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On the existence of cosmological event horizon

Sourav Bhattacharya∗ and Amitabha Lahiri†

S. N. Bose National Centre for Basic Sciences,

Block JD, Sector III, Salt Lake, Kolkata -700098, India.

January 7, 2010

Abstract

We show that, for general static or axisymmetric stationary spacetimes, a cosmological horizon
exists only if Rabn

anb < 0 for a hypersurface orthogonal timelike na, at least over some portion of
the region of interest of the manifold. This implies violation of the strong energy condition by the
matter fields, the simplest example of which is a positive cosmological constant.
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It is generally accepted that a positive cosmological constant implies the existence of a cosmo-
logical horizon, i.e. an outer event horizon. If a positive cosmological constant Λ is added into the
Einstein equation, we find de Sitter space in the absence of matter. If the spacetime is additionally
assumed to be static, or axisymmetric and stationary, the solution to the vacuum Einstein equations
is a Schwarzschild-de Sitter or Kerr-de Sitter black hole. What happens if there is matter? A suf-
ficiently low matter density should produce a perturbation on the de Sitter black hole background.
How does this perturbation affect the global properties of the spacetime? In particular, is there
still an outer (cosmological) event horizon? More generally, what is the criterion for the existence
of a cosmological event horizon? We were unable to find in the literature anything resembling an
existence proof, so we decided to construct one. The motivation to look for horizons in spacetimes
with a positive cosmological constant comes from recent observations that our universe is very likely
endowed with one [1, 2].

The goal of this paper is to find the general conditions for which a stationary spacetime has
an outer cosmological horizon. We consider two types of spacetimes, one static, and the other
stationary and axisymmetric. An inner (black hole) event horizon is not assumed, although one
may be present. We assume the existence of a null outer horizon and find the condition that the
stress-energy tensor has to fulfil for the Einstein equations to hold. We find that the strong energy
condition must be violated by the stress-energy tensor, at least over some part of the spacelike region
inside the outer horizon. While a positive cosmological constant does this, we also find conditions
on the stress-energy tensor due to ordinary matter so that Λ > 0 implies an outer horizon.

Let us then start with a spacetime which is static in some region. In this region the spacetime
is endowed with a timelike Killing vector field ξa,

∇aξb +∇bξa = 0, (1)
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with norm ξaξ
a = −λ2. Since the spacetime is static, ξa is orthogonal to a family of spacelike

hypersurfaces Σ, and the Frobenius condition is satisfied,

ξ[a∇bξc] = 0. (2)

We shall define a horizon of this spacetime as a null hypersurface on which ξa becomes null, i.e.,
λ2 = 0.

Let us consider the Killing identity

∇a∇
aξb = −Rabξ

a , (3)

and contract both sides of Eq. (3) by ξb to obtain

∇a∇
aλ2 = 2Rabξ

aξb − 2 (∇aξb)
(

∇aξb
)

. (4)

On the other hand, we can use Killing’s equation (1) and the Frobenius condition (2) to get

∇aξb =
1

λ
(ξb∇aλ− ξa∇bλ) , (5)

which we substitute into Eq. (4) to obtain

∇a∇
aλ2 = 2Rabξ

aξb + 4 (∇aλ) (∇
aλ) . (6)

In order to project Eq. (6) onto Σ, we consider the usual projector or the induced metric on Σ

ha
b = δa

b + λ−2ξaξ
b. (7)

Let us also write Da for the induced connection on Σ. Then for any p-form Ω whose projection on
Σ is ω, and which satisfies £ξΩ = 0 [3],

∇aΩ
a··· =

1

λ
Da(λω

a···) . (8)

Choosing the 1-form dλ for Ω in this equation, and using Eq. (6), we find

1

λ
Da

(

λDaλ2
)

= 2
[

Rabξ
aξb + 2 (Daλ) (D

aλ)
]

. (9)

Eq. (9) can be now integrated over the spacelike hypersurface Σ to produce
∮

∂Σ

λDaλ
2dγ(2)a = 2

∫

Σ

λ
[

Rabξ
aξb + 2 (Daλ) (D

aλ)
]

, (10)

where the surface integral on the left hand side is calculated over the boundary of Σ.
According to our assumption, the spacetime has a closed outer boundary or cosmological hori-

zon, so that λ = 0 there. If we also have a black hole present in the spacetime, the inner boundary
is the black hole event horizon, and we will also have λ = 0 there. We will also assume that the
derivative of λ2 is appropriately non-divergent on the horizons. Then the surface integral over the
horizons in Eq. (10) vanishes, and we get

∫

Σ

λ
[

Rabξ
aξb + 2 (Daλ) (D

aλ)
]

= 0. (11)

The second term in Eq. (11) is a spacelike inner product and hence positive definite over Σ,
so we must have a negative contribution from the first term Rabξ

aξb. In other words, the outer
horizon or the cosmological horizon will exist only if

Rabξ
aξb < 0, (12)
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at least over some portion of Σ, so that the total integral in Eq. (11) vanishes. Using the Einstein
equations

Rab −
1

2
Rgab = Tab, (13)

we see that the condition (12) implies that the strong energy condition (SEC) is violated by the
energy-momentum tensor

(

Tab −
1

2
Tgab

)

ξaξb < 0, (14)

at least over some portion of Σ. We know that a positive cosmological constant Λ, appearing on
the right hand side of the Einstein equations as −Λgab, violates the SEC. We now split the total
stress-energy tensor Tab as

Tab = −Λgab + TN
ab, (15)

where the superscript ‘N’ denotes ‘normal’ matter fields satisfying SEC. Then Eq. (11) becomes
∫

Σ

λ
[

XN + 2(Daλ)(D
aλ)− Λλ2

]

= 0. (16)

XN is a positive definite contribution from the normal matter satisfying SEC. So for the cosmological
horizon to exist, we must have

∫

Σ

λ
[

XN − Λλ2
]

< 0. (17)

In other words, the cosmological constant term (with Λ > 0) has to dominate the integral if there is
to be an outer horizon. It is interesting to note that the observed values of Λ and matter densities
in the universe satisfy this requirement. So would a universe with Λ > 0 in which all matter is
restricted to a finite region in space. This has relevance in discussions of late time behavior of black
holes formed by collapse.

This result can be generalized to stationary axisymmetric spacetimes, in general rotating, which
satisfy some additional constraints. The basic scheme will be the same as before. For the spacetime
we assume two commuting Killing fields (ξa, φa),

∇(aξb) = 0 = ∇(aφb) , (18)

[ξ, φ]a = 0 . (19)

ξa is locally timelike with norm −λ2, whereas φa is a locally spacelike Killing field with closed
orbits and norm f2. We also assume that the vectors orthogonal to ξa and φa span an integral
submanifold. In other words, local coordinates orthogonal to ξa and φa can be specified everywhere
on the spacetime. This, and the last condition above, are the additional constraints mentioned
above. We note that known stationary axisymmetric spacetimes obey these restrictions.

For a rotating spacetime, ξa is not orthogonal to φa, so in particular there is no spacelike
hypersurface tangent to φa and orthogonal to ξa. Let us first construct a family of spacelike
hypersurfaces. If we define χa as

χa = ξa −
1

f2

(

ξbφ
b
)

φa ≡ ξa + αφa, (20)

we will have χaφ
a = 0 everywhere. An orthogonal basis for the spacetime can be written as

{χa, φa, µa, νa}. The norm of χa is calculated to be

χaχ
a = −β2 = −

(

λ2 + α2f2
)

, (21)

3



i.e., χa is timelike when β2 > 0. we can also calculate that

∇(aχb) = φa∇bα+ φb∇aα. (22)

Our assumption that {µa, νa} span an integral 2-manifold implies that

χ[aφb∇cφd] = 0 , (23)

φ[aχb∇cχd] = 0 . (24)

where we have also used Eq. (20). A straightforward calculation from here shows that

∇aχb −∇bχa = 2β−1 (χb∇aβ − χa∇bβ) . (25)

It follows that χa satisfies the Frobenius condition,

χ[a∇bχc] = 0 . (26)

So there is a family of spacelike hypersurfaces Σ orthogonal to χa, although we should note that
χa is not a Killing vector field. In a rotating black hole spacetime, ξa becomes spacelike within the
ergosphere [4], so for such spacetimes λ2 = 0 does not define a horizon. The horizons are now at
β2 = 0.

Using the Killing identities ∇a∇
aξb = −Rb

aξa, and ∇a∇
aφb = −Rb

aφa, and also the orthogo-
nality χaφ

a = 0, we obtain

χb∇a∇
aχb = −Rabχ

aχb + 2χa∇cφa∇
cα , (27)

which is equivalent to

∇a∇
aβ2 = 2Rabχ

aχb − 2∇cχa∇cχa − 4χa∇cφa∇
cα. (28)

Note that if we set α = 0 in Eq. (28), we recover the static case of Eq. (4).
Next we note that the subspace spanned by {χa, µa, νa} do not form a hypersurface. This is

because the necessary and sufficient condition that an arbitrary subspace of a manifold forms an
integral submanifold or a hypersurface is the existence of a Lie algebra of the basis vectors of that
subspace (see e.g. [4] and references therein). The condition Eq. (26) follows from this. On the
other hand, Lie brackets among {χa, µa, νa} do not close. For example,

[χ, µ]a = [ξ, µ]a + α[φ, µ]a + φaµb∇bα. (29)

Since µa is not a Killing field, the last term on the right hand side of Eq. (29) is not zero. A similar
argument holds for νa . Therefore the vectors spanned by {χa, µa, νa} do not form a Lie algebra.
This implies that we cannot write a condition like φ[a∇bφc] = 0.

However, according to our assumptions, there are integral spacelike 2-manifolds orthogonal to
both χa and φa. These are spanned by {µa, νa}. Then we must have

φ[aDbφc] = 0, (30)

where Db is the connection induced on Σ defined via the projector ha
b = δa

b + β−2χaχ
b, exactly

in the same manner as in the static case. Then we can write

Daφb = ha
chb

d∇cφd = ∇aφb + β−2 (χaφ
c∇bχc − χbφ

c∇aχc) . (31)

Using the expression of ∇aχb from Eq. (22) and Eq. (25), we can rewrite this as

Daφb = ∇aφb +
f2

2β2
[χa∇bα− χb∇aα] . (32)
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It follows from this equation that we can write the Killing equation for φa on Σ as

Daφb +Dbφa = 0. (33)

Using this equation and the Frobenius condition of Eq. (30), we derive the expression

∇aφb =
1

f
[φbDaf − φaDbf ] +

f2

2β2
[χb∇aα− χa∇bα] . (34)

These are all that is needed to simplify Eq. (28). Substituting the expressions for ∇aχb and ∇aφb

into Eq. (28) we get

∇a∇
aβ2 = 2Rabχ

aχb + 4 (∇aβ) (∇
aβ) + f2 (∇aα) (∇

aα) . (35)

Now we know that χa∇aβ = 0, and from the fact that ξa commutes with φa, it follows that
χa∇aα = 0. With this, using the same line of argument as for Eq. (16), we get

∫

Σ

β

[

XN + 2 (Daβ) (D
aβ) +

f2

2
(Daα) (D

aα)− Λβ2

]

= 0, (36)

if the spacetime has an outer or cosmological event horizon. For Tab = 0 in Eq. (36), we get Kerr-de
Sitter solution [5]. We note that the assumption of integral 2-manifolds orthogonal to both the
Killing fields ξa and φa was crucial to the proof. For a completely general stationary axisymmetric
spacetime, the existence of such submanifolds is not guaranteed, and thus an outer horizon may
not exist in such cases, even for Λ > 0.

To summarize, we have found that in both the static and the stationary axisymmetric cases,
existence of an outer horizon requires a violation of the strong energy condition. This can be through
a positive cosmological constant, for which there is strong observational evidence, or through exotic
matter.
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