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The Scalar Curvature of a Causal Set
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A one parameter family of retarded linear operators on scalar fields on causal sets is introduced.
When the causal set is well-approximated by 4 dimensional Minkowski spacetime, the operators are
Lorentz invariant but nonlocal, are parametrised by the scale of the nonlocality and approximate
the continuum scalar D’Alembertian, �, when acting on fields that vary slowly on the nonlocality
scale. The same operators can be applied to scalar fields on causal sets which are well-approximated
by curved spacetimes in which case they approximate �−

1

2
R where R is the Ricci scalar curvature.

This can used to define an approximately local action functional for causal sets.

PACS numbers: 04.60.-m, 04.60.Nc

The co-existence of Lorentz symmetry and fundamen-
tal, Planck scale spacetime discreteness has its price: one
must give up locality. Since, if our spacetime is granu-
lar at the Planck scale the “atoms of spacetime” that
are nearest neighbours to a given atom will be of or-
der one Planck unit of proper time away from it. The
locus of such points in the approximating continuum
Minkowski spacetime is a hyperboloid of infinite spa-
tial volume on which Lorentz transformations act tran-
sitively. The nearest neighbours will, loosely, comprise
this hyperboloid and so there will be an infinite number
of them. Where curvature limits Lorentz symmetry, it
may render the number of nearest neighbours finite but
it will still be huge so long as the radius of curvature is
large compared to the Planck length. Causal Set Theory
is a discrete approach to quantum gravity which embod-
ies Lorentz symmetry [1, 2] and exhibits nonlocality of
exactly this form [3, 4].

Nonlocality looks to be simultaneously a blessing and
a curse in tackling the twin challenges that any funda-
mentally discrete approach to the problem of quantum
gravity must face. These are to explain (1) how the fun-
damental dynamics picks out a discrete structure that
is well-approximated by a Lorentzian manifold and (2)
why, in that case, the geometry should be a solution of
the Einstein equations. This is often referred to as the
problem of the continuum limit but in the context of a
fundamentally discrete theory in which the discreteness
scale is fixed and is not taken to zero but rather the ob-

servation scale is large, it is more accurately described
as the problem of the continuum approximation.

Consider first the problem of recovering a continuum
from a quantum theory of discrete manifolds . (We adopt
this term following Riemann [5] and use it to refer to
causal sets, simplicial complexes, graphs, or whatever dis-
crete entities the underlying theory is based on.) When-
ever a background principle or structure in a physical the-
ory is abandonned in order to seek a dynamical explana-
tion for that structure, the state we actually observe be-
comes a very special one amongst the myriad possibilities
that then arise. The continuum is just such a background
assumption. In giving it up, generally one introduces a

space of discrete manifolds in which the vast majority
have no continuum approximation. There will therefore
be a competition between the entropic pull of the huge
number of non-continuum configurations – choose one
uniformly at random and it won’t look anything like our
spacetime – and the dynamical law which must suppress
the contributions of these non-physical configurations to
the path integral. The following general argument shows
that a local dynamics for quantum gravity will struggle
to provide the required suppression. Consider the parti-
tion function as a sum-over-histories in which the weight
of each discrete manifold is e−S where S is the real Wick
rotated action. As we increase the observation scale, the
sum will be over discrete manifolds with an increasing
number, N , of atoms. If the action is local – which in
a discrete setting translates to it being a sum over con-
tributions from each atom – then it will grow no faster
than N times some constant, α, and so each weight is
no smaller than e−αN . If the number of discrete mani-
folds with N atoms grows faster than exponentially with
N , and if the majority of these discrete manifolds are
not continuum-like then they will overwhelm the parti-
tion function and the typical configuration will not have
a continuum approximation. Even when the number of
discrete manifolds is believed to grow exponentially, en-
tropy can still trump dynamics as was seen in the lack of
a continuum limit in the Euclidean Dynamical Triangu-
lations programme [6–9]. Causal Dynamical Triangula-
tions do better, see e.g. [10–13], by restricting the class
of triangulations allowed in the sum.

In the case of causal sets the number of discrete man-
ifolds of size N grows as eN

2/4 [14] and a local action
would give causal set theory little chance of recovering
the continuum. So the nonlocality of causal sets holds out
hope that the theory has a continuum regime and indeed
there exist physically motivated, classically stochastic dy-
namical models for causets [15] in which the entropically
favoured configurations almost surely do not occur and
those that do exhibit an intriguing hint of manifold-like-
ness [16].

However, nonlocality poses a danger when it comes to
the second challenge of recovering Einstein’s equations.
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If we assume that a discrete quantum gravity theory does
have a 4 dimensional continuum regime, and if the theory
is local and generally covariant, then the long distance
physics will be governed by an effective Lagrangian which
is a derivative expansion in which all diffeomorphism in-
variant terms are present but higher derivative terms are
suppressed by the appropriate powers of the Planckian
discreteness length scale, l:

Leff√−g~
= a0l

−4 + a1l
−2R+ a2R

2 + . . . (1)

where R is the Ricci scalar, a1 and a2 are dimensionless
couplings of order 1 and the dots denote further curva-
ture squared terms as well as cubic and higher terms.
The coefficient of the leading term, a0, is also naturally
of order 1 which would make it 120 orders of magnitude
larger than its observed value. However, that would also
produce curvature on Planckian scales and so would not
be compatible with the assumption of a continuum ap-
proximation. In a discrete theory the question of why the
cosmological constant does not take its natural value is
the same question as why there is a continuum regime at
all and we must look to the fundamental dynamics for its
resolution. Assuming there is a resolution and a contin-
uum regime exists, locality and general covariance then
pretty much guarantee Einstein’s equations due to the
natural suppression of the curvature squared and higher
terms compared to the Einstein-Hilbert term.
So, Lorentz symmetry and discreteness together imply

nonlocality but nonlocality blocks the recovery of General
Relativity and if causal sets were incorrigibly nonlocal,
this would be fatal. Suppose, however, that the nonlocal-
ity were somehow limited to length scales shorter than a
certain lk which could be much larger than the Planckian
discreteness scale, l, but yet have remained experimen-
tally undetected to date. There is already evidence that
this is possible and indeed causal sets admit construc-
tions that are local enough to approximate the scalar
D’Alembertian operator in 2 dimensional flat spacetime
[17, 18]. We add to this evidence here by exhibiting a
family of discrete operators that approximate the scalar
D’Alembertian in 4 dimensional flat spacetime. Further,
both the 2-d and 4-d operators, when applied to scalar
fields on causal sets which are well described by curved
spacetimes approximate � − 1

2R, where R is the Ricci
scalar curvature. We use this to define an action for a
causet which is approximately local, taking a major step
towards defining a viable quantum dynamics for causets.
Details of the derivations will appear elsewhere.
We recall that a causal set (or causet) is a locally finite

partial order, i.e. it is a pair (C,�) where C is a set and �
is a partial order relation on C which is: (i) reflexive: x �
x; (ii) acyclic: x � y � x ⇒ x = y and (iii) transitive:
x � y � z ⇒ x � z, for all x, y, z ∈ C. Local finiteness is
the condition that the cardinality of any order interval is
finite, where the (inclusive) order interval between a pair

of elements y � x is defined to be I(x, y) := {z ∈ C | y �
z � x}. We write x ≺ y when x � y and x 6= y. We
call a relation x ≺ y a link if the order interval I(x, y)
contains only x and y: they are nearest neighbours.
Sprinkling is a way of generating a causet from a d-

dimensional Lorentzian manifold (M, g). It is a Poisson
process of selecting points inM with density ρ so that the
expected number of points sprinkled in a region of space-
time volume V is ρV . This process generates a causet
whose elements are the sprinkled points and whose order
is that induced by the manifold’s causal order restricted
to the sprinkled points. We say that a causet C is well
approximated by a manifold (M, g) if it could have been
generated, with relatively high probability, by sprinkling
into (M, g).
We propose the following definition of a discrete

D’Alembertian, B, on a causet C that is a sprinkling,
at density ρ = l−4, into 4-d Minkowski space M

4. Let
φ : C → R be a real scalar field, then

Bφ(x) :=
4√
6l2

[

− φ(x)

+(
∑

y∈L1

−9
∑

y∈L2

+16
∑

y∈L3

−8
∑

y∈L4

)φ(y)
]

, (2)

where the sums run over 4 layers Li, i = 1, . . . , 4,

Li := {y ∈ C : y ≺ x and n(x, y) = i+ 1} (3)

and n(x, y) := |I(x, y)|. So, for example, layer L1 is the
set of all elements y that are linked to x and as described
above, they will be distributed close to a hyperboloid that
asymptotes to the past light cone of x and is proper time
l away from x. This sum will not in general be uniformly
convergent if it is over the elements of a sprinkling into
infinite M

4 so we introduce an IR cutoff, L >> l, by
embedding C in M

4 and summing over the finitely many
elements sprinkled in the intersection of the causal past
of x and a ball of radius L centred on x.
Now let φ be a real test field of compact support on

M
4. If we fix a point x ∈ M

4 (which we always take to be
included in C) and evaluate Bφ(x) on a sprinkling into
M

4, its expectation value in this process is given by

B̄φ(x) := E(Bφ(x)) =
4√
6l2

[

− φ(x)

+
1

l4

∫

y∈J−(x)

d4y φ(y) e−ξ(1 − 9ξ + 8ξ2 − 4

3
ξ3)

]

, (4)

where ξ := l−4V (x, y), V (x, y) is the volume of the causal
interval between x and y and there is an implicit cutoff
L, the size of the support of φ, on the integration range.
It can be shown that this mean converges, as the

discreteness scale is sent to zero, to the continuum
D’Alembertian of φ,

lim
l→0

B̄φ(x) = �φ(x) (5)
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and that B̄φ(x) is well approximated by �φ(x) when
the characteristic length scale, λ, on which φ(x) varies is
large compared to l. B̄ is therefore effectively sampling
the value of the field only in a neighbourhood of x of size
of order l and the mean, at least, of B is about as local
as it can possibly be, given the discreteness.
To see roughly how this can happen, notice that the in-

tegrand in (4) is negligible for ξ > α4 where α is such that

e−α4

<< 1. The significant part of the integration range
therefore lies between the past light cone of x and the
hyperboloid ξ = α4 and comprises a part within a neigh-
bourhood of x of size αl – whence the local contribution
– and the rest which stretches off far down the lightcone.
It is this second part of the range which threatens to in-
troduce nonlocality but because it can be coordinatized
by ξ itself and some coordinates ηa on the hyperboloid
the integration over it will be proportional to

∫

d3η

∫ α4

0

dξe−ξ(1− 9ξ + 8ξ2 − 4

3
ξ3)φ(ξ, ηa) . (6)

If φ is nearly constant over length scale αl, the ξ integra-
tion is close to zero and the contribution is suppressed.
The fluctuations in Bφ(x), however, are a different

matter: if the physical IR cutoff L is fixed and the dis-
creteness scale sent to zero, i.e. the number of causet ele-
ments N grows, simulations show the fluctuations around
the mean grow rather than die away and Bφ(x) will not
be approximately equal to the continuum �φ(x). To
dampen the fluctuations we follow [18] and introduce an
intermediate length scale lk >> l and smear out the ex-
pressions above over this new scale, with the expectation
that the inhering averaging will suppress the fluctuations
via the law of large numbers. Thus we seek a discrete op-
erator, Bk, whose mean is given by (4) but with l replaced
by lk:

B̄kφ(x) =
4√
6l2k

[

− φ(x)

+
1

l4k

∫

y∈J−(x)

d4y φ(y) e−ξ(1− 9ξ + 8ξ2 − 4

3
ξ3)

]

, (7)

where now ξ := l−4
k V (x, y). Working back, one can show

that the discrete operator, Bk, with this mean is

Bkφ(x) =
4√
6l2k

[

− φ(x) + ǫ
∑

y≺x

f(n(x, y), ǫ)φ(y)

]

, (8)

where ǫ = (l/lk)
4 and

f(n, ǫ) = (1− ǫ)n
[

1− 9ǫn

1− ǫ
+

8ǫ2n!

(n− 2)!(1− ǫ)2

− 4ǫ3n!

3(n− 3)!(1− ǫ)3

]

. (9)

Bk reduces to B when ǫ = 1. Bk effectively samples
φ over elements in 4 broad bands with a characteristic

depth lk, the bands’ contributions being weighted with
the same set of alternating sign coefficients as in B. Since
(7) is just (4) with l replaced by lk, the mean of Bk(x) is
close to �φ(x) when the characteristic scale over which φ
varies is large compared to lk. Now, however, the fluctu-
ations are tamed: numerical simulations of Bk applied to
the constant field provide evidence that the fluctuations,
with L and lk fixed, get smaller as l → 0 and die off at
least as fast as N−1/2.
The operators B and Bk in both 2-d (from [18]) and 4-

d are defined on the causet C alone. If, therefore, (M, g)
is a (2-d or 4-d) curved spacetime and φ is a scalar field
on M, we can compute Bkφ(x) on a sprinkling into M
and calculate its mean. Let V2 and V4 be the volumes of
the intervals in 2-d and 4-d respectively, ξ2 := V2(x, y)l

−2
k

and ξ4 := V4(x, y)l
−4
k . Then, in the presence of curvature,

B̄
(2)
k φ(x) =

2

l2k

[

− φ(x) +
2

l2k

∫

y∈J−(x)

d2y
√−g e−ξ2

(1− 2ξ2 +
1

2
ξ22)φ(y)

]

(10)

and

B̄
(4)
k φ(x) =

4√
6l2k

[

− φ(x) +
1

l4k

∫

y∈J−(x)

d4y
√−g e−ξ4

(1− 9ξ4 + 8ξ24 −
4

3
ξ34)φ(y)

]

, (11)

in 2-d and 4-d respectively.
These expressions can be evaluated using Riemann

normal coordinates and in both cases we find

lim
lk→0

B̄
(i)
k φ(x) =

(

�− 1

2
R(x)

)

φ(x) . (12)

The limit is a good approximation to the mean when the
field φ varies slowly over length scales lk and the radius
of curvature r >> lk.
If the damping of fluctuations found in simulations

in flat space are indicative of what happens in curved
space then, for a fixed large enough IR cutoff, L, the
non-locality length scale lk can be chosen such that
l << lk << L and the value of Bkφ for a single sprin-
kling will be close to the mean. If Bk is applied to the
constant field φ = −2, we therefore obtain an expression
that is close to the scalar curvature of the approximating
spacetime.
In each of 2 and 4-d, we can now define a one parame-

ter family of candidate actions, Sk[C], for a causal set, C,
by summing Bk(−1) over the elements of C, times ~l2 to
get the units right, times a number of order one which in
4-d is the ratio of l2 to l2p where lp =

√
8πG~ is the ra-

tionalized Planck length. When the nonlocality length lk
equals the discreteness length l, Bk = B and the action,
S[C] takes a particularly simple form as an alternating
sum of numbers of small order intervals in C. Up to fac-
tors of order one, we have in 2 and 4-d respectively:

1

~
S(2)[C] = N − 2N1 + 4N2 − 2N3 (13)
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and

1

~
S(4)[C] = N −N1 + 9N2 − 16N3 + 8N4 , (14)

where N is the number of elements in C and Ni is the
number of (i+ 1)-element inclusive order intervals in C.
Because B is the most non-nonlocal of the operators

in the family, the action S[C] is a sum of contributions
each of which is not close to the value of the Ricci scalar
at the corresponding point of the continuum approxima-
tion. However, one might expect that if the curvature
is slowly varying on some intermediate scale, which we
might as well call lk, the averaging involved in the sum-
mation might perform the same role of suppressing the
fluctuations as the smearing out of the operator itself so
that the whole action S[C] is a good approximation to
the continuum action when lk is the appropriate size.
There are many new avenues to explore, including the

question of how to use the above results to define a quan-
tum dynamics for causal sets. Do the causet actions de-
fined above take account already of the necessary bound-
ary terms in the gravitational action? In 2-d, is there a
relation with the Gauss-Bonnet theorem? Can we ana-
lytically continue the action in an appropriate way [19] to
enable us to perform Monte-Carlo simulations of a quan-
tum dynamics? One of the most interesting questions is
what sort of phenomenology we might expect to emerge
from such causet actions. To answer this, we need to
know how big lk must be so that either Bk(−2) is a good
approximation to R at every point x or the action S[C]
is a good approximation to the Einstein-Hilbert action
of the continuum SEH [g]? In [18] a rough estimate is
reported that in dimension 4, lk >> (l2L)1/3. Taking
L to be the Hubble scale, that would mean that in the
continuum regime, only spacetimes whose curvature was
constant over a scale (l2L)1/3 would be able to have an
approximately local action from the fundamental theory.
One might expect therefore that the phenomenological
IR theory of gravity that could emerge from such a fun-
damental theory would be governed by an effective La-
grangian

Leff√−g~
= b0l

−4
k + b1l

−2
k R+ b2R

2 + . . . (15)

where b1 and b2 are of order 1, b0 is set to its observed
value and where lk varies with epoch and today is much
larger than the Planck scale. The phenomenological im-
plications of these ideas remain to be explored.
We began with a general discussion of discreteness and

Lorentz invariance. Let us end by pointing out that these
results have a relevance beyond causal set theory as they

provide a “proof of concept” for the mutual compatibility
of Lorentz invariance, fundamental spacetime discrete-
ness and approximate locality.
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