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We derive the higher dimensional generalization of Penrose–Tod equation describing

past horizon in Robinson–Trautman spacetimes with a cosmological constant and pure

radiation. Results for D = 4 dimensions are summarized. Existence of its solutions in

D > 4 dimensions is proved using tools for nonlinear elliptic partial differential equations.

1. Introduction

Our concern here is to locate the past (white hole) horizon. In general dynamical

situations this might be rather nontrivial since the obvious candidate - event horizon

- is a global characteristic and therefore the full spacetime evolution is necessary

in order to localize it. Therefore, over the past years different quasi-local charac-

terizations of black hole boundary were developed. The most important ones being

apparent horizon,1 trapping horizon2 and isolated or dynamical horizon.3 The basic

local condition in the above mentioned horizon definitions is effectively the same:

these horizons are sliced by marginally trapped hypersurfaces with vanishing ex-

pansion of outgoing (ingoing) null congruence orthogonal to the surface.

For the vacuum four dimensional Robinson–Trautman solutions without cosmo-

logical constant the location of the horizon together with its general existence and

uniqueness has been studied by Tod,4 and further by Chow and Lun.5 These results

were recently extended to nonvanishing cosmological constant.6

Robinson–Trautman spacetimes (containing aligned pure radiation and a cos-

mological constant Λ) in any dimension were obtained7 by requiring the existence

of a twistfree, shearfree and expanding null geodesic congruence. They have arrived

at the following metric valid in higher dimensions

ds2 =
r2

P 2
γij dx

idxj − 2 dudr − 2H du2 (1)

where 2H = R

(D−2)(D−3)−2 r(lnP ),u−
2Λ

(D−2)(D−1) r
2−

µ(u)
rD−3 . The unimodular spatial

(D − 2)-dimensional metric γij(x) and the function P (x, u) must satisfy the field

equation Rij = R

D−2hij (with hij = P−2γij being the rescaled metric and Rij its

Ricci tensor), µ(u) is a “mass function” (we assume µ > 0).

2. Past horizon

To localize the past horizon, we will be dealing only with the condition of vanishing

expansion defining the marginally trapped hypersurfaces. The explicit parametriza-

tion of the past horizon hypersurface is r = R(u, xi) such that its intersection with

each u = u1 slice is an outer marginally past trapped (D − 2)-surface.
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By straight-forward computation (using a generalization of the tetrad formalism

to arbitrary dimension) one easily calculates the expansion associated with the

outgoing null congruence la (orthogonal to r = R(u = const, xi) surface) to be

Θl = D−2
r

meaning that it is diverging. This is exactly what one assumes when

dealing with the past trapped surface and is the additional condition in the definition

of trapping horizon.2

Expansion of the ingoing null congruence na can be calculated using the formula

Θn = na;b p
ab, where the tensor pab = gab+2 l(anb) corresponds to the hypersurface

projector. From Θn = 0 we get the marginally trapped hypersurface condition

(equivalent to Penrose–Tod equation in four dimensions)

R−
2(D − 3)

D − 1
ΛR2 − (D − 2)(D − 3)

µ

RD−3
− 2(D − 3)∆(lnR)−

− (D − 4)(D − 3)(∇ lnR) · (∇ lnR) = 0 (2)

It is a nonlinear second order partial differential equation, where both the Laplacian

and scalar product in the last term correspond to the Einstein metric hij . Interesting

property of this equation is that for D > 4 its nonlinearity is much worse since the

term quadratic in derivatives appears.

3. Results for D = 4

The uniqueness and existence results for equation (2) are derived in Ref. 6 (with

µ = 2m = const. and using the previous works Refs. 4,5) and the results are

summarized in the following table:

RESULTS Λ = 0 Λ < 0 Λ > 0

Existence Always Always Λ < 4
9µ2

Uniqueness Always Always R < 3

√

3µ
2Λ

4. D > 4 : Existence of the solution

The methods used in D = 4 are not applicable when the equation is of the form

(after the substitution R = Ce−u in (2), assuming u ≥ 0 with a suitable constant

C)

∆u = F (x, u,∇u) , (3)

where F is quadratic in gradient.

To prove existence of the solution to this quasilinear equation one can proceed

by combining several steps (motivated by Ref. 8 and using results from Refs. 9–11).

These steps include the use of Maximum Principle, Fredholm alternative, trunca-

ture of functions, Schauder Fixed Point theorem and elliptic estimates. The main

requirement one has to satisfy is the existence of sub- and super-solutions.
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One can construct constant sub- and super-solutions (assuming umin > 0 and

R > 0) for any Λ ≤ 0, but for positive cosmological constant one has to demand

2R

(D − 1)(D − 2)(D − 3)µ
(
R

2Λ
)

D−3

2 > 1 . (4)

Interestingly, this last condition reduces in the four-dimensional case (which can be

included) to the condition from the above table for the existence of the solution

when Λ > 0 (R asymptotically approaches 2).

Since according to mathematical results any manifold (including compact ones)

of dimension greater than or equal to 3 can be endowed with a complete Riemannian

metric of constant negative scalar curvature12,13 one should also consider thatR < 0

for our D−2-dimensional spatial hypersurface. However, one can construct constant

sub- and super-solutions only for negative cosmological constant.

5. Conclusion

We have derived the generalization of the Penrose–Tod equation to higher dimen-

sional Robinson-Trautman spacetimes including cosmological constant and pure

radiation. Using several mathematical tools we have proved the existence of its so-

lution for any Λ ≤ 0 and for R > 0. The limitations arising for positive Λ are

naturally related to the more complicated horizon structure of relevant spacetimes.
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