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Abstract

“Acoustic spacetimes”, in which techniques of differential geometry are
used to investigate sound propagation in moving fluids, have attracted consid-
erable attention over the last few decades. Most of the models currently con-
sidered in the literature are based on non-relativistic barotropic irrotational
fluids, defined in a flat Newtonian background. The extension, first to special
relativistic barotropic fluid flow, and then to general relativistic barotropic
fluid flow in an arbitrary background, is less straightforward than it might at
first appear. In this article we provide a pedagogical and simple derivation of
the general relativistic “acoustic spacetime” in an arbitrary (d+1) dimensional
curved-space background.
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1 Introduction

In this article we shall present a simple and pedagogical derivation of the general
relativistic version of the “acoustic metric” defined on an arbitrary curved (d + 1)
dimensional background spacetime. While there are related observations and more
limited derivations extant in the literature, we feel that the current analysis has
some definite advantages. For instance, the early 1980 analysis due to Moncrief is
restricted to perturbations of a spherically symmetric fluid flow on a Schwarzschild
background [1], and in the more recent 1999 derivation due to Bilic [2] it can be
somewhat difficult to discern what is truly fundamental input from what is derived
output. Since scientific interest in this field is both significant and ongoing [3, 4, 5],
we feel it useful to carefully lay out the minimal set of assumptions and logic flow
behind the derivation.
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Our strategy is as follows:

• We shall first motivate the result (up to a conformal factor) by considering the
acoustic version of the Gordon metric, which was introduced for geometrical
optics in 1923 [6].

• We shall then carefully specify what is meant by “irrotational flow” in a general
relativistic context, introducing the appropriate notion of velocity potential.

• From the relativistic Euler equation, using only the irrotational condition and
the barotropic condition, we will derive the relativistic Bernoulli equation.

• From the relativistic energy equation, using only the barotropic condition, (that
is, without using the irrotational condition), we shall derive a flux conservation
law (continuity equation).

• We shall delay the introduction of thermodynamic arguments as long as practi-
cable. (We would argue that thermodynamics is in fact a side issue not central
to the derivation.)

• As usual, the acoustic metric follows from combining the linearized Bernoulli
equation and linearized equation of state with the linearized continuity equa-
tion.

• We shall carefully explain the subtleties involved in taking the non-relativistic
limit.

• We shall finish with some discussion, and relegate several thermodynamic ob-
servations to the appendices.

The key result that we shall be aiming for is this: the (contravariant) acoustic metric
governing acoustic perturbations of an irrotational barotropic fluid flow in (d + 1)
dimensions is

Gab =

(

n2
0 c

−1
s

̺0 + p0

)

−2/(d−1) {

−c2

c2s
V a
0 V b

0 + hab

}

. (1)

In counterpoint, the (covariant) acoustic metric in (d+ 1) dimensions is

Gab =

(

n2
0 c

−1
s

̺0 + p0

)2/(d−1) {

−c2s
c2

[V0]a [V0]b + hab

}

. (2)
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Here:

• cs is the speed of sound, defined as usual via c2s = c2 ∂p/∂̺.

• c is the speed of light, used for instance in defining x0 = c t.

• V0 is the dimensionless 4-velocity of the background fluid flow.

• hab = gab + [V0]a[V0]b is the dimensionless orthogonal projection of the physical
spacetime metric gab onto the 3-space perpendicular to the 4-velocity of the
fluid.

• the indices on the background fluid flow [V0]
a are lowered and raised using the

physical spacetime metric gab and its inverse gab.

• in contrast Gab and Gab are defined to be matrix inverses of each other; these
indices are not to be raised and lowered with the physical spacetime metric.

• n0 is the background number density of fluid particles.

• ̺0 is the background energy density of the fluid.

• p0 is the background pressure of the fluid.

This key result is easy to motivate (but not derive) in the limit of “ray acoustics”,
also known as “geometric acoustics”, where we can safely ignore the wave properties
of sound. In this limit we are interested only in the “sound cones”. Let us pick a
point in spacetime where the background fluid 4-velocity is V a

0 . Now adopt Gaussian
normal coordinates, and go to the local rest frame of the fluid. Then taking x0 = ct
we have

[V0]
a → (1; 0, 0, 0), (3)

and

gab →









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









; hab = gab + [V0]a [V0]b →









0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (4)

In the rest frame of the fluid the sound cones are (locally) given by

− c2s dt
2 + ||d~x||2 = 0, (5)
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which we can rewrite as

− c2s
c2

(c dt)2 + ||d~x||2 = −c2s
c2

(dx0)2 + ||d~x||2 = 0, (6)

implying in these special coordinates the existence of an acoustic metric

Gab ∝









−c2s/c
2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1









. (7)

That is, transforming back to arbitrary coordinates:

Gab ∝ −c2s
c2

[V0]a [V0]b + hab. (8)

We now rewrite this as

Gab ∝ −c2s
c2
[V0]a [V0]b + {gab + [V0]a [V0]b} ∝ gab +

{

1− c2s
c2

}

[V0]a [V0]b. (9)

Note that this is essentially a generalization of the derivation (dating back to 1923) of
the so-called “Gordon metric” [6] used in ray optics to describe the “optical metric”
appropriate to a (possibly) relativistic fluid with position-dependent refractive index
n(t, ~x). In Gaussian normal coordinates comoving with the fluid the Gordon metric
is given by

Gab ∝









−1/n2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (10)

That is, transforming back to arbitrary coordinates:

Gab ∝ − 1

n2
[V0]a [V0]b + {gab + [V0]a [V0]b} ∝ gab +

{

1− 1

n2

}

[V0]a [V0]b. (11)

Note that in either the ray acoustics or ray optics limits, because one only has
the sound cones or light cones to work with, one can neither derive nor is it even
meaningful to specify the overall conformal factor [3, 8, 9]. The calculation presented
below is designed to go beyond the ray acoustics limit, to obtain a relativistic wave
equation suitable for describing physical acoustics — all the “fuss” is simply over
how to determine the overall conformal factor (and to verify that one truly does
obtain a d’Alembertian equation using the conformally fixed acoustic metric).
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2 Basic general relativistic fluid mechanics

In this Section we consider fully relativistic barotropic inviscid irrotational flow on an
arbitrary general relativistic background, and derive the relevant wave equation for
linearized fluctuations. We already know exactly what happens in the non-relativistic
case [3, 7, 8, 9]. We go straight to curved spacetime relativistic fluid mechanics, where
the geometry is described by a metric tensor gab(x) of signature − + ++, [or more
generally −(+)d], and the fluid is described by the energy density ̺, pressure p, and
4-velocity V a where

gabV
aV b = −1. (12)

The two relevant fluid dynamical equations are extremely well-known (see, for in-
stance, Hawking and Ellis [10]).

Relativistic energy equation:

∇a(̺V
a) + p(∇aV

a) = 0. (13)

Relativistic Euler equation:

(̺+ p)V b∇bV
a = −(gab + V aV b)∇bp. (14)

These equations can be combined into the single statement that the stress-energy
tensor is covariantly conserved (see, for instance, Hawking and Ellis [10])

∇a

[

(̺+ p)V aV b + pgab
]

= 0. (15)

Note the subtle (perhaps not so subtle) differences from the non-relativistic case: ̺
is now energy density, not mass density ρ, and the continuity equation looks different
— at least at this stage of the calculation it has been replaced by an “energy con-
servation” equation, and the Euler equation now contains the combination (̺ + p).
The 4-acceleration of the fluid is

Aa = V b∇bV
a, such that Aa Va = 0. (16)

2.1 Defining relativistic irrotational flow

What do we mean by irrotational flow in a relativistic setting? Construct the 1-form

v = Va dx
a, (17)
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and consider the 2-form ω2 and 3-form t3:

ω2 = dv; t3 = v ∧ ω2. (18)

In a relativistic context, setting the 2-form ω2 = 0 is too strong a condition, setting
the 3-form t3 = 0 is just right. (See, for instance, Hawking and Ellis [10].) Indeed,
adopting Gaussian normal coordinates and going to the local rest frame of the fluid,
where V a → (1; 0, 0, 0), setting t3 = 0 implies ∂[ivj] = 0, so the spatial components of
the flow velocity are locally irrotational (in the sense of being curl-free). But t3 = 0
implies (via the Frobenius theorem) that locally there exist functions α and Θ such
that

v = α dΘ; V a = α gab ∇bΘ. (19)

But then, from the normalization condition for the 4-velocity

V a =
gab ∇bΘ

√

−gab ∇aΘ ∇bΘ
. (20)

We shall find it extremely useful to define

||∇Θ||2 = −gab ∇aΘ ∇bΘ (21)

so that

V a =
gab ∇bΘ

||∇Θ|| . (22)

This is the relativistic condition for irrotational flow. The function Θ can now be
interpreted as the general relativistic version of the velocity potential. Note that for
any smooth function F (·) we can replace Θ ↔ F (Θ) without affecting the 4-velocity
V a — both numerator and denominator above pick up factors of F ′(Θ) which then
cancel. This freedom in choosing the scalar potential, Θ, will be very useful when
analyzing the Euler equation, and will allow us to obtain a relativistic Bernoulli
equation.

For the discussion below define the projection operator

hab = gab + V a V b. (23)

Using this projection operator, and the 4-orthogonality of 4-velocity with 4-acceleration,
it is easy (for relativistic irrotational flow) to calculate

∇bVa = (δa
c + VaV

c)
∇c∇bΘ

||∇Θ|| . (24)
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Therefore, for relativistic irrotational flow, the 4-acceleration reduces to

Aa = V b∇bVa = −1

2
(δa

c + VaV
c)
∇c(−gde∇dΘ∇eΘ)

−gab ∇aΘ ∇bΘ
, (25)

so that
Aa = −(gab + V aV b)∇b (log ||∇Θ||). (26)

Note that automatically AaVa = 0, as required. Furthermore, note that the 4-
acceleration is the projection of the gradient of a scalar, and that Θ can be chosen
to have the dimensions of a distance so that ∇Θ is dimensionless.

2.2 From Euler equation to Bernoulli equation

The Euler equation for relativistic irrotational flow now reads

(gab + V aV b) ∇b (log ||∇Θ||) = (gab + V aV b)
∇bp

̺+ p
. (27)

We now make use of the barotropic condition ̺ = ̺(p) to obtain

∇bp

̺+ p
= ∇b

∫ p

0

dp

̺(p) + p
, (28)

so the Euler equation becomes

(gab + V aV b)∇b

(

− log ||∇Θ||+
∫ p

0

dp

̺(p) + p

)

= 0. (29)

Note that for any arbitrary function f(Θ) we have

(gab + V aV b)∇bf(Θ) = 0, (30)

(since the projection operator kills the gradient). Therefore (using both the irrota-
tional and barotropic conditions) we can integrate the Euler equation to yield:

− log ||∇Θ||+
∫ p

0

dp

̺(p) + p
+ f(Θ) = constant. (31)

where f(Θ) is (at this stage) an arbitrary “function of integration”. This is our
preliminary version of the general relativistic Bernoulli equation. To see how we
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might further simplify this result, recall (see for example [3, 8, 9]) that for non-
relativistic irrotational inviscid barotropic flow the non-relativistic Bernoulli equation
is

Θ̇ +
1

2
(∇Θ)2 +

∫ p

0

dp

ρ(p)
+ f(t) = constant. (32)

(In the non-relativistic case ρ is the mass density.) Now, in the non-relativistic case
we can always redefine

Θ → Θ+

∫

f(t)dt, (33)

and use this transformation to eliminate f(t) — so we can without loss of generality
write

Θ̇ +
1

2
(∇Θ)2 +

∫ p

0

dp

̺(p)
= constant. (34)

In the relativistic case we now note:

− log ||∇Θ||+ f(Θ) = − log(e−f(Θ) ||∇Θ||) = − log ||∇F (Θ)||. (35)

That is, in the relativistic case, by making the transformation

Θ → F (Θ) =

∫ Θ

0

e−f(Θ̄) dΘ̄, (36)

we can (without changing V a) absorb the arbitrary function f(·) into a redefinition
of Θ, and so write

− log ||∇Θ||+
∫ p

0

dp

̺(p) + p
= constant. (37)

Finally, without loss of generality we can rescale Θ to set the constant appearing
above to zero and so obtain:

log ||∇Θ|| =
∫ p

0

dp

̺(p) + p
. (38)

This is our final form for the general relativistic Bernoulli equation. Note that
there is no longer any freedom left in choosing Θ, we have now used it all up. It
is relatively common to exponentiate the above and rewrite the general relativistic
Bernoulli equation as

||∇Θ|| = exp

(
∫ p

0

dp

̺(p) + p

)

. (39)

For the sake of pedagogical development of the argument we have not yet rewritten
the integral on the RHS in terms of other thermodymamic variables; we prefer to
delay this for now.
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2.3 From energy equation to flux conservation

The energy conservation equation is

∇a(̺V
a) + p(∇aV

a) = 0, (40)

which becomes
V a∇a̺+ (̺+ p)(∇aV

a) = 0, (41)

or

V a ∇a̺

̺+ p
+ (∇aV

a) = 0. (42)

Using the barotropic condition ̺ = ̺(p), (but note, now without using the irrotational
condition), this can be written as

V a∇a

[

∫ ̺

̺(p=0)

d̺

̺+ p(̺)

]

+ (∇aV
a) = 0, (43)

which implies

V a∇a

{

exp

[

∫ ̺

̺(p=0)

d̺

̺+ p(̺)

]}

+ exp

[

∫ ̺

̺(p=0)

d̺

̺+ p(̺)

]

(∇aV
a) = 0. (44)

This can now be rewritten as a continuity equation (flux conservation equation):

∇a

{

exp

[

∫ ̺

̺(p=0)

d̺

̺+ p(̺)

]

V a

}

= 0. (45)

This is now a “standard form” zero-divergence continuity equation — note this the
ability to derive this transformed form of the energy equation depends only on the
barotropic assumption. Also note that we have not yet needed to even introduce,
let alone discuss in any detail, the particle number density n, nor introduce any
thermodynamic arguments.

2.4 Introducing the number density

Subject only to the barotropic condition, we have just derived the flux conservation
equation given immediately above. We now suppose the barotropic fluid contains
some type of conserved “tracker” particles. For example, one might be interested
in counting baryons, Fe56 nuclei, or leptons. We now explicitly assume translation
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invariant and time invariant composition of the fluid. (That is, we assert that the
equation of state is the same throughout the fluid; in other words there is no ex-
plicit time or position dependence in the equation of state.) Therefore the ratios
of these tracker particle densities must be translation and time invariant constants.
Furthermore since these “tracker particles” are all assumed to be conserved

∇a {ni V
a} = 0, (46)

while, since the fluid is assumed to be barotropic, there must be functions of pressure
p and energy density ̺ such that

ni = ni(p) = ni(̺). (47)

But the only way to satisfy all these constraints is if

ni(p) = ni (p=0) exp

[

∫ ̺(p)

̺(p=0)

d̺

̺+ p(̺)

]

. (48)

In particular for the total particle density we have

n(p) = n(p=0) exp

[

∫ ̺(p)

̺(p=0)

d̺

̺+ p(̺)

]

. (49)

This observation is extremely convenient in that allows us to physically interpret the
quantity

exp

[

∫ ̺(p)

̺(p=0)

d̺

̺+ p(̺)

]

=
n(p)

n(p=0)

=
ni(p)

ni(p=0)

(50)

as being proportional to the number density of constituents making up the fluid. (If
one wishes to take an extreme point of view and eschew all thermodyamic arguments
completely, one could simply take this equation as the definition of a “shorthand
symbol” n(p), and ignore the physical interpretation of n(p) as particle number
density.) In terms of the number density the conservation equation now simply
reads

∇a {n V a} = 0. (51)

Furthermore, note that using these results we can rewrite the relativistic Bernoulli
equation (39) as

log ||∇Θ|| =

∫ p

0

dp

̺(p) + p
=

∫ p

0

d[̺(p) + p]

̺(p) + p
−
∫ ̺

̺(p=0)

d̺

̺+ p(̺)
(52)

= log

[

̺(p) + p

̺(p=0)

]

− log

[

n(p)

n(p=0)

]

= log

[

[̺(p) + p]n(p=0)

n(p) ̺(p=0)

]

. (53)
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That is

||∇Θ|| = [̺(p) + p]n(p=0)

n(p) ̺(p=0)
. (54)

3 Linearization

Let us now write
Θ = Θ0 + ǫΘ1 + . . . , (55)

which in particular implies that

V = V0 + ǫ V1 + . . . , (56)

and further assert
̺ = ̺0 + ǫ ̺1 + . . . , (57)

p = p0 + ǫ p1 + . . . . (58)

Using these relations we now linearize the fluid equations around some assumed
background flow. (Note that both the background fluid flow (V0, ̺0, p0), and the
linearized fluctuations, satisfy the Bernoulli and energy conservation equations.) In
a wider context, extending far beyond fluid dynamics, we mention that it is quite
common for linearized fluctuations around an appropriately defined background to
exhibit an “effective spacetime” behaviour [3, 11, 12].

3.1 Linearized continuity equation

From the continuity equation we see

∇a

{

exp

[

∫ ̺0+ǫ̺1+...

̺(p=0)

d̺

̺+ p(̺)

]

[V a
0 + ǫV a

1 + . . . ]

}

= 0. (59)

Then to first order in ǫ

∇a

{

exp

[
∫ ̺0

̺(p=0)

d̺

̺+ p(̺)

] (

̺1
̺0 + p0

V a
0 + V a

1

)}

= 0. (60)

Using the number density we can rewrite this as

∇a

{

n(p0)

(

̺1
̺0 + p0

V a
0 + V a

1

)}

= 0. (61)
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3.2 Linearized irrotational flow

Perturbing the 4-velocity for relativistic irrotational flow yields

V0 + ǫV1 + · · · = gab ∇b(Θ0 + ǫΘ1 + . . . )
√

−gab ∇a(Θ0 + ǫΘ1 + . . . ) ∇b(Θ0 + ǫΘ1 + . . . )
. (62)

Then expanding to first order in ǫ we see

V a
1 =

(gab + V a
0 V

b
0 ) ∇bΘ1

||∇Θ0||
. (63)

Now use the relativistic Bernoulli equation to write

V a
1 = (gab + V a

0 V
b
0 ) ∇bΘ1 exp

(

−
∫ p0

0

dp

̺(p) + p

)

. (64)

Alternatively

V a
1 =

n0 ̺(p=0)

[̺0 + p0] n(p=0)

(gab + V a
0 V

b
0 ) ∇bΘ1. (65)

Note that we automatically have

gabV
a
1 V

b
0 = 0, (66)

as required by the normalization condition, gabV
aV b = −1, for V a.

3.3 Linearized equation of state

Linearizing the equation of state we see

p0 + ǫp1 + · · · = p(̺0 + ǫ̺1 + . . . ), (67)

that is

p1 =
dp

d̺

∣

∣

∣

∣

̺0

̺1, (68)

which we use to define what we shall soon enough see is the speed of sound

p1 =
c2s
c2

̺1. (69)
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3.4 Linearized Euler (Bernoulli) equation

Linearizing the Bernoulli equation requires us to consider

1

2
log
[

−gcd ∇c(Θ0 + ǫΘ1 + . . . ) ∇d(Θ0 + ǫΘ1 + . . . )
]

=

∫ (p0+ǫp1+... )

0

dp

̺(p) + p
. (70)

Then to first order in ǫ
−gcd∇cΘ1∇dΘ0

−gcd∇cΘ0∇dΘ0

=
p1

̺0 + p0
. (71)

That is, using the linearized equation of state,

− V a
0 ∇aΘ1

||∇Θ0||
=

c2s
c2

̺1
̺0 + p0

, (72)

which we can rearrange to

̺1 = −(̺0 + p0)
c2

c2s

V a
0 ∇aΘ1

||∇Θ0||
. (73)

That is, now using the general relativistic Bernoulli equation,

̺1 = −(̺0 + p0)
c2

c2s
exp

(

−
∫ p0

0

dp

̺(p) + p

)

V a
0 ∇aΘ1. (74)

Finally, using the number density we can rewrite this as

̺1 = − n0 c
2

n(p=0) c2s
̺(p=0) V a

0 ∇aΘ1. (75)

3.5 Deriving the d’Alembertian equation

Now combine these results: insert the linearized Euler (Bernoulli) equation (75),
and the linearized irrotational condition (65), into the linearized continuity equation
(61). We obtain

∇a

{

− n2
0 c

2 ̺(p=0)

n(p=0) c2s (̺0 + p0)
V a
0 V

b
0∇bΘ1 +

n2
0 ̺(p=0)

n(p=0) (̺0 + p0)
(gab + V a

0 V
b
0 ) ∇bΘ1

}

= 0.

(76)
But of course ̺(p=0) and n(p=0) are irrelevant position-independent constants, so we
can just as easily write

∇a

{

− c2 n2
0

c2s (̺0 + p0)
V a
0 V

b
0∇bΘ1 +

n2
0

(̺0 + p0)
(gab + V a

0 V
b
0 ) ∇bΘ1

}

= 0. (77)
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Introducing the projection tensor hab = gab + V a
0 V

b
0 , and factorizing, this becomes

∇a

{

n2
0

̺0 + p0

[

−c2

c2s
V a
0 V

b
0 + hab

]

∇bΘ1

}

= 0. (78)

This is in fact exactly the result we want — a d’Alembertian equation for the per-
turbation in the velocity potential Θ.

• After some trivial notational changes, this agrees (where the formalisms over-
lap), with both the observations of Moncrief [1], and with the presentation of
Bilic [2], but the present exposition gives much more attention to the underly-
ing details and makes only a bare minimum of technical assumptions.

• Note that everything so far is really dimension-independent, and that we can
now read off the acoustic metric simply by setting

√
−G Gab =

n2
0

̺0 + p0

[

−c2

c2s
V a
0 V

b
0 + hab

]

. (79)

The dimension-dependence now comes from solving this equation for Gab.

4 The general relativistic acoustic metric

From the dimension-independent result above we have, in (d+1) dimensions,

(−1)(d+1)/2 G(d+1)/2−1 = −c2

c2s

(

n2
0

̺0 + p0

)(d+1)

, (80)

whence

(−G)(d+1)/2−1 =
c2

c2s

(

n2
0

̺0 + p0

)(d+1)

, (81)

Dropping an irrelevant overall constant factor of c−2/(d−1), we finally have the (con-
travariant) acoustic metric

Gab =

(

n2
0 c

−1
s

̺0 + p0

)

−2/(d−1) {

−c2

c2s
V a
0 V

b
0 + hab

}

, (82)

and (covariant) acoustic metric

Gab =

(

n2
0 c

−1
s

̺0 + p0

)2/(d−1) {

−c2s
c2

[V0]a[V0]b + hab

}

. (83)
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If one wishes to go to the extra trouble of making the acoustic metric dimensionless
it is easy to re-insert appropriate position-independent constants in the conformal
factor and obtain

Gab =

(

n2
0 ̺(p=0) c

n2
(p=0) (̺0 + p0) cs

)

−2/(d−1)
{

−c2

c2s
V a
0 V

b
0 + hab

}

, (84)

and

Gab =

(

n2
0 ̺(p=0) c

n2
(p=0) (̺0 + p0) cs

)2/(d−1)
{

−c2s
c2

[V0]a[V0]b + hab

}

. (85)

Of course these extra position-independent constants in the conformal factor carry
no useful information and are commonly suppressed.

5 The non-relativistic limit

Compare this general relativistic acoustic metric with the non-relativistic limit,
where the coordinates are most conveniently taken to be xa = (t; xi) and where
the d’Alembertian equation reduces to [3, 8, 9]

∇a

{

ρ0

[

− 1

c2s
V a
0 V

b
0 + hab

]

∇bΘ1

}

= 0, (86)

with ρ0 6= ̺0 now being the non-relativistic mass density, (not the relativistic energy
density), and the meanings of V0 and h are suitably adjusted. In the non-relativistic
case

V a
0 = (1; vi); hab =

[

0 0

0 δij

]

, (87)

and independent of dimensionality we have

√
−G Gab = ρ0

[

− 1

c2s
V a
0 V

b
0 + hab

]

, (88)

implying

Gab =

(

ρ0
cs

)

−2/(d−1) {

− 1

c2s
V a
0 V

b
0 + hab

}

, (89)

which can be inverted to yield

Gab =

(

ρ0
cs

)2/(d−1)
[

−(c2s − v2) −vj

−vi δij

]

. (90)
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To see how and under what situations the general relativistic acoustic metric
reduces to this non-relativistic acoustic metric first consider the conformal factor:
In the non-relativistic limit p0 ≪ ̺0 and ̺0 ≈ m̄ n0, where m̄ is the average mass
of the particles making up to fluid (which by the barotropic assumption is a time-
independent and position-independent constant). So in the non-relativistic limit we
recover the standard result for the conformal factor [3, 7, 8, 9]

n2
0 c

−1
s

̺0 + p0
→ n0

m̄cs
=

1

m̄2

ρ0
cs

∝ ρ0
cs
. (91)

To now probe the tensor structure of the non-relativistic limit, let us recall that:

• c is the speed of light.

• cs is the speed of sound.

• v is the three-velocity of the fluid.

Take conventions so that the physical spacetime metric and four-velocity are both
dimensionless. In particular, the coordinates are chosen to be xa = (c t; xi). Now
adopting Gaussian normal coordinates at the point of interest

gab = ηab =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (92)

For the four-velocity we in general have

V a
0 = γ

(

1; vi/c
)

; [V0]a = γ
(

−1; vi/c
)

. (93)

Remember that dx0 = c dt, and note that the γ factor is defined using c the physical
speed of light.

Now let us take the nonrelativistic limit. Ignoring the conformal factor, which
comes along for the ride, we have

Gab ∝
[

gab +

(

1− c2s
c2

)

[V0]a[V0]b

]

. (94)

• Then for the time-time component of the acoustic metric

G00 ∝
[

−1 +

(

1− c2s
c2

)

γ2

]

. (95)
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This implies

G00 ∝
[

−c2s − v2

c2
+

O(v4, c2sv
2)

c4

]

. (96)

So as long as both the speed of sound and the 3-velocity of the fluid are small
compared to the speed of light we are justified in approximating

G00 ∝ −c2s − v2

c2
+ . . . . (97)

• In contrast for the time-space components of the acoustic metric

G0i ∝
[(

1− c2s
c2

)

γ2(−1)

(

+vi

c

)]

. (98)

This implies

G0i ∝ −
(

1− O(c2s, v
2)

c2

)

vi

c
. (99)

So as long as both the speed of sound and the 3-velocity of the fluid are small
compared to the speed of light we are justified in approximating

G0i ∝ −vi

c
+ . . . . (100)

• Finally for the space-space components we note

Gij ∝
[

δij +

(

1− c2s
c2

)

γ2 v
i vj

c2

]

. (101)

This implies
Gij ∝

[

δij +O(v2/c2)
]

. (102)

So as long as the 3-velocity of the fluid is small compared to the speed of light
we are justified in approximating

Gij ∝ δij + . . . . (103)

Collecting these results we see that in the nonrelativistic limit

Gab ∝
[

−(c2s − v2)/c2 −vi/c
−vj/c δij

]

+ . . . (104)
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But now we realise that in the present context c is just some convenient fixed con-
version constant from dx0 = c dt to dt, so if we work in terms of the coordinates
(t; xi), which are perhaps more natural in the non-relativistic limit, then

Gab ∝
[

−(c2s − v2) −vi

−vj δij

]

+ . . . (105)

as required. Note that to do all this it is essential that both v and cs are small
compared to c, though there is no constraint on the relative sizes of v and cs.

6 Discussion

Under what conditions are the fully general relativistic derivation of this article
necessary? (The non-relativistic analysis of [3, 7, 8, 9] is after all the basis of the bulk
of the work in “analogue spacetimes”, and is perfectly adequate for many purposes.)
The current analysis will be needed in four separate situations:

• When working in an arbitrary curved relativistic background;
(for example in the problems considered by Moncrief [1], and Bilic [2]).

• Whenever the fluid is flowing at relativistic speeds;
(for example in the problems considered by Moncrief [1], and Bilic [2]).

• Less obviously, whenever the speed of sound is relativistic, even if background
flows are non-relativistic;
(for example a near-equilibrum photon gas where c2s = 1

3
c2 but flow velocities

are all small v ≪ c).

• Even less obviously, when the internal degrees of freedom of the fluid are rel-
ativistic, even if the overall fluid flow and speed of sound are non-relativistic.
(That is, in situations where it is necessary to distinguish the energy density ̺
from the mass density ρ; this typically happens in situations where the fluid is
strongly self coupled — for example in neutron star cores [13] or in relativistic
BECs [4].)

In developing the current derivation, we have tried hard to be clear, explicit, and
minimal — we have introduced only the absolute minimum of formalism that is re-
quires to do the job, and have eschewed unnecessary side issues. We hope that the
formalism will be useful to practitioners in the field of “analogue spacetimes”, partic-
ularly with regard to ongoing and future developments [4, 5]. In particular, even in
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the non-relativistic case it is already known that adding vorticity greatly complicates
the situation [14], and a deeper general relativistic analysis of this situation would be
interesting. Looking further to the future, the “fluid-gravity correspondence” hints at
even deeper connections between curved spacetimes and fluid dynamics [15, 16, 17].
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Appendix: Specific enthalpy and thermodynamic

considerations

We now consider some thermodynamics which for pedagogical purposes we have
delayed as much as possible. Suppose we take the specific enthalpy as primary

w =
̺+ p

n
, (106)

and use the fact that we have already deduced

n = n(p=0) exp

[

∫ ̺

̺(p=0)

d̺

̺+ p(̺)

]

, (107)

to then write

w = exp[log(̺+ p)]n−1 = exp

{
∫

d[̺+ p]

̺+ p

}

exp

[

−
∫ ̺

̺(p=0)

d̺

̺+ p(̺)

]

. (108)

This implies

w =
̺(p=0)

n(p=0)

exp

[
∫ p

0

dp

̺+ p

]

= w(p=0) exp

[
∫ p

0

dp

̺+ p

]

. (109)

This so far is a purely (barotropic) thermodynamic result, independent of any irro-
tational condition.
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A secondary result, now specifically tied to the Bernoulli equation (and hence to
irrotational flow), is that

w = w(p=0) ||∇Θ||. (110)

Note that the way we have presented the derivation we have been able to delay and
avoid the need for thermodynamic arguments as far as possible. (In contrast, this
equation is the starting point adopted by Bilic in his derivation of relativistic acoustic
geometry [2], what for us is a peripheral result has in that analysis moved to centre
stage — and gives we feel far too central a role to thermodynamic issues.)

In a similar vein, the energy equation

∇a(̺V
a) + p(∇aV

a) = 0, (111)

can be combined with the conservation equation

∇a(nV
a) = 0, (112)

as follows:

∇aV
a = − 1

̺+ p
V a∇a̺ = − 1

̺+ p

d̺

dτ
, (113)

∇aV
a = −1

n
V a∇an = −1

n

dn

dτ
, (114)

where d/dτ now refers to a material derivative along the flow. Eliminating the
divergence we have

1

̺+ p

d̺

dτ
=

1

n

dn

dτ
. (115)

More formally, by invoking the barotropic condition we see that for any “fluid ele-
ment” (i.e., tiny lump of fluid) we have

d̺

̺+ p
=

dn

n
, (116)

which can be rearranged as

d(̺/n) = −p d(1/n). (117)

In terms of V, the “specific volume” of a fluid element, we have V ∝ 1/n and so

d(̺ V) = −p dV, (118)

which connects back to basic thermodynamics and again clearly verifies that in a
relativistic setting ̺ is the energy density, while n is the number density.
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