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Abstract

We construct an instanton describing the pair productiomookKaluza
Klein bubbles of nothing in higher odd dimensional de Sigjgaces. In ad-
dition to showing that higher dimensional de Sitter spa@gla nonzero
probability to become topologically nontrivial, this pess provides direct
evidence for the association of entropy with cosmologicaizons and that
non-Kaluza Klein bubbles of nothing are a necessary ingraédin string
theory or any other consistent quantum theory of gravityighér dimen-
sions.
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1 Introduction

Black hole pair production is a well-established procesemi-classical quantum
gravity in which pairs of black holes are created via a Sclyeidike process
from an external field. The masses of the black holes prodoardake on any
value consistent with standard conservation laws. Theggneeeded to create
the black holes comes from the energy of the background frghich also has
provides the force necessary to accelerate the black holstbey are created.
Background fields such as an external electromagnetic fighdits Lorentz force
[1], a cosmological constant (or inflation) [2, 3], a cosntiorgy [4], and a domain
wall [5] (and various combinations|[6], including rotatif{}) have all been shown
to generate this process in 4 spacetime dimensions.

These studies have repeatedly provided us with evidenté¢hthaxponential
of the entropy of a black hole does indeed correspond to th&euof its quan-
tum states. Although the instability of de Sitter spacetimas a long history [8],
the role of the cosmological horizon has been less than oighis regard, with
alternate arguments being employed [9] to suggest a sisitlzation holds in this
case.

Here we demonstrate that higher-dimensional de Sitteretipae has a new
kind of instability to decay into soliton pairs (or pairs afitibles of nothing).
String theories find their firmest footing in higher-dimeargl contexts and charged
black hole pair production has been shown to take place sdbimtext as well
[10]. We find that a similar mechanism generating solitomgpprovides direct
evidence that one should associate an entropy with a cogmaldorizon that
is a quarter of its area. This pair production process withpete with that of
black hole pair production in dimensiods> 5 and, in fact, exceed it if the black
hole radius is sufficiently large in five dimensions. Highenensional de Sitter
spaces therefore have a nonzero probability to decay irdp@dgically nontriv-
ial spacetime.

2 de Sitter Bubbles

Here we outline the construction of the> 5 de Sitter solitons that we consider
as decay products of de Sitter spacetime.



2.1 de Sitter solitons

Beginning with the bulk acti(ﬂ‘n

= T Gd/\/—R 2A) (2.1)

we wish to find solutions foA > 0 besides the well-known black hole solutions.
Using the fact that one may write an odd dimensional (roupdgseS?V+! as an
S, fibered overC PV, consider the following ansatz fakdimensional de Sitter
spacetimes containing a squashed sphere

dr?
f(r)g(r)
wherey is a periodic direction with periodr, d%? is the metric forC' P@-1)/2

and A the usual one form on th€ P base space. Written this way, the metric on
the round sphere is

ds* = —g(r)dt* + +r2f(r)(dx + A)? + r*dx? (2.2)

dQ_g = (dx + A)? + d¥? (2.3)

For the sake of convenience, we review this fibration in dletad give explicit
forms for the first several cases in an appendix. Given thataffg.2),/(r) and
g(r) may be solved for uniquely@is

r
g(r) = 7 +1 (2.4)
and
rg_l
flr)=1- o (2.5)
wherel is the usual de-Sitter length, i.e.
d—2)(d—-1
A= d=2d-1 2)l(2 ) (2.6)

There are more generic solutions than|(2.2) one might censid particular by
allowing g, to be a generic function of. However, the standard asymptotics do

IWe will consider specific surface terms later as necessary.
2To be precise we have checked this solutions for five, sevier, and eleven dimensions,
although it appears fairly clear the same solutions worlafgr odd dimensions larger than three.

2



not appear to allow any analytic solutions besides thosengabove. One could
also consider adding additional matter, but for the presenwill allow only a
cosmological constant.

Nearr = ry the directiond/0x degenerates, and one is left with a mini-
mal compact surface, sometimes known as a bubble of notfonged in this
case from theZ PV, In the five dimensional cas€;P' = S? and the solution
reduces to that found by [11] and later discovered indepathdas an example
of a much wider class of time symmetric initial data lin/[12]. bfoad class of
higher-dimensional versions was pointed out in [13].

Demanding the absence of a conical singularity at the bufable = ), up
to aZ, orbifold, implies

ro = z\/1 — (d—le 2.7)

Intuitively, de Sitter space tends to make things expandhemite a positive cos-
mological constant allows for a stationary solution. If ométes down the same
solution for zero or negative cosmological constant oneitlsee forced to al-

low a conical singularity at the bubble or to quotient thecgpane, reflecting the
fact that without some additional force gravity tends to m#ie bubble collapse.
Topologically these solutions are simply conneEtadd one may argue, unlike
Kaluza-Klein bubbles [14], there is no obstruction to defgha spin structure on
such solutions [15]. Since we will describe below an instamucleating such
bubbles from empty de Sitter space, the latter point is, afg® not surprising.

2.2 de Sitter instantons

Now consider the Euclidean solution obtained by contindirg i7. Sinced/or
degenerates at = [, the cosmological horizon, we are forced to periodically
identify 7. Demanding the absence of a conical singularity at/ impliest has
period

f=—F—= (2.8)

315 is, however, nontrivial.



Note that unlike the more familiar black hole solutions réhis no second place
whered /0t degenerates and one need not set two temperatures equalrhere
bubble has no entropy of its own but merely acts like a mimeftecting the in-
coming thermal radiation back outwards.

We have obtained a compact Euclidean solution, siné® compact and
ranges over a finite range (specifically fregto 7). Slicing this solution along a
moment of time symmetry yields a compact instanton desggitiie production
of the above Lorentzian solution. Properly speaking, tls¢aimton describes the
pair production of solitons, since the static patch onlyarepart of de Sitter space
(see, e.g./[16]). To calculate the rate of bubble nucledtiom this instanton we
require the on-shell Euclidean action. Since there is ndenatesent, besides
A, the only surface terms that are needed to be added to givedavgoiational
principle to the action[{2]1) are gravitational. As we wishfind the instanton
ending on a time symmetric surfagewith the given spatial metric (i.e. the=
constant slice of (2.2)), we are solving a gravitational Dirichlebptem with the
metric defined exactly on a given surface. Hence the ap@i@psurface term
is the famous Gibbons-Hawking term [17]. However, sintés a surface of
time symmetry, its extrinsic curvature vanishes and we Biraptain the on-shell
action for the instanton

1 ld_2Qd_2 ’f’g_l

= — d —2A] = — 1 2.
58 = “T6na, / d"wy/gll =20 3G, 29

Note this is the action for the instanton nucleating buhhies the action for a
bounce, although in this case the two are related by a fattarco

Following the standard Coleman-de Luccia prescriptior,[i& probability
to nucleate such bubbles is

Pruppie & €7 258+50 (2.10)

wheresS is the Euclidean action of the false vacuum, namely pure tlerSpace

197200,
So = _sz (2.11)
Then
QQd—Z ld—2 T(C)l_l
Pruppie = exp | — (27T)d—4lg——2 11— 7Y (2.12)
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where we have related thedimensional Newton constant to thledimensional
Planck length
167Gy = (2m) 73102 (2.13)

The timescale for this process to take place is
Tdecay = 25850 oy €2SETR (2.14)

wherery is the recursion time for pure de Sitter space. Sifigas negative and
large, in Planck units, whenever one trusts the instantpnoxpmation, r..., <
Tr and we need not concern ourselves with well-known quantucharécal ob-
jections to eternal de Sitter spacel[19, 20, 21].
Note that area of the cosmological horizon-at |
rg_z

A =140\ [1 = 50

(2.15)
is reduced from the area of the pure de Sitter space that wenbegh. Then,
presuming one believes that cosmological horizons havenaomy proportional
to their areas, the nucleation of a bubble results in a dser@aentropy. At
first glance, one might think the above was a contradictiothefsecond law of
thermodynamics. The second law, of course, may be violagedte statistical
fluctuations. The time scale for pure de Sitter to fluctuatie amy particular state
is given by the recursion time scale

TR~ €50 (2.16)

On the other hand, if one asks the time scale for de Sitter tbuihie not into a
particular state but into any one of N states in an ensemble,

.
TN & NR (2.17)

It is this second comparison that is relevant here—we arsidering a de Sitter-
bubble at finite temperature, specifically at

1 1 rdt

T = = 1—
]{735 /{33271'[ [d-1

(2.18)
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Comparingl(2.14) td(2.17), this then implies

A

N = ¢ 258 — (1, (2.19)

That is, we are considering a state with entrely/4G,. Hence the above instan-
ton provides direct evidence that one should associate tapgrto a quarter the
cosmological horizon size. Note this argument is far moreatiand compelling
than the analogous argument using black hole pair produdio in the second
case one must, as far as we know, simply assert that any bidekas an entropy
a quarter of its horizon area, independent of whether itmasytics are de Sitter,
anti de Sitter, or asymptotically flat.

It is worth noting there are other de Sitter bubble-nucteatnstantons one
can consider if one does not mind enlarging the set of asyimptonder consid-
eration. In particular, one can consider the solutions 8f [1

2r

ds? = —g(r)dt? + (ﬁ)z £(r) [dx + 35 cos; d@]z

LA T s (a8 4 sin? 6, do?) (2.20)
g(r)f(r) ~d—1 T o '

wherek = (d—3)/2 andg(r) andf(r) are the same as in(2.4) and (2.5). Asymp-
totically (Z.20) may be described as containing squashleersp—it is straightfor-
ward to check that the square of the Riemann tensor for thalangection of
(2.20) (i.e.r andt held constant) is different from that of round spheres. Meve
theless, one may calculate an instanton as above and obiaitatjvely similar
results.

3 Comparison with black hole production

We wish to compare the relative rate of production of the allmbbles of nothing
to another well known instability in de Sitter space—theleatton of charged pairs
of de Sitter black hole$ [2, 10]. For the sake of simplicitlg will limit ourselves
to electrically charged non-extremal solutions—the dtedédlukewarm” solutions
where one sets the temperature of the black hole to matcbfttia cosmological
horizon. The consideration of charge is a necessary coatjgie-one is unable to



match the black hole and cosmological horizon temperatuitg®ut some form
of matter. We consider the bulk action

1

Sp = 167G,

/ VI(R =27 — F F?) (3.1)
M

again omitting surface terms until we need them later. Tlaekohole solutions
may be written as

d 2
ds? = —f(r)dt* + ﬁ +r2dQ s (3.2)
wheredS2,_, is the metric on the und — 2-sphere and
2
J(r) = =3 + 1= Mr* 4 Qhro (3.3)
and the field strength is
Frt - QOrz_d (34)
where
d—2)(d-3
@ — /25, (35)

The prescription ofi[2] is that the appropriate analytictowmation ist — it
leaving @, real, that is to allow a complex field strength. The sensbditthis
prescription is argued in [2], although perhaps all otherceons are trumped by
the fact that, at least in four dimensions, one can not find@s$iminstanton if one
continues)y, — i@, since the temperatures of the black hole and cosmological
horizon can not be matched [7]. Defining the largest (realp o f asr = r,
and the second largest as= r_, that is the cosmological and outer black hole
horizons respectively, one quickly finds the period of Edein time must be

A A
e B TTEN]

The topology of the Euclidean solution§$é x.S?—2, where the firs6? is parametrized
by (r, 7); note here)/0r degenerates at both the cosmological and the black hole
horizon. To find the instanton we cut the full Euclidean solutat a moment of
time symmetry, leaving the instanton with a boundary of togg S x S92, In

(3.6)



terms of the above coordinate system the releyamhay be written as the union
of ther = 0 andr = (/2 surfaces.
The Euclidean action is given here for the manifaliwith boundaryy M by

1
= — — 9\ — F ,F®
Sk 167?Gd/M\/§<R »F'7)
1 1
— hK — hn,F® A 3.7
o |V - g [ Vi, @7)

where K is the extrinsic curvature of, and, the unit normal tog M. The fact

that these are the appropriate surface terms requires d bxptanation. The
Gibbons-Hawking term is appropriate since it yields a wielfined variational
principle provided one specifies the metric exactly on sourtase. Here) M is

a compact surface and we require the metric on it to matchothtdie instanton

we are constructing. However, since we slice the instant@nmoment of time
symmetry, K = 0 and this term vanishes, just as was the case for the bubble
instanton above.

For the fieldF” one must specifiy either the potentid) or the normal compo-
nent of the field strength, F*® on §M. Note the potential we are talking about
here is not just the potential at the cosmological horizoimfamity but throughout
the bulk; on physical grounds there should still be gaugedoen in the bulk so
we fix the normal component of the field strength to match tstamton. Given
this boundary condition, the second surface terrfin (3 &lpgia good variational
principle for the fieldF’. One can also argue [22] that in four dimensions electro-
magnetic duality forces this choice provided one regardsithgnetic charge as
fixe(ﬂ. At first glance this term does not appear gauge invarianptmtideds M
is either compact, as it is in the present case, or has boesdgron which the
potential is specified (e.g. at infinity) this is just an illms and the surface term
and the action are gauge invariant. The only exception taltoge is if one chose
a gauge which corresponds to a singular field strength. Irifface tried to take
a simple time independent potential fér
iQ
3—d

4f one does not fix the magnetic charge, the value of the Hanidn will not be fixed (see,
e.g., [23)])

A = 3-d 4 0 (3.8)




one can not chose the constantso thatA, vanishes at both the black hole and
cosmological horizon. The failure of the potential to véné the points where
7 degenerates corresponds to a diverging potential anfiiaction field strength
(see, e.qg./]15] for details). Instead one may take a gauge

A, = —iQorr* e (3.9)

This potential might appear to be discontinuous at the bas{where the = 0
andr = (/2 surfaces meet) but going to a set of orthonormal coordinaiss
easy to see the physical potential vanishes at these [®jints|

Given all the above

Q, ,,,d—l _ Td_l - B
Sp =~ [ 4 (- 3)QAE - ) (3.10)

where
9 (d=1)/2

r(4)
is the usual area of the uni — 2)-sphere. If one tried directly to writg ..

andr, in terms of various physical parameterg,(/, M, ...) one runs into the
complications of roots of high order polynomials. Fortwetathis may avoided as

follows. It is useful to parametrize the ratio between thecklhole outer horizon
and cosmological horizon as

Oy = (3.11)

g="* (3.12)

Te
and so0 < z < 1. Let us henceforth restrict our attention to odd dimensions
since in even dimensions at present we have no bubbles toarertq@ In odd
dimensions we may write

2

f(r)= —% +1— M3 4 Q2072

2 2 2n

_ _% (1 N T_c) (1 B x%g) (1 n gg;anigﬂ (3.13)

r2 r2

SWe have checked all the various technical results belowdaegall up to eleven dimensions,
although, as before, it seems clear analogous results kdegeaerically.



The absence of a conical singularity
fl(@re) + f'(re) =0 (3.14)
in this parametrization is equivalent to
1+ Zﬁ;‘i% =z(1+ X a,) (3.15)
One may then solvé (3.13) fdi/, Q? and thea,,’s in terms ofr,, =, andl. The

absence of a conical singularify (3115) then fixgén terms ofx andi. For five

dimensions this gives
2

i
) (3.16)
_ Pr*(1 4z + 2% (2 + = + 227) (3.17)
(142 + 322 + 23 + 2)?
Q- 2 (1 + z + 2%)? (3.18)
V(T o+ 322 4 ad 4 at)? '
and 21 ,
2 (I+z+o) (3.19)

e T T o+ 322 + 2 + o
For higher dimensions one obtains similar, but increagiegimplex and unillu-
minating expressions. Once one finds all the above constatesms ofz and!
one can show the euclidean actibn (3.10) can be written iretimarkably simple
Sp = i (r1i 2 4+ ri2) (3.20)
8Gd + c
In fact, just as for the bubbles, the fact that the actiondadhkes form is crucial to
avoiding a contradiction with the second law of thermodyitam
We note that, recalling thét< = < 1,

re <1 (3.21)

or in other words the cosmological horizon is smaller in thespnce of the black
holes than in empty de Sitter, just as is true for the bublsiagher the sum of the
horizon areas is less than the size of the cosmological troz empty de Sitter
space

[

Apg = Qao(r? + 1772 < Quol™? (3.22)

10



Hence, as with the bubbles, one might have feared one iswiglhe second law
of thermodynamics. As in the case of the bubbles this processbe described
as the expected statistical fluctation provided one tracesanumber of states

N — 6_2SE — eAhorizons/4Gd (3.23)

We are finally in a position to compare the action for bubbledpiction to
black hole nucleation. It is useful to define the ratio of thpsobabilities in terms
of a quantitys to isolate the common dependencel ph:

pBH €—2SBH+SO P

~ _ i (3.24)

P Bubble e—28Bubble .5y

Then one finds

d—1

. Te d—2 B r
5y = 20~ dn(T=D/2 [ (7> (1+a"2) -\ 1- ] (3.25)

For general dimensions this seems to be the simplest expness J,4, although
in five dimensions the explicit form may be written nearly msy

142+ 22 )3/2 8k?2 —1

05 = 2
> T 1+ 2+ 322+ 23+ 22 4k2

(1—|—x3)(

] (3.26)

As k increases;, increases anédlbecomes more positive. While thedependence
is not entirely obvious from (3.25), on physical grounds amght expect small
black holes to be dominant and as we show shortly the plotskefar out this
expectation. The numerical values &f fall off rather quickly asd increases.
Specifically fork = 1, d5(x = 0) ~ 2.1273, §;(x = 0) ~ 0.22721, dg(x = 0) ~
2.0810 x 1072, anddy;(z = 0) ~ 1.8058 x 1073. If one trusted the calculation
for I ~ [,, then in large dimensions the probabilities for black haie aubble
production would be always comparable. However, sincedtie of probabilities
(8:22) also depends diy/1,)¢2, (3.24) quickly becomes either very large or very
small (depending on the sign &f) asl/I, increases. In order to be able to plot the
variousd, on a single graph, in Figure 1 we have plottechormalized by their
values atr = 0.

In five dimensions fok: = 1 if x is sufficiently large, specifically g 0.5418,
bubble production dominates over black holes. For higheredsions or larger
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Figure 1: Plot ofd,/d4(x = 0) parametrizing the relative rate between de Sitter
black hole and bubble production f6d = 5,k = 1) (thick), (d = 5,k = 2)
(thin), (d =7,k = 1) (dashed)(d = 9,k = 1) (dot-dashed) an@ = 11,k = 1)
(dotted) versus = r /r.

values ofk, black hole production is always dominant. Note the entrgge of
x should not truly be trusted; black holes are only reliablmisissical objects
provided the horizon size is large compared to the Planaitheror if

T _ples (3.27)

lp lil’
Since it turns out that for the above instantepss comparable té (for d = 5,
0.655 < % < 1 and the allowed range éf shrinks as the dimension increases),

this means one can really only trust the black holes when
by
[
Note then if the ratid//, is not very large, in five dimensions bubble pro-

duction is often dominant in the region where the calcutatgotrustworthy. On
the other hand, if the ratio between the de Sitter length dawlcR length is very

(3.28)

i

Qv
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large, the rates for both production processes are so srisadlifficult to imagine
any practical context where either one would be significkot. example, in five
dimensions if = 101,

P~ W) 10793 (3.29)

4 Discussion

We have described an instanton describing the productigraio$ of bubbles of
nothing in odd higher dimensional de Sitter spaces. Whiledo@ot known of
similar solutions in even higher dimensional spaces, tieer® obvious reason
why they should not exist and may well be found in the futuree@ this process,
if one has a higher dimensional theory with a cosmologicaktant comparable
to the Planck scale, the resulting spacetime will not sinp@ythe usual de Sitter
(possibly with some black holes) but portions will have besmoved by bubbles
of nothing. On the other hand, if the Planck scale is at leastrder of magnitude
smaller than the de Sitter length this process, as well ak thlale production, is
highly suppressed and the importance of the above work islynieoretical.

The above pair production process provides a direct tegh®iproposition
that cosmological horizons are associated with entropyessade the objections
a skeptic might make regarding black hole nucleation in deiSspace. This
process also shows there is no topological obstruction aduming bubbles of
nothing. Noting that bubbles of nothing with the same togglas these de Sitter
bubbles have been suggested as a possible generic irtgtatiiligher dimensions
[12], this demonstrates generic spacetimes, includingehwehich are asymptot-
ically flat or asymptotically anti de Sitter, are not topdlzdly safe from decay
into such bubbles. Hence, presuming one believes suchiostaalculations
(including those involving compact instantons) are rdéabtring theory, or any
other consistent higher dimensional theory of quantumityai¢ forced to deal
with such topologically nontrivial solutions.
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A Sphere fibrations

One may parametrize an odd dimensional round sphere by eampbrdinates

Z'such that,|Z?|* = 1. Then the metric on the sphere is given by
dQ% , = %,d7'd7" = ¥072e? (A1)

One may write a fiber as one of these one forms
(dx +A) =eq 2 (A.2)
and theC' PN metric as the sum of the remaining
dy? = ¥i3e? (A.3)
Then the metric on the unft/ — 2)-sphere may be written as
dQq_o = (dx + A)? + d¥? (A.4)

For specific explicit metrics we will use conventions wheygas well asy, have
periods2w andd; have range8 < 6, < /2. Specifically one may writ&? using

Zb = ¢t cos6,
Z? = eXsinb,
and then one finds
er = db;
es = sin#, cosb do,

es = dx+ cos? 6, do,

An S5 may be written via

7' = Ut o5,
7% = 2t gin g, coshy
73 = eXgin#, sin by

14



and then one finds

ep = db,

ey = sin6; dbs

es = sinf; cosf (do, — cos? Oy dos)
es = sinfy sinfy cos by dps

€y = dX + COS2 91 d(bl + SiIl2 91 COS2 92 dgbg

S; may be written via

Z' = @t cos6,
7% = P2t gin g, cos by
7% = @) ging, sinfy cosbs
Z% = eXginf, sinfy sin by
and then one finds
€ = d91
€y = sin 91 deg
e3 = sin6; sin 6y dbs

ey = sinf cosb (dgy — cos?® Oy dpy — sin’ 0, cos® 05 deps)
es = sinf; sinfy cos by (dpy — cos® O deps)
g = sin#; sin @y sinf3 cos O3 dos

er = dx + cos® b doy + sin? 6y cos? by dpy + sin’ 0, sin® 0, cos® 05 des

and finally.S® may be written using

Zb = @t cos6,

7% = 2t gin g, cosb,

7% = €99 gin 6, sinby cosb;

74 = 9t gin g, sin by sin bz cosb,
75 = eXgin#, sinfy sin by sin b,
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and then one finds

er = db,

ey = sin6; dbs

e3 = sin6; sin 6y dbs

e4 = sin#; sinfy sinfsdb,

e5 = sinf cosb (doy — cos? Oy dgy — sin? Oy cos? O3 dps — sin? Oy sin? O3 cos? 04 do.)
e = sinf sinf, cos by (dpy — cos® O3 dps — sin’ 05 cos® 04 depy)

er = sinf sinfy sinfs cos s (dps — cos® O, depy)

egs = sin# sinfy sin b3 sin 04 cos Oy doy

eg = dx + cos? b dpy + sin? 6, cos? by dpy + sin® 0, sin® O, cos? 05 des

+sin? 0, sin? 0, sin® 05 cos? 04 doy
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