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Abstract

We construct an instanton describing the pair production ofnon-Kaluza
Klein bubbles of nothing in higher odd dimensional de Sitterspaces. In ad-
dition to showing that higher dimensional de Sitter spaces have a nonzero
probability to become topologically nontrivial, this process provides direct
evidence for the association of entropy with cosmological horizons and that
non-Kaluza Klein bubbles of nothing are a necessary ingredient in string
theory or any other consistent quantum theory of gravity in higher dimen-
sions.
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1 Introduction

Black hole pair production is a well-established process insemi-classical quantum
gravity in which pairs of black holes are created via a Schwinger-like process
from an external field. The masses of the black holes producedcan take on any
value consistent with standard conservation laws. The energy needed to create
the black holes comes from the energy of the background field,which also has
provides the force necessary to accelerate the black holes once they are created.
Background fields such as an external electromagnetic field with its Lorentz force
[1], a cosmological constant (or inflation) [2, 3], a cosmic string [4], and a domain
wall [5] (and various combinations [6], including rotation[7]) have all been shown
to generate this process in 4 spacetime dimensions.

These studies have repeatedly provided us with evidence that the exponential
of the entropy of a black hole does indeed correspond to the number of its quan-
tum states. Although the instability of de Sitter spacetimehas a long history [8],
the role of the cosmological horizon has been less than clearin this regard, with
alternate arguments being employed [9] to suggest a similarsituation holds in this
case.

Here we demonstrate that higher-dimensional de Sitter spacetime has a new
kind of instability to decay into soliton pairs (or pairs of bubbles of nothing).
String theories find their firmest footing in higher-dimensional contexts and charged
black hole pair production has been shown to take place in this context as well
[10]. We find that a similar mechanism generating soliton pairs provides direct
evidence that one should associate an entropy with a cosmological horizon that
is a quarter of its area. This pair production process will compete with that of
black hole pair production in dimensionsd ≥ 5 and, in fact, exceed it if the black
hole radius is sufficiently large in five dimensions. Higher dimensional de Sitter
spaces therefore have a nonzero probability to decay into a topologically nontriv-
ial spacetime.

2 de Sitter Bubbles

Here we outline the construction of thed ≥ 5 de Sitter solitons that we consider
as decay products of de Sitter spacetime.
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2.1 de Sitter solitons

Beginning with the bulk action1

S =
1

16πGd

∫ √
−g(R− 2Λ) (2.1)

we wish to find solutions forΛ > 0 besides the well-known black hole solutions.
Using the fact that one may write an odd dimensional (round) sphereS2N+1 as an
S1 fibered overCPN , consider the following ansatz ford-dimensional de Sitter
spacetimes containing a squashed sphere

ds2 = −g(r)dt2 +
dr2

f(r)g(r)
+ r2f(r)(dχ+ A)2 + r2dΣ2 (2.2)

whereχ is a periodic direction with period2π, dΣ2 is the metric forCP (d−1)/2

andA the usual one form on theCP base space. Written this way, the metric on
the round sphere is

dΩd−2 = (dχ+ A)2 + dΣ2 (2.3)

For the sake of convenience, we review this fibration in detail and give explicit
forms for the first several cases in an appendix. Given the ansatz (2.2),f(r) and
g(r) may be solved for uniquely as2

g(r) = −r2

l2
+ 1 (2.4)

and

f(r) = 1− rd−1
0

rd−1
(2.5)

wherel is the usual de-Sitter length, i.e.

Λ =
(d− 2)(d− 1)

2l2
(2.6)

There are more generic solutions than (2.2) one might consider, in particular by
allowinggrr to be a generic function ofr. However, the standard asymptotics do

1We will consider specific surface terms later as necessary.
2To be precise we have checked this solutions for five, seven, nine, and eleven dimensions,

although it appears fairly clear the same solutions work forany odd dimensions larger than three.
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not appear to allow any analytic solutions besides those given above. One could
also consider adding additional matter, but for the presentwe will allow only a
cosmological constant.

Near r = r0 the direction∂/∂χ degenerates, and one is left with a mini-
mal compact surface, sometimes known as a bubble of nothing,formed in this
case from theCPN . In the five dimensional case,CP 1 = S2 and the solution
reduces to that found by [11] and later discovered independently as an example
of a much wider class of time symmetric initial data in [12]. Abroad class of
higher-dimensional versions was pointed out in [13].

Demanding the absence of a conical singularity at the bubble(at r = r0), up
to aZk orbifold, implies

r0 = l

√

1− 4

(d− 1)2k2
(2.7)

Intuitively, de Sitter space tends to make things expand andhence a positive cos-
mological constant allows for a stationary solution. If onewrites down the same
solution for zero or negative cosmological constant one is either forced to al-
low a conical singularity at the bubble or to quotient the spacetime, reflecting the
fact that without some additional force gravity tends to make the bubble collapse.
Topologically these solutions are simply connected3 and one may argue, unlike
Kaluza-Klein bubbles [14], there is no obstruction to defining a spin structure on
such solutions [15]. Since we will describe below an instanton nucleating such
bubbles from empty de Sitter space, the latter point is, of course, not surprising.

2.2 de Sitter instantons

Now consider the Euclidean solution obtained by continuingt → iτ . Since∂/∂τ
degenerates atr = l, the cosmological horizon, we are forced to periodically
identify τ . Demanding the absence of a conical singularity atr = l impliesτ has
period

β =
2πl

√

1− rd−1

0

ld−1

(2.8)

3
π2 is, however, nontrivial.
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Note that unlike the more familiar black hole solutions, there is no second place
where∂/∂τ degenerates and one need not set two temperatures equal here. The
bubble has no entropy of its own but merely acts like a mirror,reflecting the in-
coming thermal radiation back outwards.

We have obtained a compact Euclidean solution, sinceτ is compact andr
ranges over a finite range (specifically fromr0 to l). Slicing this solution along a
moment of time symmetry yields a compact instanton describing the production
of the above Lorentzian solution. Properly speaking, the instanton describes the
pair production of solitons, since the static patch only covers part of de Sitter space
(see, e.g., [16]). To calculate the rate of bubble nucleation from this instanton we
require the on-shell Euclidean action. Since there is no matter present, besides
Λ, the only surface terms that are needed to be added to give a good variational
principle to the action (2.1) are gravitational. As we wish to find the instanton
ending on a time symmetric surfaceΣ with the given spatial metric (i.e. thet =
constant slice of (2.2)), we are solving a gravitational Dirichlet problem with the
metric defined exactly on a given surface. Hence the appropriate surface term
is the famous Gibbons-Hawking term [17]. However, sinceΣ is a surface of
time symmetry, its extrinsic curvature vanishes and we simply obtain the on-shell
action for the instanton

SE = − 1

16πGd

∫

ddx
√
g[R− 2Λ] = − ld−2Ωd−2

8Gd

√

1− rd−1
0

ld−1
(2.9)

Note this is the action for the instanton nucleating bubbles, not the action for a
bounce, although in this case the two are related by a factor of two.

Following the standard Coleman-de Luccia prescription [18], the probability
to nucleate such bubbles is

Pbubble ≈ e−2SE+S0 (2.10)

whereS0 is the Euclidean action of the false vacuum, namely pure de Sitter space

S0 = − ld−2Ωd−2

4Gd
(2.11)

Then

Pbubble ≈ exp

[

− 2Ωd−2

(2π)d−4

ld−2

ld−2
p

(

1−

√

1− rd−1
0

ld−1

)]

(2.12)
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where we have related thed-dimensional Newton constant to thed-dimensional
Planck length

16πGd = (2π)d−3ld−2
p (2.13)

The timescale for this process to take place is

τdecay ≈ e2SE−S0 ≈ e2SEτR (2.14)

whereτR is the recursion time for pure de Sitter space. SinceSE is negative and
large, in Planck units, whenever one trusts the instanton approximation,τdecay ≪
τR and we need not concern ourselves with well-known quantum mechanical ob-
jections to eternal de Sitter space [19, 20, 21].

Note that area of the cosmological horizon atr = l

AH = ld−2Ωd−2

√

1− rd−2
0

ld−1
(2.15)

is reduced from the area of the pure de Sitter space that we began with. Then,
presuming one believes that cosmological horizons have an entropy proportional
to their areas, the nucleation of a bubble results in a decrease in entropy. At
first glance, one might think the above was a contradiction ofthe second law of
thermodynamics. The second law, of course, may be violated by rare statistical
fluctuations. The time scale for pure de Sitter to fluctuate into any particular state
is given by the recursion time scale

τR ≈ e−S0 (2.16)

On the other hand, if one asks the time scale for de Sitter to fluctuate not into a
particular state but into any one of N states in an ensemble,

τN ≈ τR
N

(2.17)

It is this second comparison that is relevant here–we are considering a de Sitter-
bubble at finite temperature, specifically at

T =
1

kBβ
=

1

kB2πl

√

1− rd−1
0

ld−1
(2.18)
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Comparing (2.14) to (2.17), this then implies

N = e−2SE = e
AH
4Gd (2.19)

That is, we are considering a state with entropyAH/4Gd. Hence the above instan-
ton provides direct evidence that one should associate an entropy to a quarter the
cosmological horizon size. Note this argument is far more direct and compelling
than the analogous argument using black hole pair production, for in the second
case one must, as far as we know, simply assert that any black hole has an entropy
a quarter of its horizon area, independent of whether its asymptotics are de Sitter,
anti de Sitter, or asymptotically flat.

It is worth noting there are other de Sitter bubble-nucleating instantons one
can consider if one does not mind enlarging the set of asymptotics under consid-
eration. In particular, one can consider the solutions of [13]

ds2 = −g(r)dt2 +
( 2r

d− 1

)2

f(r)
[

dχ+ Σk
i=1 cos θi dφi

]2

+
dr2

g(r)f(r)
+

r2

d− 1
+ Σk

i=1(dθ
2
i + sin2 θi dφ

2
i ) (2.20)

wherek = (d−3)/2 andg(r) andf(r) are the same as in (2.4) and (2.5). Asymp-
totically (2.20) may be described as containing squashed spheres–it is straightfor-
ward to check that the square of the Riemann tensor for the angular section of
(2.20) (i.e.r andt held constant) is different from that of round spheres. Never-
theless, one may calculate an instanton as above and obtain qualitatively similar
results.

3 Comparison with black hole production

We wish to compare the relative rate of production of the above bubbles of nothing
to another well known instability in de Sitter space–the nucleation of charged pairs
of de Sitter black holes [2, 10]. For the sake of simplicitly,we will limit ourselves
to electrically charged non-extremal solutions–the so-called “lukewarm” solutions
where one sets the temperature of the black hole to match thatof the cosmological
horizon. The consideration of charge is a necessary complication–one is unable to
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match the black hole and cosmological horizon temperatureswithout some form
of matter. We consider the bulk action

SB =
1

16πGd

∫

M

√
g(R− 2Λ− FabF

ab) (3.1)

again omitting surface terms until we need them later. The black hole solutions
may be written as

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩd−2 (3.2)

wheredΩd−2 is the metric on the unitd− 2-sphere and

f(r) = −r2

l2
+ 1−Mr3−d +Q2

1r
6−2d (3.3)

and the field strength is
Frt = Q0r

2−d (3.4)

where

Q0 =

√

(d− 2)(d− 3)

2
Q1 (3.5)

The prescription of [2] is that the appropriate analytic continuation ist → iτ

leavingQ1 real, that is to allow a complex field strength. The sensbility of this
prescription is argued in [2], although perhaps all other concerns are trumped by
the fact that, at least in four dimensions, one can not find a smooth instanton if one
continuesQ0 → iQ0 since the temperatures of the black hole and cosmological
horizon can not be matched [7]. Defining the largest (real) zero of f asr = rc
and the second largest asr = r+, that is the cosmological and outer black hole
horizons respectively, one quickly finds the period of Euclidean time must be

β =
4π

f ′(r+)
=

4π

|f ′(rc)|
(3.6)

The topology of the Euclidean solution isS2×Sd−2, where the firstS2 is parametrized
by (r, τ); note here∂/∂τ degenerates at both the cosmological and the black hole
horizon. To find the instanton we cut the full Euclidean solution at a moment of
time symmetry, leaving the instanton with a boundary of topology S1 × Sd−2. In
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terms of the above coordinate system the relevantS1 may be written as the union
of theτ = 0 andτ = β/2 surfaces.

The Euclidean action is given here for the manifoldM with boundaryδM by

SE = − 1

16πGd

∫

M

√
g(R− 2Λ− FabF

ab)

− 1

8πGd

∫

δM

√
hK − 1

4πGd

∫

δM

√
hnaF

abAb (3.7)

whereK is the extrinsic curvature of, andna the unit normal to,δM. The fact
that these are the appropriate surface terms requires a bit of explanation. The
Gibbons-Hawking term is appropriate since it yields a well-defined variational
principle provided one specifies the metric exactly on some surface. HereδM is
a compact surface and we require the metric on it to match thatof the instanton
we are constructing. However, since we slice the instanton at a moment of time
symmetry,K = 0 and this term vanishes, just as was the case for the bubble
instanton above.

For the fieldF one must specifiy either the potentialAb or the normal compo-
nent of the field strengthnaF

ab on δM . Note the potential we are talking about
here is not just the potential at the cosmological horizon orinfinity but throughout
the bulk; on physical grounds there should still be gauge freedom in the bulk so
we fix the normal component of the field strength to match the instanton. Given
this boundary condition, the second surface term in (3.7) yields a good variational
principle for the fieldF . One can also argue [22] that in four dimensions electro-
magnetic duality forces this choice provided one regards the magnetic charge as
fixed4. At first glance this term does not appear gauge invariant butprovidedδM
is either compact, as it is in the present case, or has boundaries upon which the
potential is specified (e.g. at infinity) this is just an illusion and the surface term
and the action are gauge invariant. The only exception to theabove is if one chose
a gauge which corresponds to a singular field strength. In fact if one tried to take
a simple time independent potential forA

Aτ =
iQ0

3− d
r3−d + C0 (3.8)

4If one does not fix the magnetic charge, the value of the Hamiltonian will not be fixed (see,
e.g., [23])
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one can not chose the constantC0 so thatAτ vanishes at both the black hole and
cosmological horizon. The failure of the potential to vanish at the points where
τ degenerates corresponds to a diverging potential and aδ-function field strength
(see, e.g., [15] for details). Instead one may take a gauge

Ar = −iQ0τr
2−d (3.9)

This potential might appear to be discontinuous at the horizons (where theτ = 0

andτ = β/2 surfaces meet) but going to a set of orthonormal coordinatesit is
easy to see the physical potential vanishes at these points[2].

Given all the above

SE = −β Ωd−2

16πGd

[rd−1
c − rd−1

+

l2
+ (d− 3)Q2

1(r
3−d
c − r3−d

+ )
]

(3.10)

where

Ωd−2 =
2π(d−1)/2

Γ
(

d−1
2

) (3.11)

is the usual area of the unit(d − 2)-sphere. If one tried directly to writeβ, r+
andrc in terms of various physical parameters (Q1, l,M, . . .) one runs into the
complications of roots of high order polynomials. Fortunately this may avoided as
follows. It is useful to parametrize the ratio between the black hole outer horizon
and cosmological horizon as

x =
r+
rc

(3.12)

and so0 < x < 1. Let us henceforth restrict our attention to odd dimensions,
since in even dimensions at present we have no bubbles to compare to.5 In odd
dimensions we may write

f(r) = −r2

l2
+ 1−Mr3−d +Q2

1r
6−2d

= −r2

l2

(

1− r2c
r2

)(

1− x2r2c
r2

)(

1 + Σd−4
n=1an

r2nc
r2n

)

(3.13)

5We have checked all the various technical results below for generald up to eleven dimensions,
although, as before, it seems clear analogous results are valid generically.

9



The absence of a conical singularity

f ′(xrc) + f ′(rc) = 0 (3.14)

in this parametrization is equivalent to

1 + Σd−4
n=1

an
x2n

= x(1 + Σd−4
n=1an) (3.15)

One may then solve (3.13) forM , Q2
1 and thean’s in terms ofrc, x, andl. The

absence of a conical singularity (3.15) then fixesrc in terms ofx andl. For five
dimensions this gives

a1 = − x2

1 + x+ x2
(3.16)

M =
l2x2(1 + x+ x2)(2 + x+ 2x2)

(1 + x+ 3x2 + x3 + x4)2
(3.17)

Q2
1 =

l4x4(1 + x+ x2)2

(1 + x+ 3x2 + x3 + x4)3
(3.18)

and

r2c =
l2(1 + x+ x2)

1 + x+ 3x2 + x3 + x4
(3.19)

For higher dimensions one obtains similar, but increasingly complex and unillu-
minating expressions. Once one finds all the above constantsin terms ofx andl
one can show the euclidean action (3.10) can be written in theremarkably simple

SE = −Ωd−2

8Gd
(rd−2

+ + rd−2
c ) (3.20)

In fact, just as for the bubbles, the fact that the action takes this form is crucial to
avoiding a contradiction with the second law of thermodynamics.

We note that, recalling that0 < x < 1,

rc < l (3.21)

or in other words the cosmological horizon is smaller in the presence of the black
holes than in empty de Sitter, just as is true for the bubbles.Further the sum of the
horizon areas is less than the size of the cosmological horizon of empty de Sitter
space

AH = Ωd−2(r
d−2
+ + rd−2

c ) < Ωd−2l
d−2 (3.22)
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Hence, as with the bubbles, one might have feared one is violating the second law
of thermodynamics. As in the case of the bubbles this processmay be described
as the expected statistical fluctation provided one traces over a number of states

N = e−2SE = eAhorizons/4Gd (3.23)

We are finally in a position to compare the action for bubble production to
black hole nucleation. It is useful to define the ratio of these probabilities in terms
of a quantityδ to isolate the common dependence onl/lp:

PBH

PBubble
≈ e−2SBH+S0

e−2SBubble+S0

= e
δd

ld−2

lpd−2 (3.24)

Then one finds

δd = 26−dπ(7−d)/2

[

(rc
l

)d−2

(1 + xd−2)−

√

1− rd−1
0

ld−1

]

(3.25)

For general dimensions this seems to be the simplest expression for δd, although
in five dimensions the explicit form may be written nearly as simply

δ5 = 2π

[

(1 + x3)
( 1 + x+ x2

1 + x+ 3x2 + x3 + x4

)3/2

−
√
8k2 − 1

4k2

]

(3.26)

Ask increases,r0 increases andδ becomes more positive. While thex-dependence
is not entirely obvious from (3.25), on physical grounds onemight expect small
black holes to be dominant and as we show shortly the plots ofδ bear out this
expectation. The numerical values ofδd fall off rather quickly asd increases.
Specifically fork = 1, δ5(x = 0) ≈ 2.1273, δ7(x = 0) ≈ 0.22721, δ9(x = 0) ≈
2.0810 × 10−2, andδ11(x = 0) ≈ 1.8058 × 10−3. If one trusted the calculation
for l ∼ lp, then in large dimensions the probabilities for black hole and bubble
production would be always comparable. However, since the ratio of probabilities
(3.24) also depends on(l/lp)d−2, (3.24) quickly becomes either very large or very
small (depending on the sign ofδd) asl/lp increases. In order to be able to plot the
variousδd on a single graph, in Figure 1 we have plottedδd normalized by their
values atx = 0.

In five dimensions fork = 1 if x is sufficiently large, specificallyx ' 0.5418,
bubble production dominates over black holes. For higher dimensions or larger
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δd
δd(0)

x
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-0.2

0.2

0.4

0.6

0.8

1.0

Figure 1: Plot ofδd/δd(x = 0) parametrizing the relative rate between de Sitter
black hole and bubble production for(d = 5, k = 1) (thick), (d = 5, k = 2)
(thin), (d = 7, k = 1) (dashed),(d = 9, k = 1) (dot-dashed) and(d = 11, k = 1)
(dotted) versusx = r+/rc

values ofk, black hole production is always dominant. Note the entire range of
x should not truly be trusted; black holes are only reliable semiclassical objects
provided the horizon size is large compared to the Planck length, or if

r+
lp

= x
rc
lp

≫ 1 (3.27)

Since it turns out that for the above instantonsrc is comparable tol (for d = 5,
0.655 / rc

l
< 1 and the allowed range ofrc

l
shrinks as the dimension increases),

this means one can really only trust the black holes when

x '
lp
l

(3.28)

Note then if the ratiol/lp is not very large, in five dimensions bubble pro-
duction is often dominant in the region where the calculation is trustworthy. On
the other hand, if the ratio between the de Sitter length and Planck length is very
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large, the rates for both production processes are so small it is difficult to imagine
any practical context where either one would be significant.For example, in five
dimensions ifl = 10lp,

P ∼ e−(l/lp)3 ≈ 10−434 (3.29)

4 Discussion

We have described an instanton describing the production ofpairs of bubbles of
nothing in odd higher dimensional de Sitter spaces. While wedo not known of
similar solutions in even higher dimensional spaces, thereis no obvious reason
why they should not exist and may well be found in the future. Given this process,
if one has a higher dimensional theory with a cosmological constant comparable
to the Planck scale, the resulting spacetime will not simplybe the usual de Sitter
(possibly with some black holes) but portions will have beenremoved by bubbles
of nothing. On the other hand, if the Planck scale is at least an order of magnitude
smaller than the de Sitter length this process, as well as black hole production, is
highly suppressed and the importance of the above work is mainly theoretical.

The above pair production process provides a direct test forthe proposition
that cosmological horizons are associated with entropy andevade the objections
a skeptic might make regarding black hole nucleation in de Sitter space. This
process also shows there is no topological obstruction to producing bubbles of
nothing. Noting that bubbles of nothing with the same topology as these de Sitter
bubbles have been suggested as a possible generic instability of higher dimensions
[12], this demonstrates generic spacetimes, including those which are asymptot-
ically flat or asymptotically anti de Sitter, are not topologically safe from decay
into such bubbles. Hence, presuming one believes such instanton calculations
(including those involving compact instantons) are reliable, string theory, or any
other consistent higher dimensional theory of quantum gravity, is forced to deal
with such topologically nontrivial solutions.
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A Sphere fibrations

One may parametrize an odd dimensional round sphere by complex coordinates
Z i such thatΣ1|Z i|2 = 1. Then the metric on the sphere is given by

dΩ2
d−2 = ΣidZ

idZ̄ i = Σd−2
i=1 e

2
i (A.1)

One may write a fiber as one of these one forms

(dχ+ A) = ed−2 (A.2)

and theCPN metric as the sum of the remainingei

dΣ2 = Σd−3
i=1 e

2
i (A.3)

Then the metric on the unit(d− 2)-sphere may be written as

dΩd−2 = (dχ+ A)2 + dΣ2 (A.4)

For specific explicit metrics we will use conventions whereφi, as well asχ, have
periods2π andθi have ranges0 ≤ θ0 ≤ π/2. Specifically one may writeS3 using

Z1 = ei(φ1+χ) cos θ1

Z2 = eiχ sin θ1

and then one finds

e1 = dθ1

e2 = sin θ1 cos θ1 dφ1

e3 = dχ+ cos2 θ1 dφ1

An S5 may be written via

Z1 = ei(φ1+χ) cos θ1

Z2 = ei(φ2+χ) sin θ1 cos θ2

Z3 = eiχ sin θ1 sin θ2

14



and then one finds

e1 = dθ1

e2 = sin θ1 dθ2

e3 = sin θ1 cos θ1 (dφ1 − cos2 θ2 dφ2)

e4 = sin θ1 sin θ2 cos θ2 dφ2

e5 = dχ+ cos2 θ1 dφ1 + sin2 θ1 cos2 θ2 dφ2

S7 may be written via

Z1 = ei(φ1+χ) cos θ1

Z2 = ei(φ2+χ) sin θ1 cos θ2

Z3 = ei(φ3+χ) sin θ1 sin θ2 cos θ3

Z4 = eiχ sin θ1 sin θ2 sin θ3

and then one finds

e1 = dθ1

e2 = sin θ1 dθ2

e3 = sin θ1 sin θ2 dθ3

e4 = sin θ1 cos θ1 (dφ1 − cos2 θ2 dφ2 − sin2 θ2 cos2 θ3 dφ3)

e5 = sin θ1 sin θ2 cos θ2 (dφ2 − cos2 θ3 dφ3)

e6 = sin θ1 sin θ2 sin θ3 cos θ3 dφ3

e7 = dχ+ cos2 θ1 dφ1 + sin2 θ1 cos2 θ2 dφ2 + sin2 θ1 sin2 θ2 cos2 θ3 dφ3

and finallyS9 may be written using

Z1 = ei(φ1+χ) cos θ1

Z2 = ei(φ2+χ) sin θ1 cos θ2

Z3 = ei(φ3+χ) sin θ1 sin θ2 cos θ3

Z4 = ei(φ4+χ) sin θ1 sin θ2 sin θ3 cos θ4

Z5 = eiχ sin θ1 sin θ2 sin θ3 sin θ4
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and then one finds

e1 = dθ1

e2 = sin θ1 dθ2

e3 = sin θ1 sin θ2 dθ3

e4 = sin θ1 sin θ2 sin θ3 dθ4

e5 = sin θ1 cos θ1 (dφ1 − cos2 θ2 dφ2 − sin2 θ2 cos2 θ3 dφ3 − sin2 θ2 sin2 θ3 cos2 θ4 dφ4)

e6 = sin θ1 sin θ2 cos θ2 (dφ2 − cos2 θ3 dφ3 − sin2 θ3 cos2 θ4 dφ4)

e7 = sin θ1 sin θ2 sin θ3 cos θ3 (dφ3 − cos2 θ4 dφ4)

e8 = sin θ1 sin θ2 sin θ3 sin θ4 cos θ4 dφ4

e9 = dχ+ cos2 θ1 dφ1 + sin2 θ1 cos2 θ2 dφ2 + sin2 θ1 sin2 θ2 cos2 θ3 dφ3

+ sin2 θ1 sin2 θ2 sin2 θ3 cos2 θ4 dφ4
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