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During the last decade, various modified theories of gravity have become very

popular, f(R) gravity theory probably being the most studied one.1,2 Although most

models that are in agreement with observations are very close to general relativity,

we have developed a much deeper understanding of the theory we wanted to mod-

ify. During the year 2009 it was Hořava-Lifshitz gravity3,4 that excited the scientific

community with a new paper appearing on the subject area every other day. Hořava

proposed a power counting renormalizable theory for (3+1)-dimensional quantum

gravity, which reduces to Einstein gravity with a non-vanishing cosmological con-

stant in IR, but possesses improved UV behaviors.

In this work, we explore the stability of the Einstein static universe in such

modified theories of gravity, for this study in general relativity see.5 This can be

motivated from various points of view. From a cosmological viewpoint it is the pos-

sibility that the universe might have started out in an asymptotically Einstein static

state, in the inflationary universe context.6 On the other hand, the Einstein cosmos

has always been of great interest in various gravitational theories. In general rela-

tivity for instance, generalizations with non-constant pressure have been analyzed

in.7,8 In the context of brane world models the Einstein static universe was investi-

gated in,9 while its generalization within Einstein-Cartan theory can be found in.10

Finally, in the context of loop quantum cosmology, we refer the reader to.11,12 For

the Einstein static universe in modified Gauss-Bonnet gravity, see.13 Finally, stabil-

ity of the Einstein static universe in Hořava-Lifshitz gravity was analyzed in.14,15

By analyzing a simple background model and its perturbations one can study

many properties of the modified theory in a rather explicit fashion. Let us give
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one example to elucidate this point. When f(R) gravity became popular, it was

believed that modifications of general relativity cannot stabilize solutions. However,

as we showed explicitly in,16 this is not true and one can construct situations where

the Einstein static universe, for instance, is stable with respect to a homogeneous

perturbation. As we further showed,17 this result in fact holds for all non-degenerate

f(R) (f ′′(R) 6= 0 etc) theories, see also.18 Generic stability results in f(R) gravity

have been know since 1983.19

The mathematics required to perform these investigations is straightforward and

well understood, namely linear perturbation theory. The principal idea is to express

all quantities ui(x) in the form

ui(x) = ui
bg(x) + ε ui

1(x) + ε2 ui
2(x) + . . . , (1)

where the ui
bg(x) describe a known exact solution of the field equations. It should

be noted that there are situations where knowledge of ui
bg(x) is not even necessary

to solve to perturbed equations. In case of the Einstein static universe x would be

the cosmological time t, ui(x) = {a(t), ρ(t), p(t)}, with a(t), ρ(t) and p(t) being

the scale factor, the energy density and the pressure respectively. The background

solution would be a static solution of the field equations which effectively reduce

to algebraic equations that determine the background values. In general, we can

assume the field equations to take the form

F i(ui,∇αu
i, . . . ,∇α∇β∇γ∇δu

i) = 0. (2)

Here we restrict ourselves to theories which contain up to four derivatives. We

also assume that the number of field equations matches the numbers of unknown

functions, we exclude over-determined and under-determined systems. Notice that

the field equations sourced by a perfect fluid are under-determined as long as no

equation of state is assumed. Therefore, we consider a perfect fluid (no anisotropic

stresses) with a linear barotropic equation of state, pbg(ρbg) = wρbg. Now, if p(ρ) =

wρ is also assumed to hold at perturbative level then the sound speed of adiabatic

pressure perturbations is given as c2s = w. Note that it would be interesting to

investigate the situation when this assumption is dropped, c2s 6= w.

The approach described covers usual General Relativity and thus the entire field

of cosmological perturbation theory, f(R) gravity, modified Gauss-Bonnet gravity,

or f(G) gravity, and also Hořava-Lifshitz gravity. Note that the above treatment

is sufficiently general to also include brane world models which pose additional

technical challenges.20,21

In order to investigate the behavior of the perturbation, one now inserts Eq. (1)

into the field equations (2) and linearizes the equations with respect to ε (Taylor

expansion about ε = 0). In full generality, the field equations then become

F i(ui
bg,∇αu

i
bg, . . . ,∇α∇β∇γ∇δu

i
bg)

+ ε

(

∂F i

∂ui

)

bg

ui
1 + . . .+ ε

(

∂F i

∂∇α∇β∇γ∇δui

)

bg

∇α∇β∇γ∇δu
i
1 +O(ε2) = 0. (3)
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Those equations are now linear in the perturbed variables. In Gauss-Bonnet gravity,

for example, this equation takes the simple form

24κ3ρ2bg(1 + w)2f ′′(0) a′′′′1 (t) + 2a′′1(t)− κρbg(1 + w)(1 + 3w) a1(t) = 0. (4)

In this equation a1 is the perturbed scale factor and f is the function which deter-

mines the modifications of the Gauss-Bonnet term.

In general one finds a set of linear, coupled differential equations. Equations

of this type can always be solved analytically. We can therefore conclude that the

additional degrees of freedom in any modified gravity model lead to enhanced regions

of stability in the parameter space.
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