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Efforts are underway to improve the design and sensitivity of gravitational waves detectors, with
the hope that the next generation of these detectors will observe a gravitational wave signal. Such a
signal will not only provide information on dynamics in the strong gravity regime that characterizes
potential sources of gravitational waves, but will also serve as a decisive test for alternative theories
of gravitation that are consistent with all other current experimental observations. We study the
linearized theory of the tensor-vector-scalar theory of gravity (TeVeS) with generalized vector action,
an alternative theory of gravitation designed to explain the apparent deficit of visible matter in
galaxies and clusters of galaxies without postulating yet undetected dark matter. We find the
polarization states and propagation speeds for gravitational waves in vacuum, and show that in
addition to the usual transverse-traceless propagation modes, there are two more transverse modes
and two trace modes. Additionally, the propagation speeds are different from c.

I. INTRODUCTION

Gravitational wave (GW) science is raising in popularity, with several GW detectors in operation in the United
States (LIGO), Europe (VIRGO and GEO) and Japan (TAMA), and efforts under way to improve their design and
increase their sensitivity [1]. LISA, the laser interferometer space antenna, is expected to fly in the next decade, with
LISA pathfinder marking the way [2]. The detection of gravitational waves will convey new information on dynamics
of systems in the strong-field gravity limit, as well as in regions of the universe which are opaque to electromagnetic
radiation. Gravitational waves will also serve as a test for alternative theories of gravity. Despite the outstanding
success of General Relativity (GR) in the solar system, it fails to explain dynamics on galaxy and galaxy cluster
scales without postulating large amounts of yet-undetected Dark Matter (DM). An alternative theory of gravitation
that does not require DM is TeVeS, the tensor-vector-scalar theory of gravity, which was designed as a relativistic
implementation of Milgrom’s MOdified Newtonian Dynamics paradigm (MOND). MOND explains the asymptotical
flatness of galaxy rotation curves without postulating the existence of yet undetected dark matter, as well as the
sharpness of the Tully-Fisher relation which correlates luminosity of a disk galaxy with its asymptotic rotational
velocity in a natural context. Milgrom proposed that Newtonian gravity progressively fails as accelerations drop
below a characteristic scale a0 ≃ 10−10m/s2 which is typical of galaxy outskirts, and assumes that for accelerations
of order a0 or well below it, the Newtonian relation a = −∇ΦN is replaced by

µ̃ (|a|/a0)a = −∇ΦN , (1)

where the function µ̃(x) smoothly interpolates between µ̃(x) = x at x ≪ 1 and the Newtonian expectation µ̃(x) = 1
at x ≫ 1. This relation with a suitable standard choice of µ̃(x) in the intermediate range has proved successful not
only in justifying the flatness of galaxy rotation curves in regions where acceleration scales are much below a0, but
also in explaining detailed shapes of rotation curves in the inner parts in terms of the directly seen mass, and in giving
a precise account of the observed Tully-Fisher law , L ∝ V 4

c , predicting the relation L = (Ga0Υ)−1V 4
c . This sharp

relation, while obtained naturally in the framework of MOND, requires quite a fine tuning of dark halo parameters
to be explained by the dark matter paradigm [3].
However, MOND alone is only a phenomenological prescription that does not fulfill the usual conservation laws,

nor does it make clear if the departure from Newtonian physics is in the gravity or in the inertia side of the equation
F = ma. Moreover, it is non relativistic, and as such it does not teach us how to handle gravitational lensing or
cosmology in the weak acceleration regimes. To address these issues, Bekenstein designed the Tensor-Vector-Scalar
theory of gravity (TeVeS) [4], a covariant field theory of gravity which has MOND as its low velocity, weak acceleration
limit, while its nonrelativistic strong acceleration limit is Newtonian and its relativistic limit is GR. TeVeS sports two
metrics, the “physical” metric on which all matter fields propagate, and the Einstein metric which interacts with the
additional fields in the theory: a timelike dynamical vector field, Aα, and a scalar field, φ. The theory also involves

∗Electronic address: eva.sagi@mail.huji.ac.il

http://arxiv.org/abs/1001.1555v1
mailto:eva.sagi@mail.huji.ac.il


2

a free function F , a length scale ℓ, and two positive dimensionless constants k and K. The scalar field in TeVeS
provides the additional gravitational potential for matter, whereas the vector field provides the desired light bending
properties, in a fashion similar to the constant unit vector in Sanders’ stratified theory [5]. The TeVeS equations are
derived from an action principle, thus ensuring conservation of energy and momentum.
One aspect of gravitational waves in TeVeS has been investigated by Sotani, who calculated oscillation spectra

of neutron stars in the theory generated by perturbations of the fluid [6], as well as by perturbations of the tensor
and scalar fields [7], and compared them to the oscillation frequencies predicted in GR. Recently, Sagi [8] calculated
the PPN parameters for TeVeS and showed that there is a link between the cosmological value of the scalar field,
φc, and the coupling constant of the vector field, K, which prevents the scalar field from evolving with cosmological
time as predicted by its equation of motion. This adds to existing evidence of dynamical problems in TeVeS with
Maxwell-like vector action, that has been provided by Seifert [9] and by Contaldi et al. [10]. Consequently, in this
work we investigate gravitational waves in vacuum for the generalized version of TeVeS introduced by Skordis [11], and
determine the complete set of mode speeds and polarizations for generic values of the free parameters in the theory.
This version of TeVeS has a vector action of the most general form which is quadratic in derivatives of the vector
fields, and scalar and metric actions as in the original formulation of TeVeS, thus preserving the correct MOND and
Newtonian limits. The vector field has four coupling constants associated with it, instead of just one in the original
version of TeVeS. The results presented in this paper will be useful in determining the predictions of TeVeS with
regard to gravitational wave emission from astrophysical sources.

II. GENERALIZED TEVES EQUATIONS

The metric, matter and scalar actions are given by [4]

Sg =
1

16πG

∫

gαβRαβ

√
−g d4x, (2)

Sm =

∫

L
(

g̃µν , f
α, fα

;µ, · · ·
)
√

−g̃ d4x, (3)

Ss = − 1

2k2ℓ2G

∫

F
(

kℓ2hαβφ, αφ, β

) √−g d4x, (4)

Above h
αβ ≡ gαβ − AαAβ with Aα ≡ gαβAβ . In the scalar’s action k is a dimensionless positive parameter while

ℓ is a constant with the dimensions of length, and F a dimensionless free function. G is the gravitational coupling
constant, and is not equal to the measured Newton’s constant, which will be denoted GN . The metric which couples
to the gravitational fields is gµν , dubbed here the Einstein metric. The matter fields, which include all standard model
particles, couple to the physical metric, which is composed of the three gravitational fields

g̃αβ = e−2φgαβ − 2AαAβ sinh(2φ). (5)

The vector action is taken to be of the most general form quadratic in derivatives of the vector fields, as follows:

Sv = − 1

16πG

∫ √−gd4x

(

K

2
FαβF

αβ +
K+

2
SαβS

αβ +K2 (∇A)2 +K4ȦαȦ
α − λ (AαAα + 1)

)

(6)

where Fαβ = Aα;β − Aβ;α, Sαβ = Aα;β +Aβ;α and Ȧα = AβAα
;β . The Ki are dimensionless coupling constants. K is

the coupling constant of the original version of TeVeS.
Variation of the action with respect to gαβ yields the TeVeS Einstein equations for gαβ

Gαβ = 8πG
(

T̃αβ +
(

1− e−4φ
)

AµT̃µ(αAβ) + ταβ

)

+ θαβ , (7)

where v(αAβ) ≡ vαAβ + Aαvβ , etc. The sources here are the usual matter energy-momentum tensor T̃αβ (related

to the variational derivative of Sm with respect to g̃αβ), as well as the energy-momentum tensors for the scalar and
vector fields,
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ταβ ≡ µ(y)

kG

(

φ, αφ, β −Aµφ,µA(αφ, β)

)

− F(y)gαβ
2k2ℓ2G

(8)

θαβ ≡ K

(

FσαF
σ
β − 1

4
F 2gαβ

)

+K+

(

SασS
σ

β − 1

4
S2gαβ +∇σ

[

AσSαβ − Sσ
(αAβ)

]

)

+K2

(

gαβ∇σ (A
σ∇ · A)−A(α∇β)∇ ·A− gαβ

2
(∇ · A)2

)

+K4

(

ȦβȦα + ȦσA(α∇β)A
σ −∇σ

[

ȦσAαAβ

]

− gαβ
2

ȦσȦ
σ
)

− λAαAβ , (9)

where v[αAβ] ≡ vαAβ −Aαvβ , etc., and

µ(y) ≡ F ′(y); y ≡ kℓ2hγδφ, γφ, δ. (10)

Each choice of the function F(y) defines a separate TeVeS theory. Its derivative µ(y) functions somewhat like the µ̃
function in MOND. For y > 0, µ(y) ≃ 1 corresponds to the high acceleration, i.e., Newtonian, limit, while the limit

0 < µ(y) ≪ 1 corresponds to the deep MOND regime. In the MOND regime, µ(y) ∼
√

y/D, with D a dimensionless
constant. We shall only consider functions such that F > 0 and µ > 0 for either positive or negative arguments.
The equations of motion for the vector and scalar fields are obtained by varying the action with respect to φ and

Aα, respectively. We have

[

µ(y)hαβφ, α

]

;β
= kG

[

gαβ +
(

1 + e−4φ
)

AαAβ
]

T̃αβ , (11)

for the scalar and

K∇αF
αβ +K+∇αS

αβ +K2∇β (∇ · A)−K4Ȧ
σ∇βAσ +K4∇σ

(

ȦβAσ
)

+ λAβ +
8π

k
µAαφ,αg

βγφ,γ

= 8πG
(

1− e−4φ
)

gβαT̃αγA
γ (12)

for the vector. Additionally, there is the normalization condition on the vector field

AαAα = gαβ A
αAβ = −1. (13)

The λ in Eq. (12), the lagrange multiplier charged with the enforcement of the normalization condition, can be
calculated from the vector equation.

III. METRIC, VECTOR AND SCALAR PERTURBATIONS ON A CURVED BACKGROUND IN

TEVES

We start by considering metric, vector and scalar perturbations on a curved background. One can derive results
on the structure of the solutions of the TeVeS equations, following the accounting system described in [12], Ch. 2. In
order to discern the perturbation from the background we assume that in some coordinate system we can write the
metric, vector and scalar as

gαβ = ḡαβ + hαβ (14)

Aα = Āα + uα (15)

φ = φB + δφ, (16)

where ḡαβ, Ā
α and φB have a typical scale of variation LB, on top of which small amplitude perturbations are

superimposed, characterized by a scale ℓg satisfying ℓg ≪ LB (alternatively, the distinction can be made in frequency
space, with the background characterized by a frequency much lower that the perturbation). Additionally, we assume
that the background metric, vector and scalar are O(1), whereas the perturbations are of order ǫ ≪ 1. Writing the
vacuum TeVeS Einstein equations in the form

Rαβ = (8πGτµν + θµν) (δ
µ
αδ

ν
β − 1

2
gαβg

µν), (17)
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and expanding the Ricci tensor to O(ǫ2), we can split the TeVeS equations into two parts: a low frequency, long
wavelength part which describes how the background is affected by the perturbations, and a high frequency, short
wavelength part which describes the propagation of the perturbations on the background, as follows

R̄αβ = −[R
(2)
αβ ]

Low +

(

(8πGτµν + θµν) (δ
µ
αδ

ν
β − 1

2
gαβg

µν)

)Low

(18)

and

R
(1)
αβ = −[R

(2)
αβ ]

High +

(

(8πGτµν + θµν) (δ
µ
αδ

ν
β − 1

2
gαβg

µν)

)High

(19)

with θµν given by Eq. (9) and τµν by Eq. (8). In the above, R̄αβ is constructed from ḡαβ, and contains only low

frequency modes. R
(1)
αβ is linear in hαβ , and is thus high frequency, whereas R

(2)
αβ , which is quadratic in hαβ, can

contain both low-frequency modes generated from terms with nearly equal but opposite high wave-vectors, as well
as high-frequency modes. In the absence of matter sources, the equations of motion force the amplitude of the
perturbations ǫ to be equal to ℓg/LB (this is true only in the absence of sources; if sources are present then they
determine the background curvature whereas ǫ ≪ ℓg/LB). This comes about since the Ricci tensor contains terms
which are quadratic in derivatives of the metric, so that on the left hand side of Eq. (18) we have terms quadratic
in derivatives of the background metric, which are proportional to 1/L2

B, and on the right hand side we have terms
quadratic in derivatives of the perturbation, which are proportional to (ǫ/ℓg)

2. One can then set LB = 1 and use
a single expansion parameter |hαβ|, |uα|, |δφ| ∼ ǫ ∼ ℓg ≪ 1. From Eq. (18) we see that terms quadratic in the
perturbations induce changes in the background, whereas the propagation equations, Eq. (19), are first order in the
perturbation. The leading term in the propagation equations, which contain second derivatives of the perturbations,
is then O(1/ǫ), and first derivatives of the perturbations or of the background metric are O(1).
Regardless of the form of µ(y), the scalar equation separates from the vector-tensor equations, since for all y

0 < µ(y) ≤ 1 and 0 < F ≤ y. We can thus evaluate the order of magnitude of ταβ by taking µ = 1 and F = y; this
will give us a bound from above: ταβ ∼ φ,αφ,β. Then φ,αφ,β ∼ O((ǫ/ℓg)

2) = O(1). The contribution of the scalar field
to the vector equation, 8π

k
µAαφ,αg

βγφ,γ , is of the same order of magnitude. Hence the scalar contributions to the
equations for the vector and the metric are O(1), and are an order ǫ smaller than the leading contributions, containing
second derivatives of perturbations. Consequently, the vector-metric system separates from the scalar equation on a
curved background, and one can treat the two separately.

A. Vector-metric perturbations

We are interested in the lowest order terms in the metric and vector equations, which are O(1/ǫ). To this order, we
can approximate ḡαβ by the Minkowski metric ηαβ , and the background scalar and vector fields by Āα ≈ (1, 0, 0, 0)
and φB = φc ≈ const. This approximation is valid only in the absence of matter, where the background curvature can
be assumed to be almost absent. To avoid carrying factors of e2φc throughout the calculation, we chose coordinates
in which the background Einstein metric is Minkowski; at the end of the calculation we will switch to coordinates
in which the background physical metric is Minkowski. To first order in the perturbations, the difference between
the two coordinate systems is only one of scale. For simplicity, we elected to work in the reference frame in which
the vector field is at rest; when including matter content, the velocity of the matter frame with respect to the vector
frame, v, would have to be accounted for, and the vector field would acquire a temporal component of the order of v2

and a spatial component of the order of v. We will work in units in which the speed of light is unity.
We substitute Eqs. (14,15,16) into the metric and vector TeVeS field equations in vacuum, Eq. (17) and

K∇αF
αβ +K+∇αS

αβ +K2∇β (∇ · A)−K4Ȧ
σ∇βAσ +K4∇σ

(

ȦβAσ
)

+ λAβ +
8π

k
µAαφ,αg

βγφ,γ = 0. (20)

To order O(1/ǫ), indices are raised and lowered with ηαβ , so that for example ui = ui, etc.
The temporal component of the vector equation gives λ, which is first order in the perturbation, since the background

lagrange multiplier is zero. The spatial components are

K2hjj,0i + 2K+hij,j0 + (K +K+ −K4) (h00,0i − 2ui
,00) + 2(K +K+)u

i
,jj = 0 (21)
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The metric equations are:

00 :hij,ij − hii,jj = 2(K +K+ −K4)

(

h0i,0i −
1

2
h00,ii + ui

,0i

)

(22)

0i :h0j,ji + hij,j0 − h0i,jj − hjj,i0 = K2hjj,i0 + 2K+(hij,j0 + ui
,jj) + 2(K2 +K+)u

j
,ji (23)

ij :hk(i,j)k − h0(j,i)0 − h,ij −�hij − δij (h00,00 + hkl,kl −�h) = K+

(

hij,00 + uj
,i0 + ui

,j0

)

+K2δij(hkk,00 + 2uk
,k0)

(24)

Round brackets denote symmetrization without a factor 1/2. h is the trace of the metric perturbation, and � is the flat
space d’Alembertian. The temporal component of the vector field perturbation is determined from the normalization
condition:

u0 =
1

2
h00 (25)

This system of equations is very similar to the system obtained in Æther linearized theory, therefore we will follow
the analysis in [13].
As in GR, after choosing a frame within which the metric, vector and scalar fields have the form (14, 15, 16), we

are left with a residual gauge symmetry. Under an infinitesimal transformation of coordinates

xµ → x′µ = xµ + ξµ(x), (26)

the fields transform as

h′

µν =hµν − (∂µξν + ∂νξµ) , (27)

u′µ =uµ + ∂0ξ
µ, (28)

δφ′ =δφ. (29)

If |∂µξν | ∼ |hµν |, then the condition |hµν | ≪ 1 is preserved. We thus have the freedom to perform a linearized gauge
transformation on the fields. The Lorentz gauge usually chosen in GR is of little use to us, since the additional terms
in the equations that stem from the vector field stress-energy tensor are not simplified in this gauge. Instead, we
choose as in [13] to impose the four conditions h0i = 0 and ui

,i = 0. It is easy to show that they can be obtained from
a gauge transformation of the form (26); starting from an arbitrary gauge that satisfies (14, 15, 16), one has to elect
a vector ξµ that satisfies

h′

0i = h0i − (ξi,0 + ξ0,i) = 0 (30)

and

u′

i = ui + ξi,0 = 0 (31)

Adding the vector equation and the spatial divergence of the metric equation, one gets a Poisson equation for ξ0, and
ξi can then be found by integrating the metric equation with respect to time.
In the gauge in which h0i = 0 and ui

,i = 0, the metric-vector system of equations takes the form:

hij,ij − hii,jj = −(K +K+ −K4)h00,ii (32)

hij,j0 − hjj,i0 = K2hjj,i0 + 2K+(hij,j0 + ui
,jj) (33)

hk(i,j)k − h,ij −�hij − δij (h00,00 + hkl,kl −�h) = K+

(

hij,00 + uj
,i0 + ui

,j0

)

+K2δijhkk,00 (34)

K2hjj,0i + 2K+hij,j0 + (K +K+ −K4) (h00,0i − 2ui
,00) + 2(K +K+)u

i
,jj = 0 (35)

we now have thirteen equations and nine unknown functions (the divergence condition on the spatial part of the vector
field leaves only two independent vector components), hence four of the equations above are redundant, and will serve
as checks for our calculation. We will work with the six equations (34) and with the three vector equations (35),
since they are the equations controlling the dynamics of the system, whereas the rest of the equations are constraint
equations. To solve the system, we assume plane wave solutions for the perturbations, in coordinates such that the
wave vector is (k0, 0, 0, k3):

hαβ = ǫαβe
ikµx

µ

(36)

ua = ǫae
ikµx

µ

. (37)
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The equations become:

ui : k0k3K+ǫi3 + k20(K +K+ −K4)ǫi − k23(K +K+)ǫi = 0 (38)

u3 :K2ǫii + (2K+ +K2)ǫ33 + (K +K+ −K4)ǫ00 = 0 (39)

E11 : k23ǫ00 + ((1 +K2)k
2
0 − k23)ǫ22 + (2K+ +K2)k

2
0ǫ11 + (1 +K2)k

2
0ǫ33 = 0 (40)

E22 : k23ǫ00 + ((1 +K2)k
2
0 − k23)ǫ11 + (2K+ +K2)k

2
0ǫ22 + (1 +K2)k

2
0ǫ33 = 0 (41)

E33 : (1 +K2)(ǫ11 + ǫ22) + (2K+ +K2)ǫ33 = 0 (42)

E12 :
(

(2K+ − 1)k20 + k23
)

ǫ12 = 0 (43)

Ei3 : (2K+ − 1)k20ǫi3 − 2K+k0k3ǫi = 0 (44)

in all the above i = 1, 2 and double indices imply summation.
The above equations are homogeneous in kµ, and therefore there is no dispersion of the waves. If we define the

wave speed to be s = k0/k3 (it will be a real wave speed only if s2 > 0), from the requirement that the determinant
of this homogeneous linear system of equations is zero we obtain three wave speeds:

s21 =
1

1− 2K+

s22 =
K +K+ − 2KK+

(1− 2K+)(K +K+ −K4)

s23 =
(K2 + 2K+)(2 − (K +K+) +K4)

(1− 2K+)(K +K+ −K4)(2 + 3K2 + 2K+)
(45)

Here we see that for K+ = 1/2 and for K +K+ −K4 = 0 the wave speeds are infinite. That K +K+ −K4 = 0 is
disallowed is consistent with Skordis‘ result, that K+K+−K4 is the coefficient of the time derivative term in the vector
cosmological perturbation equation [11], meaning that when K+K+−K4 = 0 there is no growing mode in the vector
field that can assist structure formation. For values of the coupling constants Ki for which s2 is positive and finite,
the dispersion relation obtained is linear, and |s| represents the propagation speed of gravitational disturbances. For
these values, the theory has well defined propagating waves solutions. If s2 is negative for a mode, then the frequency
k0 is imaginary, indicating the existence of exponentially growing or decaying solutions. In such a case the theory is
unstable and hence presumably unphysical.
The fields excitations corresponding to the wave speeds (45) are:

• Two transverse-traceless modes corresponding to s1: ǫ22 = −ǫ11 6= 0, ǫ12 6= 0.

• Two transverse vector-tensor modes corresponding to s2: ǫi =
1
2

√

(1−2K+)(2KK+−(K+K+))
K+(K+K+−K4)

ǫi3, with i = 1, 2.

• A trace mode involving the metric trace and the vector temporal component through the normalization condition,

corresponding to s3: ǫ0 = 1
2ǫ00, ǫ11 = ǫ22 = 1

2 (K +K+ −K4)ǫ00, ǫ33 = (1+K2)(K4−(K+K+))
K2+2K+

ǫ00.

The remaining metric equations agree with the above results. The modes are easily classified by their different
propagation speeds, allowing us to naturally obtain the modes for the physical metric by simply substituting our
result in the expression for the physical metric. To linear order, the physical metric is:

g̃00 = e2φc(−1 + h00 − 2δφ)

g̃0i = −2ui sinh (2φc)

g̃ij = e−2φc(δij(1− 2δφ) + hij). (46)

Going to Minkowski coordinates through the following coordinate transformation

x0̄ = eφcx0 , xj̄ = e−φcxj , (47)

we get

g̃00 = −1 + h00 − 2δφ

g̃0i = −2ui sinh (2φc)

g̃ij = δij(1 − 2δφ) + hij . (48)
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We must remember to transform the wave speeds to Minkowski coordinates as well:

s21 =
e−4φc

1− 2K+

s22 =
e−4φc (K +K+ − 2KK+)

(1− 2K+)(K +K+ −K4)

s23 =
e−4φc(K2 + 2K+)(2− (K +K+) +K4)

(1− 2K+)(K +K+ −K4)(2 + 3K2 + 2K+)
(49)

We can then write the physical metric as η̃µν + h̃µν , with the physical perturbation tensor given by

h̃µν =







0 0 0 0
0 ǫ11 ǫ12 0
0 ǫ12 −ǫ11 0
0 0 0 0






cos [ω(t− z/s1)] +







0 dǫ13 dǫ23 0
dǫ13 0 0 ǫ13
dǫ23 0 0 ǫ23
0 ǫ13 ǫ23 0






cos [ω(t− z/s2)] (50)

+







ǫ00 0 0 0
0 aǫ00 0 0
0 0 aǫ00 0
0 0 0 bǫ00






cos [ω(t− z/s3)] (51)

with d = −
√

(1−2K+)(2KK+−(K+K+))
K+(K+K+−K4)

sinh (2φc), a = 1
2 (K +K+ −K4) and b = (1+K2)(K4−(K+K+))

K2+2K+
.

TeVeS exhibits the usual transverse-traceless propagation mode of GR, but at a speed different from c. Additionally,
it has two more modes which excite both spatial and temporal directions, and one trace mode, which is not symmetric
in all spatial directions. We will show in the next section that the scalar equation generates an additional trace mode.
Incidentally, in the original version of TeVeS, which had all Ki but K zero, s1 = s2 = e−2φc , showing no dependence

on the coupling constant of the theory, whereas s3 = 0, meaning that the theory has no propagating scalar mode.
This is consistent with the results in [4].

B. Scalar perturbations

Since the scalar field perturbations appear in the trace of the physical metric, we expect the scalar field to give rise
to another, second trace mode. However, there is a subtlety in the derivation of the lowest order contribution of the
scalar equation. The scalar equation in vacuum is

[

µ(y)hαβφ, α

]

;β
= 0 , . (52)

To linear order in the perturbation, µ(y) ≈ µ(yB) + µ′(yB)(y − yB). With φB = φc ≈ const., yB = 0 and since for
small y, µ(y) ∼ √

y, then µ′(yB) diverges. Therefore, to extract information on the propagation of scalar waves we
have to relax the assumption φB ≈ const. and allow it to depend on the space coordinates. This case has already
been analyzed in [4], using the WKB approximation, as is common practice for waves on a curved background; the
scalar equation was shown to acquire the form

0 =
(

h
αβ + 2ξHαHβ

)

δφ;αβ (53)

Hα ≡ h
αβφB,β

√

hµνφB,µφB,ν

(54)

ξ ≡ d lnµ(y)

d ln y
(55)

here terms containing first derivatives of the scalar field perturbation were omitted, being O(1). Note that although
originally this derivation was made assuming only scalar perturbations, and ignoring vector and metric perturbations,
it is valid in the presence of metric and vector perturbations, owing to the separation of the metric-vector system from
the scalar equation. Contributions of metric or vector perturbations to the scalar equation are also higher order, since
there is no way of forming second-derivative terms of the metric or the vector perturbations in the scalar equation.
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The wave speed was shown to be s4 ≤ e−2φB in the deep MOND regime, s4 = e−2φB/
√
2 in the Newtonian regime,

and e−2φB/
√
2 ≤ s4 ≤ √

1 + 2ξe−2φB/
√
2 in the intermediate regime. Going back to the physical metric in Minkowski

coordinates, Eq. (48), we see that this generates an additional trace mode in the physical metric, at a speed different
from that of the vector modes. In the notation of subsection (III A), it can be displayed as

h̃µν =







−2δφ 0 0 0
0 −2δφ 0 0
0 0 −2δφ 0
0 0 0 −2δφ






cos [ω(t− z/s4)] (56)

IV. CONCLUSIONS

We investigated the propagation of gravitational perturbations in vacuum for the tensor-vector-scalar theory of
gravity. We found that in the linear approximation on a curved background, the scalar equation separates from the
vector-metric system of equations. We solved the vector-metric system of equations to lowest order in the background
curvature, and obtained propagating wave solutions, with a linear dispersion relation, and three distinct wave speeds
depending on the coupling constants of the theory and on the background value of the scalar field. The corresponding
physical metric perturbations can be classified into a pair of transverse-traceless modes, another pair of excitations of
the temporal-spatial components of the physical metric, and an asymmetric trace mode. Perturbations of the scalar
equation were ill defined to lowest order in the background curvature; relaxing the restriction on the background
scalar field, we were able to deduce from the analysis in [4] that the scalar field gives rise to an additional trace mode,
at a different propagation speed which depends on the background value of the scalar field and on the free function
of the theory.
TeVeS thus predicts six different modes of propagation for the gravitational field, at four distinct speeds, all different

from the speed of light. Additionally, all speeds depend on a factor e−2φB , which is expected to be close to unity when
φB = φc, but might induce a significant lag with respect to the speed of light for large values of the background scalar
field. Such a lag might pose a problem for TeVeS; since the scalar and vector fields are coupled to matter via the
physical metric, one would expect ultra high energy cosmic rays, whose velocity is close to c, to emit Cherenkov-like
radiation of scalar and vector particles, if they move at a velocity higher than those scalar and vector particles. Such
an emission would cause the cosmic rays to lose energy, and how much energy is lost would depend on the scalar and
vector particles emission rate, on the distance traveled by the cosmic rays from their sources, and on the strength of
the matter-fields coupling. Such Cherenkov-like radiation might pose very stringent restrictions on TeVeS’ parameters,
as was the case for Einstein-Æther theory [14].
That problem could be avoided, at least for the physical perturbations originating in the vector-metric system, if the

values of the coupling constants of the theory were such as to make the propagation speeds larger than c. The question
of whether superluminal propagation in a theory with two metrics is allowed is still open [15–17]. If superluminal
propagation could be allowed in TeVeS without disturbing causality, then one could also think of relinquishing the
unconventional kinetic term in the action of the scalar field, which was introduced to prevent faster than light scalar
waves.
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