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A null frame for spacetime positioning by means of pulsating sources
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We introduce an operational approach to the use of pulsating sources, located at spatial infinity,
for defining a relativistic positioning and navigation system, based on the use of four-dimensional
bases of null four-vectors, in flat spacetime. As a prototypical case, we show how pulsars can be used
to define such a positioning system. The reception of the pulses for a set of different sources whose
positions in the sky and periods are assumed to be known allows the determination of the user’s
coordinates and spacetime trajectory, in the reference frame where the sources are at rest. In doing
so, the phases of the received pulses play the role of coordinates in the null frame. We describe our
approach in flat Minkowski spacetime, and discuss the valididty of this and other approximations
considered.

PACS numbers: 4.20.-q; 95.10.Jk; 95.30.Sf.

I. INTRODUCTION

The current positioning systems, such as GPS and
GLONASS [1, 2], are essentially conceived as Ptolemaic,
since they are based on a reference frame centered in the
Earth, and Newtonian, since positioning is defined in a
classical (Euclidean) space and absolute time, over which
relativistic (post-Newtonian) corrections are introduced
[1]. Furthermore, these systems are effective for posi-
tioning on the Earth, but they can hardly be used for
navigating in the space outside the Earth, as in the Solar
System and beyond. In contrast, some authors [3–9] re-
cently proposed to use the worldlines of electromagnetic
signals, emitted by objects in geodesic motion, in order to
build a relativistic positioning system, based on the use
of the so called light (or emission) coordinates. These
relativistic positioning systems are also autonomous or
autolocated, since any user can determine its own posi-
tion (and spacetime trajectory) by solely elaborating the
received signals.

The simplest way of understanding what emission co-
ordinates are, is to consider four emitting clocks, in mo-
tion in spacetime, broadcasting their proper times: the
intersection of the past lightcone of an event with the
world lines of the emitting clocks corresponds to the
proper times of emission along the world lines of the emit-
ters; these proper times are the emission coordinates of
the given event. For example, one may think of a set of
satellites orbiting around the Earth and equipped with
onboard clocks, however, such a system would hardly be
effective for the navigation in the Solar System; for that
purpose, a set of pulsars could rather be used. In fact,
known pulsars emit their signals at a highly regular rate
(this is the case, in particular, of the millisecond pulsars,
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see e.g. [10]) , which makes them natural beacons for
building an emission-coordinates-based positioning sys-
tem. What can be measured with great accuracy is the
arrival time of the N-th pulse, so that counting these
pulses can in principle allow to define something similar
to the emission coordinates. Actually, the idea of using
pulsars as stellar beacons has been considered since the
early years of pulsar discovery [11], and other proposals
are actually under study [12, 13], some of which use the
emission coordinates approach [14].

Here we introduce an operational approach to the use
of periodic sources, such as pulsars (anticipated in [15]),
for defining a relativistic positioning and navigation sys-
tem, based on the use of a four-dimensional basis of null
four-vectors. We assume that a user is equipped with a
receiver that can count pulses from a set of sources whose
periods and positions in the sky are known; then, reck-
oning the periodic electromagnetic signals coming from
(at least) four sources and measuring the proper time in-
tervals between successive arrivals of the signals allow to
localize the user, within an accuracy controlled by the
precision of the clock he is equipped with. This system
can allow autopositioning with respect to an arbitrary
event in spacetime and three directions in space, so that it
could be used for space navigation and positioning in the
Solar System and beyond. We describe our approach in
flat Minkowski spacetime, and discuss the validity of this
and other approximations considered, for actual physical
situations.

II. THE BASIC NULL FRAME AND

DEFINITION OF THE GRID

Let us consider a number of sources of periodic elec-
tromagnetic signals, at rest at spatial infinity, in a four-
dimensional Minkowski spacetime. For our purposes, at
least four sources are needed. Each of these sources is
characterized by the frequency of its periodic signals and
by their directions in space; since the sources are sup-
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posed to be far away (i.e. at spatial infinity), their sig-
nals can be seen as corresponding to plane waves. In the
inertial frame where the sources are at rest, once Carte-
sian coordinates are chosen, we associate to each source
a null four-vector1 f whose Cartesian contravariant com-
ponents are given by

fµ .
=

1

cT
(1, ~n), (1)

T being the (proper) signal period, and ~n is the unit vec-
tor describing the direction of propagation in the given
frame. If in the same reference frame we consider the
position four-vector

r
.
= (ct, ~x), (2)

with respect to an arbitrary and yet unspecified origin,
then we can define the scalar function X at the spacetime
event identified by the position four-vector r

X(r)
.
= f · r, (3)

where dot stands for Minkowski scalar product. The
scalar X might be thought of as the phase difference
of the wave described by f with respect to its value
at the origin of coordinates. Four linearly independent
four-vectors constitute a basis, or a frame: we may
think of choosing four null four-vectors to serve as a
basis (see e.g. [7]), so that the four wave four-vectors
{f(a),f(b),f(c),f(d)} in the form (1) constitute our null

frame, or null tetrad. Consequently, we define the corre-
sponding phase differences (3)

X(N)
.
= f(N) · r, N = a, b, c, d (4)

at any event r whose coordinates are defined by (2),
where a, b, c, d label the sources.
According to the general tetrad formalism (see e.g.

[16]), the null tetrad allows the definition of the sym-
metric matrix

η(M)(N) = f(M) · f(N), (5)

which, in this case, has constant components, and whose
inverse is determined by the relation

η(M)(P )η
(P )(N) = δ

(N)
(M). (6)

Tetrad indices N = a, b, c, d are lowered and raised by
means of the matrices η(M)(P ) and η(M)(P ). In the null
frame the position four-vector r is

r = X(N)f(N) = X(N)f
(N). (7)

1 Arrowed bold face letters like ~x refer to spatial vectors, while

boldface letters like f refer to four-vectors; Greek indices refer

to spacetime components, while Latin letters label the sources.

As a consequence we see that the phase differences X(N)

are the components of the position four-vector with re-
spect to the vectors

f (N) = η(N)(M)f(M), (8)

or, differently speaking, the X(N) are the components
with respect to the null tetrad vectors f(N).
Considering the hyperplanes conjugated to the null

frame {f(a),f(b),f(c),f(d)} vectors, we are able to define
a spacetime grid[15], in which each event is identified by
the relative phase of the electromagnetic signals with re-
spect to an arbitrary origin: in other words these phases
play the role of light coordinates in our frame.

III. LOCALIZATION WITHIN THE GRID

After having shown how to build a grid, we want to fo-
cus on how localization can be achieved within the grid.
In particular, we suppose to deal with periodic signals,
such as those coming from pulsars, and that these sig-
nals can be thought of as plane waves. Furthermore, we
suppose that the user is equipped with a receiver able to
recognize and count the pulses coming from the various
sources, and a clock, that can be used to measure the
proper time span between the arrivals from the various
sources.
Let us start with a toy model, where the emission from

the sources is continuous and the phases of any pulse can
be determined with an arbitrary precision, at any event.
We choose a starting event, from which the phases of
each pulse are measured, which is the origin of our coor-
dinates (in other words, the event with r = 0, according
to what we have described above), and three directions
in space, defining the Cartesian axes of the inertial frame
of the sources. We point out that even though the start-
ing event is arbitrary, in order to correctly define the
null frame, the position of the sources in the sky has to
be known: in other words, we have to know the unit
vectors ~n for each source (and their proper frequency
ν too), which also enable us to calculate the matrices
η(N)(M), η

(N)(M) of the given frame.
To a subsequent event r, we associate the measured

phases

X(N) = f(N) · r, (9)

and, according to eq. (7), it is then possible to obtain
the coordinates of the event r, in terms of the measured
phases:

r = X(a)f
(a) +X(b)f

(b) +X(c)f
(c) +X(d)f

(d). (10)

and to reconstruct the user’s worldline.
Coming to a more realistic situation, such as the one in

which the emitters are pulsars, we should consider that
the signals received consist in a series of pulses and are
not continuos. In this case, we may proceed as follows.
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First, we call “reception” the event corresponding to the
arrival of a pulse from one of the sources. As a conse-
quence, an arbitrary reception event can be written in
the form

r = X(a)f
(a) +X(b)f

(b) +X(c)f
(c) +X(d)f

(d), (11)

with

X(a) = n(a) + p, (12)

X(b) = n(b) + q, (13)

X(c) = n(c) + s, (14)

X(d) = n(d) + w. (15)

where we have expressed the phases X(N) in terms of
an integer n(N), describing the succession of signal’s cy-
cles, and a fractional value: e.g. p means a fractional
value of the cycle in X(a), and the equivalent holds for
q, s, w, where 0 < p, q, s, w: in eqs. (12)-(15), only one
of the p, q, s, w will in general be zero. Once we choose
an arbitrary origin, we may count the pulses in order to
measure the n(N), but we have no direct means to mea-
sure the fractional values p, q, s, w. However a procedure
to determine these values can be obtained, based on ge-
ometric considerations: we suppose that the acceleration
of the user is small during a limited series of reception
events, so that we may identify the user’s worldline with a
straight line; furthermore, we also suppose that by means
of his own clock the user can measure the proper time in-
terval τij between the i-th and j-th arrivals. With these
assumptions we can proceed as follows to determine the
fractional values p, q, s, w. Let us consider two sequences2

of arrival times from the sources; we have eight events,
each of them in the form

rj = X(a)jf
(a)+X(b)jf

(b)+X(c)jf
(c)+X(d)jf

(d), j = 1, .., 8,
(16)

where X(N)j are expressions like (12–15). The events
are arranged in such a way that r1 is the arrival of the
first signal from pulsar “a”, r2 is the arrival of the first
signal of pulsar “b” after r1, r3 is the arrival of the first
signal of pulsar “c” after r1, and r4 is the arrival of the
first signal of pulsar “d” after r1 (the pulsars are ordered
from largest (“a”) to shortest (“d”) period); r5 is the
arrival of the second signal from pulsar “a”, and so on.
The flatness hypothesis allows to write the displacement
four-vector between two reception events in the form

rij
.
= ri − rj =

(

X(N)i −X(N)j

)

f (N) .
= ∆X(N)ijf

(N).
(17)

Indeed, the assumption that the worldline of the receiver
is straight during a limited number of pitches of the sig-
nals can be used also to provide further information. In
fact, let us consider three successive reception events i,j,k;
we have

rji = ∆X(N)jif
(N), rkj = ∆X(N)kjf

(N). (18)

The straight-line hypothesis allows us to write

τji

τkj
=

∆X(a)ji

∆X(a)kj
=

∆X(b)ji

∆X(b)kj
=

∆X(c)ji

∆X(c)kj
=

∆X(d)ji

∆X(d)kj
,

(19)
where τji, τkj are the proper times elapsed between the
i-th and j-th, and j-th and k-th reception events, respec-
tively. These relations enable us to obtain the values we
are interested in: in fact, we may write the coefficients of
eqs. (16) in the form

2 They may be subsequent or not, provided the total time span

does not spoil the hypothesis of linearity of the world-line.

X(N)i =
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(20)

because some of the values of the p, q, s, w are zero. Then, on using relations like (19) we obtain the fractional values
in terms of observed quantities, i.e. proper times. For instance, we have

p1 = 0, q1 = n
(b)
2 −n

(b)
1 −

(

n
(b)
6 − n

(b)
2

) τ21

τ62
, s1 = n

(c)
3 −n

(c)
1 −

(

n
(c)
7 − n

(c)
3

) τ31

τ73
, w1 = n

(d)
4 −n

(d)
1 −

(

n
(d)
8 − n

(d)
4

) τ41

τ84
,

(21)
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and so on. Moving the pair of sequences we consider one
step further, we can reconstruct the whole worldline of
the receiver, in terms of measured quantities, i.e. proper
times.

IV. DISCUSSION AND CONCLUSIONS

The procedure that we have described allows to use
pulsating signals for positioning purposes; in particular,
pulsars signals can be used. It is based on the definition
of a null frame by means of the four-vectors associated
to the signals in the inertial reference frame where the
sources are at rest (so that the emission directions and
the frequencies of the pulsating signals have to be known)
and far away (so that their signals can be dealt with as
plane waves). The procedure is fully relativistic and al-
lows position determination with respect to an arbitrary
event. Once a null frame has been defined, it turns out
that the phases of the electromagnetic signals play the
role of emission coordinates with respect to the null ba-
sis, so that they can be used to label an arbitrary event
in spacetime. If the sources emit continuously and the
phases can be determined with arbitrary precision at any
event, it is straightforward to obtain the coordinates of
the user and his worldline. On the other hand, when the
signals consist of a series of pulses, we have developed a
simple method that can be used to determine the user’s
worldline by assuming that the worldline is a straight line
during a proper time interval corresponding to the recep-
tion of a limited number of pulses, which means that the
acceleration is negligibly small. Given the user’s clock
accuracy δτ , this method allows to reach an accuracy in
position determining which is of the order

δx ≃ c
δτ

δt
T, (22)

where δt is the maximum allowed time interval between
reception events that does not break the straight-line hy-
pothesis, and T is the order of magnitude of signals pe-
riod. On setting δt ≃ 10−1 s, δτ ≃ 10−10 s, T = 10−3

s, we get δx ≃ 10−4 m. Actually, this is a theoretical
accuracy, which depends on the accuracies involved in
position determining only: it does not deal with the ac-
tual measurement process, which involves the technical
details of signals detection; moreover, this accuracy does
not consider the sistematic error in determining the sig-
nals periods and the position of the sources in the sky.
We can define the maximum proper time interval

∆τmax that can be considered in order to be self con-
sistent with the straight-line hypothesis. Developing the
worldline of the receiver in powers of its proper time up
to the second order we see that, if a is the order of mag-

nitude of the user’s acceleration, and v his velocity, the
following condition should be satisfied:

∆τmax =

√

2
v

a
δτ . (23)

For instance, if the user is moving in flat spacetime with
δτ ≃ 10−10 s, v = 5× 105 m/s and an acceleration a = 1
m/s2, we have ∆τmax = 10−2 s, which corresponds to sev-
eral periods of millisecond pulsars. In our approach, we
have considered the case of positioning in flat spacetime;
actually, the deviation from the linearity of the user’s
worldline can also be due to the curvature of spacetime,
i.e. to the presence of the gravitational field. We can
give a similar estimate of the corresponding maximum
proper time interval ∆τmax by setting a = ∇Φ in (23)
where Φ is the gravitational potential. For instance, for
a = 10−3 m/s2, which is the order of magnitude of the
Sun gravitational field at 1 A.U., we get for v = 103 m/s,
∆τmax ≃ 10−2 s. In summary, the effects of acceleration,
both of gravitational and non-gravitational origin, can
be evaluated and their impact can be neglected in some
actual physical events: in these cases, millisecond pulsars
can be used for positioning in the scheme that we have
depicted. In principle our approach can be applied also
to satellites orbiting the Earth, much like in the GPS,
acting as sources, by taking into account the variations
of the null four-vectors of the null basis. The theoreti-
cal accuracy in position determining is controlled by the
user’s clock accuracy, but in order to deal with an actual
measurement process, the technical details of the signal
detection have to be considered. In fact, in order to build
a positioning device based on this approach, several tech-
nological issues have to be considered: for instance, the
extreme weakness of pulsars signals and the required de-
sign and sensitivity of the detectors. These and other
issues require further investigations and perhaps techno-
logical improvements, however we believe that this ap-
proach could be useful for defining an autonomous and
relativistic positioning system in space, which ultimately
transfers the basic positioning frame from the Earth to
spacetime, according to a truly relativistic viewpoint.
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