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Abstract

The late time evolution of Friedmann-Robertson-Walker (FRW) models

with a perfect fluid matter source is studied in the conformal frame of f (R)

gravity. We assume that the corresponding scalar field, nonminimally coupled

to matter, has an arbitrary non-negative potential function V (φ). We prove

that equilibria corresponding to non-negative local minima for V are asymp-

totically stable. We investigate all cases where one of the matter components

eventually dominates. The results are valid for a large class of non-negative

potentials without any particular assumptions about the behavior of the po-

tential at infinity. In particular for a nondegenerate minimum of the potential

with zero critical value we show that if γ, the parameter of the equation of

state is larger than one, then there is a transfer of energy from the fluid to

the scalar field and the later eventually dominates.

1 Introduction

The standard inflationary idea requires that there be a period of slow-roll evolution

of a scalar field (the inflaton) during which its potential energy drives the universe

∗Talk given in “The Invisible Universe”, June 29 - July 3, 2009, Paris.
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in a quasi-exponential expansion. Besides a cosmological constant, a massive scalar

field (quintessence) provides the simplest mechanism to obtain accelerated expansion

of the universe within General Relativity. Therefore, scalar fields play a prominent

role in the construction of cosmological scenarios aiming to describe the evolution

of the early and the present universe. Since the nature of the scalar field supposed

to cause accelerated expansion is unknown, it is important to investigate the gen-

eral properties shared by all FRW models with a scalar field irrespectively of the

particular choice of the potential.

In this paper we study the late time evolution of initially expanding flat and

negatively curved FRW models with a scalar field having an arbitrary bounded

from below potential function V (φ). The scalar field is nonminimally coupled to

ordinary matter described by a barotropic fluid with equation of state

p = (γ − 1)ρ, 0 < γ ≤ 2.

The corresponding case of initially contracting models was studied in [1]. Nonmin-

imally coupling occurs for example, in string theory [2], in scalar-tensor theories of

gravity [3], in higher order gravity (HOG) theories [4] and in models of chameleon

gravity [5]. In particular, for HOG theories derived from Lagrangians of the form

L = f (R)
√−g + 2Lm (Ψ) , (1)

it is well known that under a suitable conformal transformation the field equations

reduce to the Einstein field equations with a scalar field φ as an additional matter

source.

The conformal equivalence can be formally obtained by conformally transforming

the Lagrangian (1) and the resulting action becomes [6],

S̃ =

∫
d4x

√
−g̃

{
R̃−

[
(∂φ)2 + 2V (φ)

]
+ 2e−2

√
2/3φLm

(
e−

√
2/3φg̃,Ψ

)}
.

Variation of S̃ with respect to g̃ yields the field equations,

G̃µν = Tµν (g̃, φ) + T̃µν (g̃,Ψ) , (2)

and variation of S̃ with respect to φ yields the equation of motion of the scalar field,

�̃φ− dV

dφ
=

1√
6
e−2

√
2/3φT µ

µ (g̃,Ψ) . (3)

Note that the Bianchi identities imply that

∇̃µT̃µν (g̃,Ψ) 6= 0, ∇̃µTµν (g̃, φ) 6= 0,

and therefore there is an energy exchange between the scalar field and ordinary

matter.
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2 Flat and negatively curved FRW with an arbi-

trary non-negative potential

For homogeneous and isotropic spacetimes the field equations (2) reduce to the

Friedmann equation,

H2 +
k

a2
=

1

3

(
ρ +

1

2
φ̇2 + V (φ)

)
, (4)

and the Raychaudhuri equation,

Ḣ = −1

2
φ̇2 − γ

2
ρ +

k

a2
, (5)

while the equation of motion of the scalar field (3), becomes

φ̈ + 3Hφ̇ + V ′ (φ) =
4 − 3γ√

6
ρ. (6)

The Bianchi identities yield the conservation equation,

ρ̇ + 3γρH = −4 − 3γ√
6

ρφ̇, (7)

(see for example [6, 7]). For simplicity we drop the tilde from all quantities. We

adopt the metric and curvature conventions of [8]. a (t) is the scale factor, an overdot

denotes differentiation with respect to time t, H = ȧ/a and units have been chosen

so that c = 1 = 8πG. Here V (φ) is the potential energy of the scalar field and

V ′ = dV/dφ.

In the following we consider initially expanding solutions of (5)-(7), i.e. H(0) > 0.

For flat, k = 0, models the state vector of the system (5)-(7) is
(
φ, φ̇, ρ,H

)
, i.e. we

have a four-dimensional dynamical system subject to the constraint (4). Defining

y := φ̇ and setting (4 − 3γ)/
√

6 =: α, we write the autonomous system as

φ̇ = y,

ẏ = −3Hy − V ′ (φ) + αρ,

ρ̇ = −3γρH − αρy, (8)

Ḣ = −1

2
y2 − γ

2
ρ,

subject to the constraint

3H2 = ρ +
1

2
y2 + V (φ) . (9)
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Remark 1 The function W defined by

W (φ, y, ρ,H) = H2 − 1

3

(
1

2
y2 + V (φ) + ρ

)
,

satisfies

Ẇ = −2HW,

and therefore, the hypersurface {W = 0}, representing flat, k = 0, cosmologies is

invariant under the flow of (8). By standard arguments in ordinary differential

equations theory it follows that also sgn(W ) is invariant under the flow of (8).

We deduce that solutions with W positive, null, or negative, represent scalar field

cosmologies with k = −1, 0, 1 respectively. Similar arguments applied to the third of

(8) show that if ρ > 0 at some initial time t0, then ρ(t) > 0 throughout the solution.

Denoting by

ǫ =
1

2
y2 + V (φ) ,

the energy density of the scalar field, we see that

ǫ̇ + ρ̇ = −3H(y2 + γρ),

which implies that, for expanding models the total energy ǫ+ρ of the system decreases.

The equilibria of (8) are given by (φ = φ∗, y = 0, ρ = 0, H = ±
√

V (φ∗)/3)

where V ′(φ∗) = 0. Regarding their stability for expanding cosmologies, we note the

following facts. Critical points of V with negative critical value are not equilibria and

they rather allow for recollapse of the model. Moreover, nondegenerate maximum

points (with non negative critical value) for V are unstable, as can be easily seen

by linearizing system (8) at the corresponding equilibria and verifying the existence

of at least one eigenvalue with positive real part. It is interesting to study what

happens near local minima of the potential with non negative critical value, and a

stability result can be given when k = 0,−1.

Proposition 2 Let φ∗ a strict local minimum for V (φ), possibly degenerate, with

nonnegative critical value. Then, p∗ = (φ∗, y∗ = 0, ρ∗ = 0, H∗ =
√

V (φ∗)
3

) is an

asymptotically stable equilibrium point for expanding cosmologies in the open spatial

topologies k = 0 and k = −1.

Sketch of the proof. The proof consists in constructing a compact set Ω in R
4

and showing that it is positively invariant. Applying LaSalle’s invariance theorem

to the functions W and (ρ + ǫ) in Ω, it is shown that every trajectory in Ω is such

that HW → 0 and H(y2 + γρ) → 0 as t → +∞, which means y → 0, ρ → 0, and
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H2− 1
3
V (φ) → 0. Since H is monotone and admits a limit, V (φ) also admits a limit,

V (φ∗), thus the solution approaches the equilibrium point p∗. Details in [9].

Similar results were proved in [10] for separately conserved scalar field and perfect

fluid.

3 Energy exchange

In the following we restrict ourselves to the flat, k = 0, case and study the energy

transfer from the perfect fluid to the scalar field. We are interested to study the

late time behavior near the equilibrium point (φ = φ∗, y = 0, ρ = 0, H =
√

V (φ∗)
3

),

which, by the previous Proposition is asymptotically stable. We suppose that the

initial data in the basin of attraction of this equilibrium are such that the fluid is

the dominant matter component, i.e.

ρ0 > ǫ0,

and we investigate whether there is a time t1 such that

ǫ (t) > ρ(t), ∀t > t1. (10)

This question is relevant to the coincidence problem, that is, why dark energy and

matter appear to have roughly the same energy density today (see [11] and references

therein).

If V (φ∗) > 0, the transition (10) does always happen. In fact, it easily follows

that if the critical value of the potential is strictly positive, it behaves as an effective

cosmological constant and the energy of the scalar field tends to this value whereas

the energy of the fluid tends to zero. We conclude that the relevant case is when

V (φ∗) = 0 and hereafter we will focus on the case when φ∗ is a nondegenerate

minimum. Without loss of generality we suppose that φ∗ = 0 and therefore, the

general form of the potential studied can be written in a neighborhood of φ = 0 as

V (φ) =
1

2
ω2φ2 + O(φ3), ω > 0. (11)

Integrating (7), we get

ρ(t) = ce−αφ(t)a(t)−3γ . (12)

From the Proposition in the previous Section we know a-priori that
(
φ, φ̇, ρ,H

)
→

(0, 0, 0, 0) as t → ∞, hence we can write ρ(t) ≃ ca(t)−3γ as t → ∞.

We now turn our attention to the equation of motion of the scalar field (6) with

the potential (11), namely

φ̈ + 3Hφ̇ + ω2φ + O(φ2) = αρ. (13)
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This equation can be solved by the Kryloff-Bogoliuboff (KB) approximation [12].

We present an outline of the method for the convenience of readers with no previous

knowledge of the KB approximation. Consider the differential equation

φ̈ + ηf
(
φ, φ̇

)
+ ω2φ = 0, 0 < η ≪ 1. (14)

If η = 0, the solution can be written as

φ (t) =
1

ω
r cos (−ωt + χ) and φ̇ (t) = r sin (−ωt + χ) ,

where r and χ are arbitrary constants. We are looking for a solution of (14) which

resembles to the form of the simple harmonic oscillator, that is,

φ (t) =
1

ω
r (t) cos (−ωt + χ (t)) and φ̇ (t) = r (t) sin (−ωt + χ (t)) . (15)

Setting θ (t) = −ωt + χ (t) and substituting (15) in (14) yields

dr

dt
= −ηf

(
1

ω
r cos θ, r sin θ

)
sin θ, (16)

dχ

dt
= −η

r
f

(
1

ω
r cos θ, r sin θ

)
cos θ.

For η small, r(t) and χ(t) are slowly varying functions of t. Consequently, in a time

T = 2π/ω, r(t) and χ(t) have not changed appreciably, while θ (t) = −ωt + χ (t)

will increase approximately by −2π. Therefore, we replace the rhs of (16) by their

average values over a range of 2π of θ, i.e. the amplitude r(t) is regarded as a

constant in taking the average (this is the essence of the KB approximation). This

leads to the equations

dr

dt
= − η

2π

∫ 2π

0

f

(
1

ω
r cos θ, r sin θ

)
sin θdθ,

dχ

dt
= − η

2πr

∫ 2π

0

f

(
1

ω
r cos θ, r sin θ

)
cos θdθ.

If we could apply the KB approximation to (13) with

ηf
(
φ, φ̇

)
= 3Hφ̇ + O(φ2) − αρ, (17)

then we should obtain for the amplitude of φ

dr

dt
= − 1

2π

∫ 2π

0

(
3Hωr cos θ + O(r2 cos2 θ) − αce−(α/ω)r cos θa−3γ

)
sin θdθ. (18)

The integral ∫ 2π

0

e−(α/ω)r cos θ sin θdθ,
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vanishes and since H is a slow varying function compared to the rapid oscillations

of the scalar field, it can be considered as constant during one period, T = 2π/ω.

Therefore, (18) becomes
dr

dt
= −3

2
Hr + O(r3), (19)

since the integration of the quadratic terms vanish. Ignoring third-order terms, eq.

(19) can be integrated to give r(t) = r0(t)a
−3/2, where r0(t) is bounded and bounded

away from zero uniformly as t → +∞.

Hence we find that for large t the amplitude of the scalar field varies as a−3/2.

Since the amplitude of φ̇ has by (15) the same time dependence as the amplitude of

φ and in our approximation

ǫ ∼= 1

2
φ̇2 +

1

2
ω2φ2,

it follows that

ǫ ∼= a−3.

Comparing this result with the time dependence of the fluid density ρ ∼= a−3γ, we

arrive at the following picture for the evolution of the universe.

If γ < 1 the energy density ρ eventually dominates over the energy density of

the scalar field ǫ and this universe follows the classical Friedmannian evolution.

For γ > 1, since ρ decreases faster than the energy density ǫ of the scalar field, ǫ

eventually dominates over ρ.

A rigorous proof of these results is given in [9]. The main obstruction to apply

the KB approximation is due to (17), indeed, the above argument applies if ρ/r goes

to zero. Otherwise, the rhs in (16) is not infinitesimal and so χ(t) could in principle

be comparable to ωt.

Our results could be interesting in investigations of cosmological scenarios in

which the energy density of the scalar field mimics the background energy density.

For viable dark energy models, it is necessary that the energy density of the scalar

field remains insignificant during most of the history of the universe and emerges

only at late times to account for the current acceleration of the universe.
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