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Abstract

We give six arguments that the Planck scale should be viewed as a fundamental minimum or

boundary for the classical concept of spacetime, beyond which quantum effects cannot be neglected

and the basic nature of spacetime must be reconsidered. The arguments are elementary, heuristic,

and plausible, and as much as possible rely on only general principles of quantum theory and

gravity theory. The paper is primarily pedagogical, and its main goal is to give physics students,

non-specialists, engineers etc. an awareness and appreciation of the Planck scale and the role it

should play in present and future theories of quantum spacetime and quantum gravity.
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I. INTRODUCTION

Max Planck first noted in 18991,2 the existence of a system of units based on the three

fundamental constants,

G = 6.67× 10−11Nm2/kg2(or m3/kg s2) (1)

c = 3.00× 108m/s

h = 6.60× 10−34Js(or kg m2/s)

These constants are dimensionally independent in the sense that no combination is dimen-

sionless and a length, a time, and a mass, may be constructed from them. Specifically, using

~ ≡ h/2π = 1.05× 10−34Js in preference to h, the Planck scale is

lP =

√
~G
c3

= 1.6× 10−35m, TP =

√
~G
c5

= 0.54× 10−43, (2)

MP =

√
~c
G

= 2.2× 10−8kg

The energy associated with the Planck mass is EP = MP c
2 = 1.2× 1019GeV .3

The Planck scale is prodigiously far removed from the human scale of about a meter.

Indeed we humans are much closer in order of magnitude to the scale of the universe, 1026m,

than to the Planck scale! Present high-energy particle experiments involve energies only of

order 103GeV , and even the highest energy cosmic rays detected to date, about 1012GeV ,

are far below the Planck energy.

The presence of ~ in the Planck units in Eq.(2) indicates that the Planck scale is associated

with quantum effects, c indicates that it is associated with spacetime, and G indicates that

it is associated with gravity. We therefore expect that the scale is characteristic of quantum

spacetime or quantum gravity, which is the present conventional wisdom.3

We wish to illustrate in this paper that the Planck scale is the boundary of validity of

our present standard theories of gravity and quanta. Essentially we travel six roads to the

boundary using arguments based on thought experiments. It is beyond our present scope

to cross the boundary and discuss current efforts toward theories of quantum gravity and

spacetime; however in section IX we will briefly mention a few such efforts, and we refer the

reader to a number of useful references.

Observational confirmation of Planck scale effects is highly problematic.3,8–10 We clearly

cannot expect to do accelerator experiments at the Planck energy in the foreseeable future,
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but there are indirect possibilities. One involves the radiation predicted by Hawking to be

emitted from black holes if they are small enough to have a “Hawking temperature” above

that of the cosmic background radiation; in the final stages of black hole evaporation the

Hawking radiation should have about the Planck energy.11 Of course Hawking radiation has

not yet been observed, although many theorists believe it must exist. Another possibility of

interest is to analyze the radiation from very distant gamma ray bursters, which has been

enroute for about 1010yr.12 Speculations abound on the effect of Planck scale spacetime

granularity on propagation of such radiation.13 Finally we mention that in the earliest stages

of cosmological inflation quantum gravity effects might have been large enough to leave

an imprint via primordial gravitational radiation on the details of the cosmic microwave

background radiation.14

Lacking real experiments we use thought experiments (Gedankenexperiment) in this note.

We give plausible heuristic arguments why the Planck length should be a sort of fundamental

minimum - either a minimum physically meaningful length, or the length at which spacetime

displays inescapable quantum properties i.e. the classical spacetime continuum concept

loses validity. Specifically the six thought experiments involve: (1) viewing a particle with

a microscope; (2) measuring a spatial distance with a light pulse; (3) squeezing a system

into a very small volume; (4) observing the energy in a small volume; (5) measuring the

energy density of the gravitational field; (6) determining the energy at which gravitational

forces become comparable to electromagnetic forces. The analyses require a very minimal

knowledge of quantum theory and some basic ideas of general relativity and black holes,

which we will discuss in section II. Of course some background in elementary classical physics,

including special relativity, is also assumed.

We rely as little as possible on present theory, both because we desire mathematical and

pedagogical simplicity, and because the general principles we use are most likely to survive

the vagaries of theoretical fashion. We hope that the discussions are thereby made more

accessible to physics undergraduates and nonspecialists.

II. COMMENTS ON BASIC IDEAS OF QUANTUM THEORY AND GRAVITY

In this section we review the small amount of quantum theory and gravitational theory

needed in later sections. Essentially we attempt to compress some root ideas of quantum
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theory and general relativity into a few paragraphs! Those familiar with quantum theory

and general relativity may proceed to the first road in section III.

The first aspect of quantum theory that we recall is the quantization of light into photons.

According to Planck and Einstein light of frequency ν and wavelength λ = c/ν can only be

emitted and absorbed in multiples of the energy

E = hν = ~ω (3)

where ω is the frequency in rad/s. Thus we may think of light as a rain of photons, each

with E = hν.15,16 According to Einsteins relation for mass-energy equivalence, E = mc2, a

photon should interact gravitationally as if it has an effective mass

Mef = hν/c2 (4)

Thus, for example, a single photon captured in a mirrored cavity increases the effective mass

of the cavity according to Eq.(4).

Next we recall a standard heuristic derivation of the Heisenberg uncertainty principle.15

In Fig.1 we show the Heisenberg microscope thought experiment; using the microscope we

view a particle with light entering from the bottom of the page. It is well-known from wave

optics (and also rather clear intuitively) that the position of the particle can be determined to

an accuracy of about the wavelength λ of the light used; a bit more precisely the uncertainty

in position is given by

∆x ∼= λ/sinϑ (5)

According to classical physics we could determine the position as accurately as desired by

using very short wavelength light, of arbitrarily low intensity so as not to disturb the particle

by the electric field of the light wave. However the quantization of light as photons with

energy hν prevents this since the intensity cannot be made arbitrarily low. A single photon

scattering from the particle and into the microscope (at angle less than ϑ ) will impart

momentum of order ∆p ∼= psinϑ = (h/λ)sinϑ to the particle, so that Eq.(5) implies

∆x∆p ∼= h ≈ ~ (6)

which is the Heisenberg uncertainty principle (UP). (In our rough estimates we do not

distinguish between h and ~, thus taking 2π ≈ 1; this has been referred to as “using
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Feynman units.”) The UP forces us to consider the position and momentum of the particle

to be fundamentally imprecise or “fuzzy” in such a way that the particle occupies a region

of at least ~ in phase space (x, p). Thus we cannot speak of the trajectory of a quantum

mechanical particle but must instead take account of the fuzziness of such a particle in our

description, that is in terms of a wave function or probability amplitude.

Most quantum mechanics textbooks also give a derivation of the UP from the commu-

tation relation for the position and momentum operators, and it is also readily obtained

from the fact that the wave functions in position and momentum space are Fourier trans-

forms of each other.16 However neither derivation is as conceptually simple as that using the

Heisenberg microscope.

There is an energy-time analog of the UP Eq.(6), but it has a somewhat different meaning.

Consider a wave of frequency approximately ν and duration T , which thus consists of N ≈

νT cycles. The finite duration of the wave means that its leading and trailing edges will in

general be distorted somewhat from sinusoidal, so that N will not be precisely well-defined

and measurable, but will have an uncertainty of order ∆N ≈ 1. This uncertainty in N

implies in turn an uncertainty in the frequency, given by ∆νT ≈ ∆N ≈ 1. (This relation

is well-known in many fields, such as optics and electrical engineering, wherein it relates

band-width and pulse-width;17 the time T is subject to a number of somewhat different

interpretations. The relation is also easy to derive more formally by calculating the Fourier

transform of a finite nearly monochromatic wave train, which is its frequency spectrum.)

Since the energy of a photon of light is given by E = hν = ~ω we see that its energy can

be measured only to an accuracy given by

∆ET ≈ h ≈ ~ (7)

where ∆E is, of course, the absolute value of the energy uncertainty. The same relation

holds by similar reasoning for most any quantum system.

The expression Eq.(7) formally resembles the UP in Eq.(6), but unlike the position of a

particle, time is not an observable in quantum mechanics, so Eq.(7) has a different meaning:

T is the characteristic time of the system (eg. pulse width), and not an uncertainty in a

time measurement.18 Thus, for example the light emitted by an atom is only approximately

monochromatic, with an energy uncertainty given by ∆E ≈ ~/T where T is the lifetime of

the excited atomic state.
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The quantization relation Eq.(3) and the uncertainty relations Eq.s(6) and (7) are suffi-

cient for our analyses in later sections; we need not discuss detailed quantum mechanics or

quantum field theory.

We next move on to general relativistic gravity and black holes. Recall that the line

element or metric of special relativity gives the spacetime distance between nearby events.

It is usually expressed in Lorentz coordinates (ct, ~x) as19

ds2 = (cdt)2 − d~x2 (8)

In general relativity gravity is described by allowing spacetime to be warped or distorted, or,

more technically correct, curved. Coordinates in general relativity merely label the points in

spacetime and do not by themselves give physical distances; for that we need a metric, which

relates coordinate intervals to physical distance intervals.3,20–22 For a weak gravitational field

and slowly moving bodies the line element or metric is approximately given by the so-called

Newtonian limit

ds2 = (1 + 2φ/c2)(cdt)2 − (1− 2φ/c2)(d~x)2 (9)

Here φ is the Newtonian potential, with the dimensionless quantity φ/c2 assumed small, and

also assumed to go to zero asymptotically at large distances from the source; for example

for a point mass M the potential is φ = −GM/r. What this means is that the proper time,

or physical clock time, between 2 events at the same space position and separated only by

a time coordinate interval cdt is

ds = cdt
√

1 + 2φ/c2 (proper time separation) (10a)

while the physical meter stick distance between 2 events separated only by a space coordinate

interval dx is

dx
√

1− 2φ/c2 (space separation) (10b)

and similarly for the y and z directions.

The Newtonian limit Eq.(9) is a quite good approximation in many cases; for example

in the solar system the Newtonian potential is greatest at the surface of the sun, where

2φ/c2 ≈ 10−6. Thus spacetime in the solar system is extremely close to that of special

relativity, or flat. Since we are interested only in order of magnitude estimates, we will make

free use of the Newtonian limit Eq.(9) as an approximation.20–23
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The exact Schwarzschild metric, which describes a black hole or the exterior of any

spherically symmetric body, is given in the same coordinates as Eq.(9) by24

ds2 =
(1−GM/2c2r)2

(1 +GM/2c2r)2
(cdt)2 − (1 +GM/2c2r)4d~x2 (11)

This expression is correct only in matter-free space outside the body. At large distances

from the body it is approximately

ds2 ≈ (1−2GM/c2r)(cdt)2 − (1 + 2GM/c2r)d~x2, (12)

GM/c2r << 1,

which agrees with the Newtonian limit Eq.(9). If the body is small enough so that r =

GM/2c2 lies outside of it then the coefficient of the time term in Eq.(11) vanishes, which

means that the proper time ds is zero, and a clock at that position would appear to a distant

observer to stop. This radius defines the surface of the black hole. Light cannot escape from

the surface since it undergoes a red shift to zero frequency. A black hole of typical stellar

mass is about a km in radius.3

A minor caveat concerning Eq.(11) is in order. The coordinate r used in Eq.(11) is

called the isotropic radial coordinate and is not the same as that usually used for the

Schwarzschild metric, the Schwarschild radial coordinate. We will not use the Schwarzschild

radial coordinate here (or even define it) but only note that it is asymptotically equal to the

isotropic coordinate r in Eq.(11) but differs from it at the black hole surface by a factor of 4;

that is the black hole surface is at radius 2GM/c2 in the Schwarzschild coordinate; 2GM/c2

is widely known as the Schwarzschild radius.24

It is generally believed that if enough mass M is squeezed into a roughly spherical volume

of size about r ≈ GM/c2 then it must collapse to form a black hole, regardless of internal

pressure or other opposing forces; however if the mass is needle or pancake shaped the

question of collapse is not yet clearly settled.25,26

In summary the lesson to take away from the above paragraphs is that spacetime dis-

tortion is a measure of the gravitational field. Specifically, since the line element gives

the physical distance between nearby spacetime points or events, such distances are given

roughly by Eq.(10). This corresponds to a fractional distortion given by

Spacetime fractional distortion ≈ |φ|
c2

(13a)
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Alternatively, from Eq.(11), we may say that for a region that is roughly spherical, of size

l, and contains a mass M the fractional distortion is of order

Spacetime fractional distortion ≈ GM

lc2
(13b)

Even for rather strong gravitational fields this generally holds at least roughly. The above

results Eq.(13) will be basic to our arguments in future sections.

III. THE GENERALIZED UNCERTAINTY PRINCIPLE

Our first road to the Planck scale is based on the same thought experiment as the Heisen-

berg microscope used to obtain the UP in section II and shown in Fig.1, but it includes the

effects of gravity to obtain a generalization of the UP.27,28 According to the UP in Eq.(4)

there is no limit on the precision with which we may measure a particles position if we allow

a large uncertainty in momentum, as would result from using arbitrarily short wavelength

light. But this does not take into account the gravitational effects of even a single photon. As

noted in section II a photon has energy hν and thus an effective mass Mef = hν/c2 = h/cλ,

which will exert a gravitational force on the particle. This will accelerate the particle, making

the already fuzzy particle position somewhat fuzzier. Using classical Newtonian mechanics

we estimate the acceleration and position change due to gravity as roughly

∆ag ≈ GMef/r
2
ef = G(h/λc)/r2ef , (14)

∆xg ≈ ∆agt
2
ef ≈ G(h/λc)(t2ef/r

2
ef )

where ref and tef denote an effective average distance and time for the interaction. The only

characteristic velocity of the system is the photon velocity c, so we naturally take ref/tef ≈ c,

and obtain for the gravitational contribution to the uncertainty

∆xg ≈ Gh/λc3 ≈ (G~/c3)/λ = l2p/λ (15)

According to the UP Eq.(4) the position uncertainty neglecting gravity is about ∆x ≈

~/∆p; we add the gravitational contribution in Eq.(15) to obtain a generalized uncertainty

principle or GUP,

∆x ≈
( ~

∆p

)
+ l2p

(∆p

~

)
(16)
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This same expression for the GUP has been obtained in numerous ways, ranging in sophis-

tication from our very naive Newtonian approach to several versions of string theory;27 it

would thus appear to be a rather general result of combining quantum theory with gravity

and may indeed be correct.28

Almost needless to say the GUP should be considered a rough estimate for position

uncertainty, with the coefficient of ∆p/~ in the second term only being of order of the

square of the Planck length, and the whole expression being valid in order of magnitude as

we approach the Planck scale from above. For example, we could just as well have factors of

2π or 10 or 1/α = 137etc. multiplying l2P in Eq.(16). Moreover we add the uncertainties due

to the standard UP and the gravitational interaction linearly; we could equally well have

taken the root mean square; this makes little difference in our conclusions, as the reader

may verify.

From the GUP in Eq.(16) we see that the position uncertainty of a particle has a minimum

at ~/∆p = lP and is about

∆xmin ≈ 2lp (17)

as shown in Fig.2. This minimum position uncertainty corresponds to a photon of wavelength

about lP and energy EP .

Since we cannot measure a particle position more accurately than the Planck length, the

above result suggests that from an operational perspective the Planck length may represent

a minimum physically meaningful distance. As such one may plausibly question whether

theories based on arbitrarily short distances, such as string theory, really make sense from

an operational point of view; spacetime at the Planck scale and below might not be a useful

concept.3,29

IV. LIGHT RANGING

The next argument uses a thought experiment that is particularly simple conceptu-

ally, and has the virtue that length is defined via light travel time, which is the actual

present practice:30 the definition of a meter is “the distance traveled by light in free space

in 1/299,792,458 of a second.”

Fig.3 shows the experimental arrangement, which we refer to by the generic name light
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ranging, in analogy with laser ranging. We send a pulse of light with wavelength λ from

a position labeled A to one labeled B, where it is reflected back to A, and measure the

travel time with a macroscopic clock visible from A. Since light is a wave we cannot ask

that the pulse front can be much more accurately determinable than about λ, so there is an

uncertainty of at least about ∆lw ≈ λ in our measurement of the length l.

If nature were actually classical we could use light of arbitrarily short wavelength and

arbitrarily low energy so as not to disturb the system, and thereby measure the distance

to arbitrarily high accuracy. However in the real world we cannot use arbitrarily short λ

since this would put large amounts of energy and effective mass in the measurement region,

even if we use only a single photon.3 According to our comments in section II the energy of

the light will distort the spacetime geometry and thus change the length l by a fractional

amount |φ|/c2 according to Eq.(13). We may estimate the Newtonian potential due to the

photon, which is somewhere in the interval l, to be about

φ ≈ GMef

l
≈ G(E/c2)

l
≈ Ghν

c2l
≈ G~
clλ

(18)

so the spatial distortion is about

∆lg ≈ l(φ/c2) ≈ (G~/c3)/λ = l2p/λ (19)

In Fig.3 the letter B labels a point in space, but we could instead take it to be a small body

in free fall, which would move during the measurement (actually only during the return trip

of the light pulse), and this would also affect the measurement. We have already estimated

just such motion in section III; it is given in Eq.(15) by

∆xg ≈ l2p/λ (20)

That is the space distortion in Eq.(19) and the motion in Eq.(20) are comparable, and to

our desired accuracy we simply write for either effect ∆lg ≈ l2P/λ.

Since we only know the photon position to be somewhere in l we interpret this as an

additional uncertainty due to gravity. We add it to the uncertainty due to the wave nature

of the light to obtain

∆l ≈ ∆lw + ∆lg ≈ λ+ l2p/λ (21)

This expression Eq.(21) for the total uncertainty has a minimum at λ = lP , where it is

equal to ∆l ≈ 2lP , so we conclude that the best we can do in measuring a distance using
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light ranging is about the Planck length. The energy and gravitational field of the photon

prevents us from doing better.

A final note is in order. We have here assumed implicitly that we have access to a perfect

classical clock for timing the light pulse. However if the clock is assumed to be a small

quantum object then there will be a further contribution to the uncertainty due to the

spread of the position wave function of the clock during the travel of the light pulse. Some

authors suggest that such a quantum clock should be used in the thought experiment, and

arrive at a larger uncertainty estimate for light ranging, one involving the size of the system

l.9,31 However other authors point out that such a quantum clock may not be appropriate

since it could suffer decoherence and behave classically.10 Predictions of this nature may be

testable with laser interferometers constructed as gravitational wave detectors.32

V. SHRINKING A VOLUME

In this thought experiment we shrink a volume containing a mass M as much as possi-

ble, until we are prevented from continuing. We assume the volume is intrinsically three-

dimensional, about l in all of its spatial dimensions, as shown in Fig.4. A difficulty occurs

due to gravity when the size approaches the Schwarzschild radius,

l ≈ GM/c2 (22)

The system may then collapse to form a black hole as discussed in section II and cannot be

made smaller. There is of course no lower limit to this size if we choose an arbitrarily small

mass M .

A different difficulty occurs due to quantum effects. From the UP the uncertainty in the

momentum of the material in the volume is at least of order ∆p ≈ ~/l. Since the energy in

the volume is given by E2 = M2c4 + p2c2 the uncertainty in the energy is roughly

∆E ≈ c∆p ≈ ~c/l (23)

If l is made so small that this energy uncertainty increases to about 2Mc2 then pairs of

particles can be created and appear in the region around the mass M, as shown in Fig.4.33

The localization is thereby ruined and the volume cannot shrink further. This limit happens
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when the energy and size are about

Mc2 ≈ ∆E ≈ ~c/l, l ≈ ~/Mc (24)

The quantity ~/Mc is known as the Compton radius or Compton wavelength of mass M .

Our inability to localize a single particle to better than its Compton radius is wellknown

in particle physics. Indeed one fundamental reason that quantum field theory is used in

particle physics is that it can describe the creation and annihilation of particles whereas a

single particle wave function cannot.34

We now have two complementary minimum sizes for the volume containing a mass M :

the Schwarzschild radius dictated by gravity is proportional to M , and the Compton radius

dictated by quantum mechanics is inversely proportional M . The overall minimum occurs

when the two are equal, which happens for

l ≈ ~/Mc ≈ GM/c2, M2 ≈ ~c/G ≡M2
p , (25)

l ≈ ~/Mpc ≈
√

~G/c3 = lp

Thus the combination of gravity and quantum effects creates insurmountable difficulties if

we attempt to shrink a volume to smaller than Planck size.

A minor caveat should be repeated here: we have assumed that the volume is effectively 3

dimensional in that all of its dimensions are roughly comparable; if one of the dimensions is

much larger or much smaller than the others the region is effectively one or two dimensional

and the question of gravitational collapse is less clear, as noted in section II.25,26

VI. MEASURING PROPERTIES OF A SMALL VOLUME

For this rather generic thought experiment we use a quantum probe, such as a light pulse,

to measure the size, energy content or other physical properties of a volume of characteristic

size l, as shown in Fig.5. Such properties may in general fluctuate significantly in the time

it takes light to cross the volume, so we would naturally want to do the measurement within

that time, T ≈ l/c. For this we need a probe with frequency greater than c/l and energy

greater than about E ≈ ~(c/l).
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But there is a limit to how much probe energy E or effective mass Mef ≈ E/c2 = ~/lc

can be packed into a region of size l, as we discussed in section II. According to Eq.(13) the

fractional distance uncertainty in the volume containing such an effective mass is about

∆l

l
≈ |φ|

c2
≈ 1

c2

(GMef

l

)
=

G

c2l

( ~
lc

)
=
G~
c3l2

=
l2p
l2

(26)

If l is made so small that this approaches 1 then the geometry becomes greatly distorted

and the measurement fails, which happens at l ≈ lP .

Another way to see the limit effect is to note that the effective mass Mef = h/cl injected

into the region by the probe can induce gravitational collapse to form a black hole (as

already noted in section V) when the region size approaches the Schwarzschild radius of

about GMef/c
2; this happens for

l ≈ GMef

c2
≈ G~
c3l

, l ≈
√
G~/c3 ≈ lp (27)

We thus conclude that any attempt to measure physical properties in a region of about

the Planck size involves so much energy that large fluctuations in the geometry must occur,

including the formation of black holes and probably more exotic objects such as wormholes.35

Such wild variations in geometry were first dubbed spacetime foam by J. A. Wheeler; the

phrase has become quite popular to express vividly the supposed chaotic nature of geometry

at the Planck scale.36

VII. ENERGY DENSITY OF GRAVITATIONAL FIELD

This argument is based on the uncertainty in the energy density of the gravitational

field, and field fluctuations that correspond to the uncertainty. Algebraically it resembles

somewhat the argument of section VI, but has a different conceptual basis.

We first obtain an expression for the energy density of the gravitational field in Newtonian

theory. Consider assembling a spherical shell of radius R and mass M by moving small

masses from infinity to the surface, as shown in Fig.6. From Newtonian theory the energy

done moving a small mass dM to the surface is

dE = −GMdM/R (28)

and the total energy for the assembly is the integral of this energy over the mass, which is

E = −GM2/2R (29)
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This binding energy may be viewed as energy in the gravitational field, and is negative

because gravity is attractive. To obtain a general expression for the energy density we

assume it is proportional to the square of the gravitational field ~g = −∇φ. That is we set

ρg = λ(∇φ)2 (30)

This is in direct analogy with the energy density of the electric field — except of course

for the opposite sign! The proportionality constant λ can be determined by integrating ρg

in Eq.(30) over the volume between R and infinity in Fig.6 to get the total field energy.

Equating this energy expression with the total binding energy given by Eq.(29) we obtain

λ(4πG2M2/R) = −GM2/2R, λ = −1/8πG (31)

Thus the energy density of the Newtonian gravitational field is written as

ρg = −(∇φ)2/8πG (32)

In general relativity the problem of gravitational field energy is notoriously more subtle

and complex.37 This is due to the nonlinearity of the field equations, which in turn is related

to the fact that gravity carries energy and is thus a source of more gravity. In this sense

gravity differs fundamentally from the electric field, which does not carry charge and thus is

not the source of more electric field. For our present purpose we will content ourselves with

the rough estimate given by Eq.(32).

We now consider a space region of size l that is nominally empty and free of gravity,

except for fluctuations allowed by the energy-time uncertainty relation Eq.(7). As in section

VI we attempt to measure the gravitational energy in the region in time l/c, with accuracy

limited to ∆E ≈ ~c/l. We thus cannot verify that the region is truly free of gravity, but

only that the gravitational energy in the region is no more than about ∆E ≈ ~c/l. From

Eq.(32), this limit implies the following limiting relation for the Newtonian potential field

l3(∇φ)2/8πG ≈ ~c/l (33)

As a rough estimate (∇φ)2 ≈ (∆φ/l)2 , where ∆φ is the uncertainty or fluctuation in the

nominally zero Newtonian potential field, so from Eq.(33) we obtain

∆φ ≈
√
~cG/l (34)
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This fluctuation corresponds roughly to a fractional spacetime distortion given by Eq.(13),

∆l/l ≈ ∆φ/c2 ≈
√
~G/c3/l, ∆l ≈

√
~G/c3 = lp (35)

That is, the allowed nonzero value of the energy density of the gravitational field corresponds

to Newtonian potential fluctuations and thus metric and distance fluctuations; the distance

fluctuations are, once again, about the Planck length.

VIII. EQUALITY OF GRAVITY AND ELECTRIC FORCES

Our final argument characterizes the Planck scale in terms of the mass or energy at

which gravitational effects become comparable to electromagnetic effects and thus cannot

be ignored in particle theory. The argument is simple to remember and provides a good

mnemonic for quickly deriving the Planck mass.

In most situations we encounter gravity as an extremely weak force; for example the

gravitational force between electron and proton in a hydrogen atom is roughly 40 orders of

magnitude less than the electric force, and can safely be ignored.3 However if we instead

consider two objects of very large mass M (or rest energy) with the electron charge e, then

the gravitational and electric forces become equal when

GM2

r2
∼=
e2

r2
, M2 ∼=

e2

G
(36)

The dimensionless fine structure constant is defined by α ≡ e2/~c ∼= 1/137, so we may also

express Eq.(36) in terms of the Planck mass as

M2 ∼= α
~c
G

= αM2
p , M

∼=
√
αMp

∼=
Mp

12
(37)

That is equality occurs within a few orders of magnitude of the Planck mass, at least in

terms of Newtonian gravity. We may plausibly infer that such equality also occurs when

charged massive particles scatter at near the Planck energy.38

Quantum electrodynamics (QED), describing the electromagnetic interactions of electrons

and other charged particles, ignores gravitational effects. Clearly this is not reasonable for

energies near the Planck scale. Thus virtual processes described by loop integrals are clearly

not handled correctly since they involve arbitrarily high energies, and indeed most of them

diverge.3,32,33 We may therefore hope that a more comprehensive theory that includes gravity

might be free of such divergences.
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Despite the simplistic nature of this section it does hint at the germ of deep ideas. In

the standard model of particle physics the electromagnetic and weak forces are unified into

the so-called electroweak force, which has been very successful in predicting experimental

results; at low interaction energies the weak and electromagnetic forces differ greatly, but

at an energy above a few thousand GeV they become comparable.38,39 They may be viewed

as different aspects of a single force rather than as fundamentally different forces. Similarly

the strong force is widely believed to become comparable and similarly unified with the

electroweak force in some grand unified theory or GUT at energies of about 1016GeV , only

a few orders of magnitude below the Planck energy.39 Quite roughly speaking then, all the

fundamental forces of nature are believed to become comparable near the Planck scale.

IX. SUMMARY AND FURTHER COMMENTS

We have tried to show that the Planck scale represents a boundary when we attempt to

apply our present ideas of quantum theory, gravity, and spacetime on a small scale. To go

beyond that boundary, new ideas are clearly needed.

There is much speculation by theorists on such new ideas. Here we will only mention

three (of many) such efforts very superficially, and refer the reader to references 4 to 7. The

first effort involves perturbative quantum gravity, studied for many years by many authors,

notably by Feynman and Weinberg; in perturbative quantum gravity the flat space of special

relativity is taken to be a close approximation to the correct geometry, and deviations

from it are treated in the same way as more ordinary fields such as electromagnetism.

Just as in quantum electrodynamics Feynman diagrams may be derived to describe the

interactions between particles and the quanta of the gravitational field, called gravitons.

The theory has the serious technical drawback that it does not renormalize in the same

way as quantum electrodynamics, and in fact contains an infinite number of parameters and

graviton interactions. Even more importantly it does not truly address the quantum nature

of spacetime. The second and best-known effort involves super-string theory, or simply

string theory, in which the point particles assumed in quantum field theories are replaced

by one-dimensional strings of about Planck size. String theory purports to describe all

particles and interactions, and has been studied intensively for decades, and is consistent with

gravitational theory since it accommodates a particle with the properties of the graviton, that
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is zero mass and spin 2. As yet however there is no experimental or observational evidence

that its basic premise is correct. The third effort, which we may call affine loop gravity,

recasts the mathematics of general relativity in such a way that the fundamental object is

not the metric but a mathematical object called an affine connection, which is analogous to

the gauge potentials describing other non-gravitational fields, such as the vector potential

of the electromagnetic field. In affine loop gravity areas and volumes are indeed quantized,

and the theory has other attractive features.

Various authors6 visualize spacetime as a boiling quantum foam of strange geometries

such as virtual black holes and wormholes, or as a dense bundle of 6 dimensional Calabi-Yau

manifords, or as a subspace of a more fundamental 10 or 11 dimensional space, or as a lower

dimensional holographic projection, or as the eigenvalue space of quantum operators, or as a

spin network, or as a woven quantum fabric etc. etc. But despite intense effort over decades

none of the many speculative ideas and theories has yet reached a high level of success or

general acceptance, and we remain free to consider many possibilities.

Perhaps the oddest possibility is that spacetime at the Planck scale is not truly observable

and may thus be an extraneous and sterile concept, much as the luminous ether of the

nineteenth century proved to be extraneous after the advent of relativity and spacetime —

thus obviating decades of theoretical speculation.3 At present it is certainly not clear what

might replace our present concept of spacetime at the Planck scale.
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FIG. 1: Fig.1. Left: a particle is illuminated from below by light of wavelength λ, which scatters

into the microscope whose objective lens subtends an angle of 2ϕ. Right: the particle nature of

the scattering is emphasized, with an effective separation ref shown.

FIG. 2: The position uncertainty due to the standard UP and the additional gravitational effect

embodied in the GUP. The minimum uncertainty occurs at about twice the Planck length.

FIG. 3: A light pulse is sent from A and reflected back from B. Its energy causes a distortion of

the spacetime between A and B and hence affects the length l.
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FIG. 4: Shrinking of a volume containing mass M is limited by gravitational collapse to a black

hole in the top figure, and by the creation of particle anti-particle pairs in the lower figure.

FIG. 5: A region of space of size l to be measured in time l/c. As the size approaches the Planck

length there can occur wild variations in the geometry, including such things as black holes and

wormholes.

FIG. 6: Potential energy of many small dM elements reappears as energy density ρg of the gravi-

tational field.
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