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FIXED POINTS AND COMPLETENESS

Z. Liu

Abstract

We give five necessary and sufficient conditions for a metric space to be complete.
Key words and phrases. Completeness, fixed point, stationary point.

1. Introduction

Characterizations of metric completeness have received much attention in recent
years. Hu [1] showed that a metric space is complete if and only if any Banach contraction
on closed subsets thereof has a fixed point. Taskovic [5] also obtained a result similar to
Hu using the notion of diametral i-contraction. Although Subrahmanyam [4] pointed
out that one cannot claim that a metric space is complete if any Banach contraction on
it has a fixed point, Zhang [7] proved that a metric space is complete if and only if each
Kannan type contraction on it has a fixed point. Weston [6] established the following.

Theorem 1.1. Let (X,d) be a metric space. Then (X,d) is complete if and only if
every uniformuly continuous function h : X — [0,00) has a d-point = in X ; that is,
hx — hy < d(z,y) for all y in X —{z}.

Park and Kang [3] gave characterizations of the metric completeness using single
valued mappings and Weston’s result.

In this paper we exetend the results of Zhang [7] and Park and Kang [3] in two
directions. We replace Kannan type contraction with more general conditions and replace
single valued mappings with multivalued mappings. In Section 2 we obtain five necessary
and sufficient conditions for a metric space to be complete.

Throughout this paper, w, N and Z denote the sets of nonnegative integers,
positive integers and integers, respectively. Let f be a self mapping of a metric space
(X,d). For z, y in X and A C X, define O(z, f) = {f"z : n € w}, O(z,y,f) =
Oz, f)UO(y, f) and 6(A) = sup{d(z,y) : z,y € A}. 2% denote the power set of X.
Define a family of functions as follows:

U ={¢: ¢ :[0,00) = [0,00) is nondecreasing, continuous on the right and
Y(t) <t for all t > 0}.

It is easy to see that the following result holds.
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Theorem 1.2. If a sequence {x,}nen C [0,00) satisfies that Tpi1 < Y(xy,) for all n
m N and some ¢ in ¥, then x, — 0 as n — oo.

2. Characterizations of Completeness

Our results are as follows:

Theorem 2.1. For a metric space (X,d), the following statements are equivalent:
(1) (X,d) is complete;
(2) If f is a self mapping of X satisfying for every z,y in X and some v in ¥

d(fz, fy) <¢(6(0(x,y, ),  6(0(z,y, f)) < oo (a)

then f has a fixed point;
(3) If f is a self mapping of X satisfying for all z,y in X and some r in [0,1)

d(fz, fy) <ré(O(z,y, f)), 6(0(z,y, f)) < o0 (b)
then f has a fixed point.
Proof. (1) = (2) For z,y in X and n in N, let z,, = f"z,y, = f"y. From (2),
for k,m > n in N we have d(fzk, fym) < ¥(6(O(zk,Ym,f))), which implies that
8(0(Znt1,Yn+1, f)) < Y(8(O(xn, yn, f))). It follows from Theorem 1.2 that §(O(zp, yn, f))
— 0 as n — oo. Therefore {x,}nen and {yn}nen are Cauchy sequences. By complete-
ness of X there is a point v in X such that z,, — u as n — oo. Note that

d(yna u) < d(yn, mn) + d(wn’ u) < ‘5(0(337“ Yn, f)) + d(xna u)

Consequently y,, — u as n — oo.
We now assert that 6(O(u, f)) = 0. Otherwise §(O(u, f)) > 0. Then for any n,
m in N, we have

d(f™u, f™u) < PO u, f™ ", f))) < 9(8(0(u, 1))
which implies that

6(0(fu, ) < ¥(8(0(u, f))) < 6(O(u, f))
It follows that

6(O(u, f)) = max{sup{d(u, f"u) : m € N},6(0(fu, f))} = sup{d(u, f"u) :m € N}( |

In view of lim,_. x, = u, for every € > 0 there exists k in N such that d(z,,u) < €
for n > k. Consequently, for each m in N and n > k we have
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d(u, fu) < d(u, @) +d(f™u, frr) < e+ P60 u, f e, f)))

€ + ¥(max{2¢,6(0(u, f)) + €})

IA A

which implies that

sup{d(u, f™u) : m € N} < e+ p(max{2¢,6(O0(u, f)) + €})
Letting ¢ — 0, by the above inequality and (c) we have

8(0(u, £)) = sup{d(u, f™u) : m € N} <¢(8(0(u, f))) < 8(O(u, f))

which is impossible. Hence 6(O(u, f)) = 0; i.e., u is a fixed point of f.

(2) = (3) Take ¥(t) = rt for all ¢ in [0,00).

(3) = (1) Suppose that (X,d) is not complete. Let X* be an isometric completion
of X. Then there exists a Cauchy sequence {x,}neny C X and a point u in X* — X
such that =, — u as n — oo. Take b=1/5 and r = 1/2. Define D, = {z:z € X and
d(z,u) <b"} for all n in Z. It is evident that X = UpeczD, and that D, is nonempty
for each n in Z. Put n(xz) = max{n:z € D,} for all z in X. Since lim; o x; = u, for
each n in N there exists a smallest k(n) such that x; € D,, for i > k(n). Define a self
mapping f on X by

fl' _ { xk(g), if n(ac) S 0
Th(n(z)+2) if n(x) >0

for each z in X . Obviously, f has no fixed point. Since fX C D;, fX is bounded. Note
that

d(z, f"x) < d(z, fz) + d(fz, f*z) < d(z, fz) + 6(f X)

for each z in X and each n in N. It follows that

6(0(z,y, f)) < d(z,y) + d(z, fz) + d(y, fy) + 6(fX) < o0

for all ,y in X. It is easy to verify that fx isin D, ;)42 for each x in X . This means
that

d(fz,u) < b™®*2 < bd(z,u) < bld(z, fr) + d(fz,u)]
It follows that for each z in X

d(fz,u) < b(1 —b)"rd(x, fz)

Consequently, for each z,y in X we have
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d(fz, fy) < d(fz,u)+d(u, fy) < b1 —b)~ [d(z, fz) + d(y, [y)]

<
< remax{d(z, fz),d(y, fy)} < r6(0(z,y, f))

that is, f satisfies (b). By (3), f has a fixed point. This is a contradiction.
This completes the proof.
As a consequence of Theorem 2.1 we have O

Theorem 2.2. If f is a self mapping of a complete metric space (X, d) satisfying (a) for
all z,y in X and some ¢ in U, then f has a unique fized point v and lim,_ o f"x = u
for each ¢ in X.

Proof. It follows from the proof of Theorem 2.1 that for each x in X, there exists a

fixed point u of f such that f"z — u as n — oco. Condition (a) ensures that f has a
unique fixed point. This completes the proof. O

In case ¥(t) = rt, for bounded (X,d), Theorem 2.2 is due to Ohta and Nikaido
[2]. The example below demonstrates that our Theorem 2.2 essentially extends the result
of Ohta and Nikaido [2].

Example Let X = (—o00,00) with the usual metric and take v(t) = rt for ¢ in [0, c0),
where 7 is in [0,1). Define a self mapping f on X by fr =rz if £ > 0 and fz =0 if
x < 0. It is easily seen that for all z,y in X,

d(fz, fy) <rd(z,y) <r6(0(z,y, f)) and 6(O(z,y, f)) < |z| + |y| < co.

Hence the conditions of Theorem 2.2 are satisfied. But Theorem 1 of Ohta and Nikaido
[2] is not applicable since X is unbounded.

Theorem 2.3. For a metric space (X,d), (1) is egivalent to each of the following:

(4) For every mapping f of X into 2* with a uniformly continuous function
h: X — [0,00) such that, for each x € X — fz, there exists y € X — {x} satisfying
d(z,y) < hx — hy, f has a fized point;

(5) For every mapping f of X into 2* —{®} with a uniformly continuous function
h:X —[0,00) such that d(z,y) < hx — hy for each x € X and each y € fx — {z}, f
has a stationary point w in X, that is, fw = {w};

(6) For every mapping f of X into 2% —{®} with a uniformly continuous function
h:X — [0,00) such that d(z,y) < hx — hy for each x € X and each y € fz, f has a
stationary point w.
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Proof. (1) = (4) By Theorem 1.1, h has a d-point = in X . Suppose that x€ fx. Then
there exists y € X — {z} such that d(z,y) < hx — hy < d(z,y), which is a contradiction.
Therefore f has a fixed point.

(4) = (5) Suppose that f has no stationary point; i.e., fr—{z} # ® forall z in X .
Take gr = fr —{x}. Then for each x € X — gz C X there exists y € gz — {2} satisfying
d(z,y) < hz — hy. In view of (4), g has a fixed point w; that is, w € gw = fw — {w},
which is impossible.

(5) = (6) is clear.

(6) = (1) Suppose that h has no d-point. Then for each z in X, there exists
y € X — {z} with hz — hy > d(z,y). Define a map f of X into 2* — {®} by
fr = {y : d(z,y) < he — hy and y € X — {z}}. It follows from (6) that f has a
sationary point x in X ;ie., {z} = fx C X — {z}. This is a contradiction. Hence h has
a d-point. By Theorem 1.1, (X, d) is complete.

This completes the proof.
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TAMLIK VE SABIiT NOKTA TEOREMLERI

ézet

Bu calismada bir metrik uzayin tam olabilmesi igin beg gerek ve yeter kogul
verilmistir.
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