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Three interrelated questions concerning Kerr spacetime late–time tails are considered, specifically
the evolutions of generic and non–generic initial data sets, the excitation of “up” modes, and the
resolution of an apparent paradox related to the superposition principle. We propose to generalize
the Barack–Ori formula for the decay rate of any tail multipole given a generic initial data set, to
the contribution of any initial multipole mode. We also show explicitly that the angular symmetry
group of a multipole does not determine its late–time decay rate.
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I. INTRODUCTION

Perturbations of black holes decay first with complex
frequencies, known as the quasinormal modes of of the
black hole, taken over at late times by a superposition of
modes —known as the tails of the perturbation field—
decaying as power–laws of time. The decay rate of the
late–time tails in the spacetime of spinning black holes
has been the subject of much debate and some confusion.
Much of the debate in the literature was focused on the
late–time decay rate of an initially pure azimuthal hex-
adecapole (ℓ = 4) scalar field perturbation. All authors
agreed the decay rate would be according to an inverse
power of time, but different claims were made as to the
value of the power–law exponent. Specifically, there were
claims for decay rate along fixed Boyer–Lindquist r ac-
cording to t−3 [1], t−5 [2], and even t−5.5 [3].
In the last couple of years the behavior of the power–

law tails has been clarified in a number of papers [4–
6] (and the reader is referred to the detail therein), yet
there are some remaining interesting detail waiting to
be unveiled. In particular, it was shown in [6] that the
disagreement between the t−3 and t−5 behaviors can be
attributed to the use of different initial data sets (see
also [5]), but not to the use of different slicing conditions
as was suggested in [4]. Specifically, [6] suggested that
starting with an initial pure multipole ℓ′, the decay rate
of an (allowed) multipole ℓ (such that ℓ < ℓ′) is given by
t−n where n = ℓ′ + ℓ+ 1 if ℓ′ − ℓ− 2 > 0 and n = 2ℓ+ 3
otherwise.
Barack and Ori [7] studied analytically the late–time

tails for generic families of initial data (only assuming
compactly supported outgoing initial pulses). Instead of
carrying the analysis in the frequency domain —which
turns out to be complicated on a Kerr background be-
cause the frequency dependence of the spheroidal har-
monics implies that separation of the two angular vari-
ables depends on the frequency— Barack and Ori ana-
lyzed the evolution of perturbations in the time domain.
Barack and Ori found the decay rate of the ℓ multipole

given generic initial data, which they considered to be
data in which all multipoles are present. In fact, because
the smallest multipole contribution to the initial data
turns out as we show below to dominate the decay rate
of the ℓ multipole at late times, Barack and Ori found the
decay rate of an even (odd) mode ℓ excites by the scalar
field monopole (dipole) mode of the initial data. The
Barack–Ori formula for the decay rate of the ℓ multipole
has not been confirmed by numerical simulations, which
we do below for the first time. We also propose to gen-
eralize it to any initial multipole, not just the monopole
or dipole as in [7].

The organization of this Paper is as follows: In Sec-
tion II we describe the numerical code and the type of
initial data sets that we use. In this Paper we discuss
three related questions: First, in Section III we address
the difference in the time evolution of late–time tails be-
tween generic and non–generic initial data sets. Generic
initial data sets were first considered by Barack and Ori
[7], but their results have not been confronted with nu-
merical simulations. In addition to verifying the results
of [7], we also discuss the meaning of genericity of ini-
tial data sets. As we show below, not any mixture of
all multipole modes is in fact generic. Then, in Sec-
tion IV, we consider an aspect of late–time tails that has
not been studied before, specifically the decay rate of ex-
cited higher multipole modes, which we call “up”–excited
modes. The decay rate of “up” excited modes general-
ized the Barack–Ori result in [7] to some interesting cases:
the case of non–generic initial data in which (only) the
lowest dynamically allowed mode is not present, and the
case in which only one multipole mode is present in the
initial data. Lastly, in Section V, we discuss an apparent
paradox and its resolution, specfically the apparent fail-
ure of the superposition principle for linear interactions,
and the conclusion that the angular symmetry group of
multipole modes does not determine their time evolution.
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II. NUMERICAL CODE AND INITIAL DATA

SETS

Linearized perturbations of Kerr black holes are de-
scribed by Teukolsky’s master equation, given in Boyer–
Lindquist coordinates for a scalar field (s = 0) ψ, known
as the Teukolsky function, by

−
[

(r2 + a2)2

∆
− a2 sin2 θ

]

∂ttψ − 4Mar

∆
∂tϕψ

+ ∂r (∆ ∂rψ) +
1

sin θ
∂θ ( sin θ ∂θψ)

+

(

1

sin2 θ
− a2

∆

)

∂ϕϕψ = 0 , (1)

where M,a are the black hole’s mass and spin angular
momentum per unit mass, respectively, and the horizon
function ∆ = r2 − 2Mr + a2.

To solve Eq. (1) numerically, we define, following [8],
b(r, θ) := (r2+a2)/Σ where Σ2 = (r2+a2)2−a2 ∆ sin2 θ.
We next define the ‘momentum’ Π of the field φ defined
by ψ = eimϕ φ, according to

Π :=
∂φ

∂t
+ b(r, θ)

∂φ

∂r∗

where r∗ is the regular Kerr spacetime ‘tortoise’ coordi-
nate defined by dr∗/ dr = (r2 + a2)/∆.
Our code is a 2+1D first–order code for the time evolu-

tion of modes m of φ,Π given two independent functions
of two variables at t = 0 as initial data, based on [8].
The convergence order is taken to be second–order in the
radial and temporal directions, and sixth order in the
angular direction (although some of the higher–ℓ results
were obtained with tenth–order angular operators). The
standard grid resolution we use is 64, 000 grid points in
the radial direction, and 64 angular grid points (which
we denote as 64K × 64), unless stated otherwise, taking
the temporal step to be the largest step consistent with
the Courant condition.
In practice, we choose as initial data φ(r, θ)|t=0 =

0 and Π(r, θ)|t=0 = f(r)Pℓ( cos θ), where the ra-
dial function f(r) is chosen to be a gaussian f(r) =

(1/
√
2πσ2) exp[−(r∗ − r∗ 0)

2/(2σ2)] with r∗ 0 = 25M
and σ = 6M . The outer and inner boundaries are placed

at rboundary∗ = ±800M , which allows us to integrate to
t = 1, 500M at r∗ 0 without seeing boundary reflection
effects. We choose the Kerr parameter a = 0.995M . All
our simulations below are for azimuthal (m = 0) modes.
We use quadrupole precision floating–point arithmetic
throughout.

III. NUMERICAL EVOLUTION OF GENERIC

INITIAL DATA

We first show for the first time numerical tests of the
Barack–Ori formula [7]. Then, in Section IV we show

how the Barack–Ori formula is a particular case for “up”
excitation of modes. Barack and Ori noted that in the
generic case of black hole perturbations, all dynamically
allowed modes are present. Specifically, in the case of
scalar field perturbations, all modes, starting with the
monopole (ℓ = 0) evolve. The decay rate of a multipole
ℓ with azimuthal number m is given by t−n where

nℓ = ℓ+ |m|+ 3 + q , (2)

where q = 0, 1 if ℓ+m is even or odd, respectively.
The meaning of “generic” initial data is that the rel-

ative amplitudes of the various multipoles and their ra-
dial profiles are not fine tuned. Consider, e.g., the fol-
lowing initial data set, φ(r, θ)|t=0 = 0 and Π(r, θ)t=0 =
A sin2 θ f(r), where f(r) is any localized radial function,
say a gaussian. These initial data include non-vanishing
monopole and quadrapole moments. The late–time tail
includes all even multipoles, and is dominated by the
monopole field that decays according to t−3 at late times.
The quadrapole projection of the late–time field decays
according to t−5, in accordance with the Barack–Ori for-
mula.
Let us now consider the following scenario: one starts

with initial data as above, and evolves the field to a cer-
tain value of time, say to t = T . The field at t = T is a
complicated mixture of modes, each with its own radial
profile. Now consider a different initial value problem, in
which at t = 0 only a pure multipole, say the quadrapole
moment, is non-vanishing, and evolve these initial data
to t = T . These pure mode initial data also evolve to
a complicated mixture of multipole moments at t = T ,
and at first look one does not notice much qualitative
difference between the fields at t = T . However, treating
the fields at t = T as new initial value problems, fur-
ther time evolution leads to different decay rates at late
times. Specifically, the generic data lead to quadrapole
projection that drops off like t−5, and the pure data lead
to quadrapole projection that drops off like t−7. Consid-
ering only the values at t = T as the initial data sets,
what is the fundamental difference between the two sets,
that leads to very different late–time evolutions? Even
though either set appears at t = T to be a set of am-
plitudes with weighted ratios for the various multipole
moments (as functions of the radial coordinate), the set
describing the pure mode evolution is made at t = T of
a very carefully chosen set of (radius dependent) ampli-
tudes. In fact, it is the outcome of fine–tuned evolution of
a pure mode of the original initial value problem. Exam-
ination of the data set at t = T does not reveal anything
qualitative different about it: it is the specific amplitude
ratios and radial profiles that make it non-generic.
One may test these ideas by injecting at t = T an-

other field, say that of a pure mode. Start at t = 0
with a pure quadrapolar field. At t = T the projection
of the field is a mixture of all even multipoles. Then, at
t = T , inject either a pure monopole or a pure quadrapole
with some radial profile. The multipolar content of the
field after the injection is changed in that the relative
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FIG. 1: The quadrapole projection of the full field as a func-
tion of time, for initial data of a pure quadrapole field, then
injected at T = 250M with a pure quadrapole field. The
late–time field behavior is computationally found to be given
by ψ ∼ t−7.05.

multipolar amplitudes changed (as functions of the ra-
dius). When the injected field is quadrapolar, the late–
time decay rate of the quadrapole moment is t−7, as
should be expected from the fact that we have a su-
perposition of two linear pure mode evolutions (which
a certain time delay between them) (Fig. 1). When the
injected field is a monopole, the late–time decay rate of
the quadrapole moment is t−5 (Fig. 2). The addition of
a monopole field (without fine tuning its amplitude and
radial profile) makes the multipolar content of the to-
tal field generic. One may pose the following question:
When the injected field is a quadrapole, its time evolu-
tion will excite a monopole. Why in the presence of this
excited monopole the quadrapole projection of the field
decays like t−7, whereas in the presence of an injected
monopole the decay rate is the slower t−5? There is a fun-
damental difference between the two cases: the excited
monopole is not an arbitrary field: it is carefully chosen
by the dynamics of the problem, and may be viewed as a
fine tuned field; the injected monopole is arbitrary, and
is not fine tuned to lead to a different late–time decay
rate.

IV. EXCITATION OF “UP” MODES

Most interest has been devoted to finding the decay
rate of the slowest decaying mode, for obvious reasons.
Specifically, the slowest decaying mode determines the
late–time behavior of the full field. As lower multipole
modes typically have a slower decay rate, most interest
has naturally focused on the excitation of “down” modes,
specifically the excitation of lower multipole modes start-
ing with higher multipole modes.

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−8

−6

−4

−2

0

2

log
10

 t / M

lo
g 10

 | 
ψ

 L
=

2 |

t−7

t−5

FIG. 2: The quadrapole projection of the full field as a func-
tion of time, for initial data of a pure quadrapole field, then
injected at T = 250M with a pure monopole field. The late–
time field behavior is computationally found to be given by
ψ ∼ t−5.03.

Here, we are interested in the converse, i.e., in the exci-
tation and decay rate of “up” modes, i.e., the excitation
and decay rate of a higher multipole mode than the one
initially excited. Such modes are typically sub-dominant,
and do not dominate the late–time behavior of the full
field. Denoting the initially excited multipole by ℓ′, and
the multipole moment of the field whose excitation and
decay are is of interest by ℓ (so that ℓ > ℓ′), we pro-
pose that the late–time decay rate for such “up” excited
modes along a r = const worldline, is given by tn where

ℓ′nℓ = ℓ′ + ℓ+ |m|+ 3 + q , (3)

where m is the azimuthal number of the multipole, and
q = 0, 1 depending on whether ℓ′ + ℓ+m is even or odd,
correspondingly.
Letting the initial ℓ′ = 2, we projects the multipoles

ℓ = 0, 2, 4, and the local power indices are shown in Fig. 3.
Of particular interest here is the excitation of the hexade-
capole mode, ℓ = 4. In this case, ℓ′ = 2, ℓ = 4,m = 0, q =
0, so that our proposal is that n = 2+ 4+ 0+ 3+ 0 = 9.
In our numerical simulations, we have found the value of

2n4 = 9.01, with uncertainly in the last figure.
Starting with initial data for a pure ℓ′ = 0 monopole

mode, we project the ℓ = 0, 2 and 4 modes. The local
power indices 0n0 and 0n2 are shown in Fig. 4. The hex-
adecapole mode ℓ = 4, 0ψ4, is shown in Fig. 5. Figure 5
suggests that our grid density is not sufficiently high to
obtain accurately the very late time hexadecapole projec-
tion to the required accuracy. Indeed, as Fig. 5 shows, the
tail of the field “curves up” at very late times. However,
increasing the grid density appears to straighten up the
field, from which we infer that this curving is a numerical
artifact. We attribute the problem to our calculation of
a mode that is a second–order excited “up” mode, i.e.,
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FIG. 3: The ℓ = 0, 2, 4 multipole projections, for initial data
of a pure quadrupole field as functions of time. The late–
time field behavior is computationally found to be given by

2ψ0 ∼ t−3.005, 2ψ2 ∼ t−7.009, and 2ψ4 ∼ t−9.01, respectively.
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FIG. 4: The local power indices 0n0 (upper panel) and 0n2

(lower panel) as functions of the time t.

the ℓ = 4 excited mode from an initial ℓ′ = 0 mode.
The practical problems in determining the decay rate ac-
curately are accentuated by Fig. 6, which displays the
local power indices for three grid densities. Figure 6 sug-
gests that indeed a higher resolution simulation would be
successful at determining the late–time decay rate with
sufficient accuracy. Our results do suggest that 0n4 = 7,
as indicated by the reference curve in Fig. 5, but any
determination of the decay rate at higher accuracy than
that would require higher resolution simulations.

We have also tested our proposal with odd modes.
Specifically, Let ℓ′ = 3 and study the late time tail for
the modes ℓ = 1, 3, 5. Figure 7 shows the projections
ℓ = 1, 3, 5 as functions of time, and figure 8 displays the
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of a pure monopole field as functions of time. Shown are
the fields with three different grid densities, 64K × 64 (dash–
dotted curve), 80K × 80 (dashed curve), and 100K × 100
(solid curve). The inserts show the same for segments of the
full data, in addition to a reference curve ∼ t−7.
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FIG. 6: The local power index 0n4 as a function of the time
t for three grid resolutions, 64K × 64 (dash–dotted curve),
80K × 80 (dashed curve), and 100K × 100 (solid curve).

local power indices for these modes as functions of time.
Starting with ℓ′ = 1, we project the dipole and oc-

tupole modes and their respective local power indices in
Fig. 9. We encounter the same problem finding the decay
rate for ℓ = 5 — i.e., find 1ψ5 and 1n5 — as we did when
we we calculated 0ψ4 and 0n4 (Figs. 10 and 11). Again,
the second–order “up”–excited mode requires high reso-
lution simulations.
Our proposal (3) naturally extends the Barack–Ori for-

mula (2) to cases where the initial data do not include
the monopole (ℓ′ = 0) mode. Recall that the Barack–Ori
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TABLE I: Late–time power law indices n for the ℓ = ℓ′ −

4, · · · , ℓ′ + 4 projections of the fields for pure mode initial
data sets, ℓ′ = 0, 1, 2, 3, 4. This table includes both “down”
and “up” excitations. Dashes relate to decay rate we have
not computed. All figures are significant.

Initial Projected Projected Projected Projected projected

ℓ′ mode ℓ = ℓ′ − 4 ℓ = ℓ′ − 2 ℓ = ℓ′ ℓ = ℓ′ + 2 ℓ = ℓ′ + 4

0 * * 3.007 5.01 7

1 * * 5.002 7.003 9

2 * 3.005 7.009 9.01 –

3 * 5.002 9.009 11.008 –

4 5.01 7.002 11.008 – –
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FIG. 7: The ℓ = 1, 3, 5 multipole projections, for initial data
of a pure octupole field as functions of time. The late–time
field behavior is computationally found to be given by ψ1 ∼

t−5.002, ψ3 ∼ t−9.009, and ψ5 ∼ t−11.008, respectively.

formula considers the case of generic initial data, which
means a mixture of all multipole modes with arbitrary
relative amplitudes and radial profiles. In particular, the
monopole mode is generically present, so that the slow-
est decaying contribution of any “up”–excited ℓ mode is
generated by the initial monopole. Our proposal degen-
erates to the Barack–Ori formula when ℓ′ = 0. When the
monopole is not present in the generic initial data set,
our proposal will produce the decay rate of a mixture
of modes when ℓ′ is taken to be the smallest multipole
present in the generic data set, and as a particular case
will also produce the decay rate of the ℓ multipole when
the initial data is a pure ℓ′(< ℓ) mode, the non–generic
case, in the language of Barack and Ori. In summary,
the Barack–Ori formula Eq. (2) is simply the particular
case 0nℓ of Eq. (3).
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FIG. 9: The dipole (ℓ = 1) and octupole (ℓ = 3) projections,

1ψ3 and 1ψ3, correspondingly (upper panel), and their local
power indices, 1n1 and 1n3, respectively (left and right lower
panels), as functions of time, for initial data of a pure dipole
(ℓ′ = 1) field.

V. APPARENT VIOLATION OF THE

PRINCIPLE OF SUPERPOSITION

Consider the question of the decay rate of a certain
multipole moment ℓ. In the Schwarzschild spacetime the
decay rate depends only the the value of ℓ, specifically it
is t−n where n = 2ℓ + 3. Most notably, the decay rate
is independent of the history of the mode. This is no
longer the case in the Kerr spacetime: the decay rate of
a multipole ℓ does depend on how that mode came into
existence. Therefore, in the Schwarzschild case one may
say that “a multipole is a multipole,” and consequently
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0 0.5 1 1.5 2

x 10
−3

8

8.2

8.4

8.6

8.8

9

9.2

 M / t

1n 5

 

 

 100Kx100
 80Kx80
 64Kx64

FIG. 11: The local power index 1n5 as a function of the time
t for three grid resolutions, 64K × 64 (dash–dotted curve),
80K × 80 (dashed curve), and 100K × 100 (solid curve).

its decay rate is intimately linked to its angular distri-
bution and the associated symmetry group. Specifically,
in Schwarzschild there is a one–to–one relation of the
symmetry group of the mode in question and the mode’s
late–time decay rate, such that the symmetry determines
the time evolution of the mode. We are next posing the
question of whether the angular symmetry of a multi-
pole uniquely determines the decay rate also in the Kerr
spacetime. Put differently, is it still correct to say that
“a multipole is a multipole?”
Consider the quadrapole mode in Kerr, i.e., ℓ = 2. We

first excite a pure ℓ = 2 mode, and obtain the well known
late–time decay rate of t−7 for the quadrapole projection
of the full field. Notice, it is not the full field in whose de-
cay rate we are interested here, but rather that of a sub-
dominant projection. We then do a different simulation,
and add to the initial data also a monopole field, ℓ = 0.
The monopole field excites higher multipoles, including
the quadrapole. We then study the quadrapole projec-
tion of the late time field. This quadrapole field has two
dominant contributions: the initial quadrapole field, and
the excited quadrapole field from the initial monopole.
(Notice, that there are also higher-order quadrapole com-
ponents: the initial quadrapole, say, excites a hexade-
capole field, which at later times contributes to the
quadrapole moment through backreaction excitations; in
what follows we ignore higher-order effects such as that.)
If it is correct to say that “a multipole is a multipole,”
the quadrapole projection of the field would decay as t−7,
with a different amplitude than in the first case of pure
quadrapole initial data, because of the contribution of
the excited quadrapole. That is, one may expect direct
application of the superposition principle: there would be
two quadrapole fields present —one from the initial data,
and one excited— and the full quadrapole projection is a
linear superposition of the two, so that one may naively
expect the total decay rate of the quadrapole projection
of the full field at late time to decay as t−7. This is found
to be incorrect. The decay rate of the field is t−5.

Why does the superposition of two quadrapole fields
decay according to a different power law than the decay
rate of pure quadrapole initial data? We find that the
principle of superposition in fact does not fail, as indeed
must be the case in a linear problem such as this one.
Instead, we find that it is incorrect to say that “a multi-
pole is a multipole,” and the decay rate of the field does
not depend only on the angular symmetry of the mode.
Instead, there is also intricate dependence on the radial
profile of the mode, as we argue in what follows. The
monopole field excites an “up” quadrapole, and according
to our formula the decay rate of this excited quadrapole
field is t−5. This excited quadrapole dominates over the
evolved quadrapole from the initial data, that drops off
faster at late times, specifically decays as t−7. The full
quadrapole projection of the field decays therefore at the
slower rate of t−5.

The decay rate of the excited quadrapole is understood
from two complementary viewpoints: first, as an excited
“up” mode, it has ℓ′ = 0, ℓ = 2, m = 0 and q = 0, so
that the proposed formula predicts n = 5; second, as a
mode of “generic” multipolar evolution (i.e., a non–fine
tuned mixture of multipoles) it has ℓ = 2, m = 0 and
q = 0, such that the Barack–Ori result also predicts decay
rate of t−5. We therefore have two kinds of quadapole
fields: one decaying with n = 7 (the evolved initial data
of a quadrapole field) and the other decaying with n = 5
(the evolved excited quadrapole of the initial monopole).
Because fields with the same symmetry decay according
to different power law depending on how they came into
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existence, it is not correct to say that “a multipole is a
multipole,” and symmetry does not determine the time
evolution.
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