/~2 which diverges when taking the
limit c → ∞. This means that the gapped branch dis-
appears because the energy needed to excite such modes
is much larger (infinite in the limit) compared to the en-
ergy scales in a non-relativistic configuration. Said in a
different way, this modes cannot be excited because, in
the non-relativistic limit, one cannot create particle/anti-
particle couples.

B. High momentum

The situation for high momentum is much simpler.
When

|k| ≫ mu0

~

[

1 +
( c0
u0

)2
]

=
mu0

~
(1 + b), (57)

it is easily found that the dispersion relation (36) assumes
the very simple form

ω2
± = c2k2 . (58)

This is the standard relativistic dispersion relation of a
massless field propagating at the speed of light c. This
means that, at very high momenta, when the energy of
the perturbation is much greater than the chemical po-
tential, the non-relativistic newtonian particle regime of
Eq. (46) is overcome and the perturbations can probe the
relativistic nature of the background condensate. This
regime was, of course, absent in the non-relativistic case.

V. THE ACOUSTIC METRIC

The propagation of phonons can be described in the
formalism of quantum field theory in a curved back-
ground only when the relativistic quantum potential Tρ
can be neglected in Eq. (24). This is equivalent to neglect
the quantum pressure in the Gross–Pitaevskii equation
describing a non-relativistic BEC.
This is possible under two conditions. First, the fre-

quency and wave-number on the gapless branch ω−,
Eq. (39), must be sufficiently low (see Eq. (41)). Second,
one has to perform an eikonal approximation, i.e. one
assumes that all the background quantities vary slowly
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Gapless Gapped

b ≪ 1 b ≫ 1

|k| ≪ mu0(1 + b)/~
|k| ≪ 2mc0/~ ω2 = c2sk

2

ω2 = c2sk
2 ω2 = m2

eff c4s,gap/~
2 + c2s,gapk

2

2mc0/~ ≪ |k| ≪ mu0/~ ~ω = (~k)2/2(µ/c2)

|k| ≫ mu0(1 + b)/~ ω2 = c2k2

TABLE I: Dispersion relation of gapless and gapped modes in different regimes. c2s = c2b/(1 + b), c2s,gap = c2(2 + b)/(1 + b),

meff = 2(µ/c2)(1 + b)3/2/(2 + b).

in space and time on scales respectively comparable with
the wavelength and the period of the perturbation. This
latter condition is equivalent to requiring that

∣

∣

∣

∣

∂tρ

ρ

∣

∣

∣

∣

≪ ω ,

∣

∣

∣

∣

∂tc0
c0

∣

∣

∣

∣

≪ ω ,

∣

∣

∣

∣

∂tuµ
uµ

∣

∣

∣

∣

≪ ω , (59)

and the corresponding relations for the variation in space.
Under these assumptions, Eq. (24) simplifies to

[

uµ∂µ
1

c20
uν∂ν − 1

ρ
ηµν∂µρ ∂ν

]

ψ̂ = 0 , (60)

where, again, the differential operators acts on everything
on their right. In order to recover the acoustic metric we
need to cast the above equation in the form

∂µ

(

fµν(x, t)∂ν ψ̂
)

= 0 , (61)

where fµν is the metric density

fµν =
√
−ggµν . (62)

To this aim, as in the non-relativistic case, one can use
the continuity equation (20)

ηµν∂µjν = ∂µ(ρu
µ) = 0 , (63)

to commute ρuµ with ∂µ

∂µ

[

ρ

c20
uµuν − ρηµν

]

∂νψ̂ = 0 , (64)

from which the metric density is easily read

fµν =
ρ

c20

(

−c20 − (u0)2 −u0u
−u0u c201− u⊗ u

)

(65)

Finally, the metric describing the propagation of phonons
in a relativistic Bose–Einstein condensate is

gµν =
ρ

√

1− uσuσ/c2o

[

ηµν

(

1− uσu
σ

c20

)

+
uµuν
c20

]

,

(66)
in coordinates xµ = (x0,x) = (ct,x).
The acoustic metric for perturbations in a relativistic,

barotropic and irrotational, fluid flow was derived in [37].
The above metric can be put in the same form of the one

in [37] by a few variable redefinitions. Let us define a
four velocity vµ:

vµ ≡ c

‖u‖u
µ , ‖u‖ ≡

√
−uσuσ . (67)

With this definition, it is possible to generalize Eq. (43)
when the spatial part of the four vector is different from
zero. To keep all the formulas in a covariant form, the
scalar speed of sound cs must be

c2s =
c2 c20/‖u‖2
1 + c20/‖u‖2

. (68)

Using the above definitions, the metric of Eq. (66) re-
duces to

gµν = ρ
c

cs

[

ηµν +

(

1− c2s
c2

)

vµvν
c2

]

. (69)

This metric is manifestly conformal to that found in [37].
However, it is worth checking that they are exactly the
same metric, comparing the conformal factors too. We
have to match the present ρc/cs with the ñ2

0c
2/c̃s(ρ̃0+p̃0)

of that paper. We denote with tilde all the quantities
of [37] to avoid confusion with ours. From Eq. (52) of [37]
we can write

||u|| = C
ρ̃0 + p̃0
ñ0

, (70)

where C is a constant and, by definition, ||u|| = ∇Θ̃.
Note that from Eq. (44) of [37] ñ0 = ||u||ρ, such that,
apart from irrelevant constant factors

ñ2
0

c̃s(ρ̃0 + p̃0)
∝ ρ

cs
, (71)

and also the conformal factors coincide.

VI. AN APPLICATION: k = −1 FRW METRIC

Mapping the metrics which describe expanding uni-
verses is one of the most interesting application of ana-
logue models. However, only a mapping of the de Sitter
spacetime and the k = 0 FRW has been obtained so far
[1, 15].
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Here we show how the above acoustic metric can be
mapped into the Friedmann–Robertson–Walker metric
with k = −1. This is just an application, but it is impor-
tant to stress how the category of metrics that one can
map in this acoustic form has been widely generalized,
by allowing for non-zero-curvature space sections.
We start by rewriting Eq. (69) in spherical coordinates,

assuming isotropy and putting vθ = vφ = 0:

gµν = ρ
c

cs











−1 +A(vt)2/c2 −Avtvr/c2 0 0

−Avtvr/c2 1 +A(vr)2/c2 0 0

0 0 r2 0

0 0 0 r2 sin2(θ)











.

(72)
where

A ≡ 1− c2s
c2

. (73)

Defining the new coordinate τ and ξ as







τ =
√

c2t2 − r2

ξ =
r√

c2t2 − r2

(74)

and choosing the following velocity profile

vt = c
√

1 + ξ2 ,

vr = c ξ ,
(75)

one can write the inverse transformations as














t = τ

√

1 + ξ2

c
= τ

vt

c

r = τξ = τ
vr

c

(76)

To investigate the physical meaning of these coordi-
nates, it is worth applying the above transformation also
to the underlying Minkowski spacetime, seen by the con-
densate. The fluid velocity v can be transformed to

vτ = c ,

vξ = vθ = vφ = 0 .
(77)

Therefore they represent coordinates comoving with the
fluid. The flat Minkowski line element dsM is

ds2M = −c2dt2 + dr2 + r2dΩ2

= −dτ2 + τ2
(

dξ2

1 + ξ2
+ ξ2dΩ2

)

, (78)

Going back to the acoustic metric, with the above
choices the acoustic line element ds2 becomes

ds2 = ρ
c

cs

[

−c
2
s

c2
dτ2 + τ2

(

dξ2

1 + ξ2
+ ξ2dΩ2

)]

. (79)

One may notice that, when both cs and ρ depends only
on τ , the above expression represents the line element of
a FRW spacetime with hyperbolic space sections.

ds2 = −ρ(τ)cs(τ)
c

dτ2

+ τ2ρ(τ)
c

cs(τ)

(

dξ2

1 + ξ2
+ ξ2dΩ2

)

. (80)

However ρ cannot be chosen freely because it is re-
lated through the continuity equation (20) to the velocity
vµ = uµ/||u||, which has already been fixed in Eq. (75).
Nonetheless it is easy to show that assuming ρ = ρ0
constant both in τ and ξ, one can satisfy the continu-
ity equation with an appropriate ||u||. Using Eqs. (77)
and (78) the continuity equation simplifies to

∂τ (τ
3||u||) = 0 , (81)

from which

||u|| = Ξ(ξ)

τ3
. (82)

It is therefore possible to define a new time coordinate

dT ≡
√

ρ0
cs(τ)

c
dτ , (83)

and a function a(T )

a(T ) ≡ τ

√

ρ0
c

cs(τ)
, (84)

where τ(T ) is implicitly defined in Eq. (83). In this way
the line element assumes the familiar k = −1 FRW form

ds2 = −dT 2 + a(T )2
(

dξ2

1 + ξ2
+ ξ2dΩ2

)

. (85)

It is possible to show that one has, at least from a theo-
retical standpoint, the possibility to choose an arbitrary
form for a(T ). This is equivalent from Eqs. (83) and (84)
to choose cs as an arbitrary function of τ . Using those
two equations:

τ(T ) =

√

2

ρ0

∫ T

0

a(T ′)dT ′ , (86)

from which one can get T as a function of τ given a(T ),
and cs(τ) is

cs(τ) =
ρ0cτ

2

a(T (τ))2
. (87)

Fixing cs(τ) means fixing U(ρ0;λi(x
µ)) in Eq. (15), and

hence λi, as given functions of xµ. Indeed, from Eq. (68),
c0(x

µ) depends both on cs(τ) and ||u(xµ)||, the latter
given by the continuity equation, as discussed above. Fi-
nally, going back to the Euler equation (21), for constant
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ρ, one can determine also V (xµ), since all the other func-
tions ||u|| and U have already been fixed. Using a two-
body interaction U(ρ;λi) = λ2(x

µ)ρ2/2 one finds

λ2(τ, ξ) =
2m2c2

ρ0~2
cs(τ)

2

c2 − c2s(τ)

Ξ(ξ)

c2τ3
, (88)

V (τ, ξ) = −m
2c2

~2

[

1 +
c2 + c2s(τ)

c2 − c2s(τ)

Ξ(ξ)

c2τ2

]

. (89)

Note that for a given FRW spacetime, and hence given
a(T ) and cs(τ), one has still the freedom to choose the
most convenient Ξ(ξ).

VII. CONCLUSION

In this paper we have applied for the first time the anal-
ogy between gravity and condensed matter to a RBEC.
Starting from the relativistic description of Bose Einstein
condensates, we have studied the propagation of the exci-
tations on top of it in a very generic framework, allowing
for non-homogeneous density and non-trivial flow veloc-
ity. The full dispersion relation for the modes is given
and analyzed in different regimes (see Table I).
We have found that there are two branches, one gap-

less and one with mass gap. The former one has three
different regimes: For low momenta (wavelength larger
than the healing length in the non-relativistic limit) the
dispersion relation is linear ω2 = c2sk

2. Then, for in-
termediate energies, less than the chemical potential of
the condensate, the dispersion relation becomes that of a
Newtonian massive particle, just as for a non-relativistic
BEC, when the wavelength is greater or comparable with
the healing length. Finally, for a RBEC a third regime
appears when the energy of the perturbation is greater
than the chemical potential, and the dispersion relation
becomes linear again (ω2 = c2k2), but with velocity equal
to the speed of light. The second branch has instead a
mass gap, showing two different regimes. In this case,
the dispersion relation describes, for low momenta, a rel-
ativistic massive particle with some effective mass and an
effective limit speed apparently greater than the speed of
light. However, this limit speed cannot be reached by
such perturbations because at energy greater than the
chemical potential, the dispersion relation enters the sec-
ond regime, in which the frequency is linearly propor-
tional to the speed of light c. In the non-relativistic limit

this branch disappears because the energy needed to ex-
cite such mode diverges in this limit. All these features
are evident from the plot of the two branches in Fig. 1.
For sufficiently low momenta (a generalization of the

non-relativistic condition involving the wavelength of the
perturbations and the healing length), it is possible to
describe the propagation of the phononic mode (massless
branch) through the gravitational analogy, and the corre-
sponding acoustic metric is given. This metric allows for
a wider range of applications than the usual one obtained
in non-relativistic fluids. We propose as an example the
mapping to the k = −1 FRW metric for expanding uni-
verses. We also saw how it can be used to map also
spacetimes whose spatial section is not conformally flat.
This could give the possibility to map even more com-
plicated metrics (like for example the Kerr metric) or to
build novel structures not allowed in the non-relativistic
case.
This application has another important feature. Dif-

ferently from all the previous systems where the anal-
ogy with gravity has been applied, the system here in-
vestigated is fully relativistic. Therefore, it does not
suffer from the troubles related to the breaking of the
Lorentz symmetry due to the emergence at sufficiently
short wavelengths of the Newtonian structure of the un-
derlying fluid and of its constituents. Hence, the rela-
tivistic BEC is the first example of emergent Lorentzian
spacetime from a Lorentzian background, showing there-
fore a Lorentz to Lorentz symmetry transition at high
frequencies. Transitions from an infrared (IR) Lorentz
symmetry to an ultraviolet (UV) Galilean one are known
to be severely constrained (see e.g.[39–41]). Furthermore,
in effective field theories they do tend to “percolate” from
the UV to the IR via renormalization group effects, by
showing up in non-suppressed corrections to the low en-
ergy propagators of elementary particles [42, 43]. We do
wonder if situations like the one just exemplified by this
novel analogue model of gravity might show a less severe
behavior and ameliorate this naturalness problem com-
mon to most of UV Lorentz breaking theories. We hope
to investigate this issue in future works.
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