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COMPARISON OF INVARIANTS FOR TRIPLES OF
HILBERT SPACES

P. A. Chalov

Abstract

In [2,3] the sequence of invariant characteristics () for the finite families of
Hilbert spaces were considered. Here we make a comparison of these invariants
among themselves. We construct some examples of triples of Hilbert spaces, which
show that each system of the first r + 1 characteristics is stronger than the system
of the first r» of them. Moreover we show that there exist triples of Hilbert spaces
which on the one hand are not quasidiagonally isomorphic, but on the other hand
they cannot be distinguished by any function g, m € N.

1. Introduction

In this paper we continue to study the invariant characteristics p,, of families of
Hilbert spaces, counsidered in [2,3]. Let us note that these characteristics appeared as
natural modification of generalized linear topological invariants (Mityagin [5,4], Zhariuta
[6,7,8]), which in their turn developed the classical approximative and diametral dimen-
sions (Kolmogorov, Pelczynski,...). Here we restrict ourselves by considering of triples of
Hilbert spaces only. Some examples of pairs of triples will be constructed to show that
each system of the first r 4+ 1 functions pu,, is a stronger invariant than the system of
the system of the first r of them. Another example represents a pair of triples, which
cannot be distinguished by any characteristic u,, but are not quasidiagonally isomorphic.
The Central Lemma describing some special finite-dimensional triples plays a crucial role,
since both examples are constructed with finite-dimentional blocks from this lemma.

2. Preliminaries

A family E of locally convex spaces E;, j = 0,1,...,r, with linear ccatinuous
injections E; 11 C E;,j=0,1,...,r — 1, will be denoted by E = [Ey, Ey, ..., E,].

As usual, we denote by l3(a), a = (a;, i € N), a; > 1, 1 € N, the weighted [5-space
of all sequences x = (§;) with the finite norm
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and by lg")(a), a = (a;,t = 1,2,...,n),a; > 1,7 = 1,2,...,n, the space of all n-
dimensional vectors x = (§;, 7 = 1, 2, ...,n) with the norm

|z Hl;")(a): (ZfQ 2) .

=1

Suppose E = [Ey, Eq,..., E;]; thenif E; =1, (a(j)) ,3=0,1,...,7, we write F =
L[a®,aM) ... a] and E = lgn)[a(o),a(l), aM)if By =13 (@), j=0,1,...,r

Two families E = [Ey, E4, ..., E,| and F = [Fy, F1, ..., F,] are called isomorphic
if there exists an isomorphism T : Ey — Fp, whose restriction on each space E; is also
isomorphism from E; onto Fj, j =1,2,...,r.

A system {z,,n € N} C FE, is said to be an unconditional basis for a family
E = [Ey, E:,...,E,] if this system constitutes an unconditional basis for each space
E;,j=0,1,...,r

By {e,} we denote the canonical basis for the family E = I[a(?,a™), ... a("] i.e
e; = (b, k € N), 1 € N,

Two unconditional bases {z;} and {y;} for families £ and F, respectively, are
called quasiequivalent if there exists an isomorphism 7 : E — F such that Tz; =
AiYo(i), ¢t € N, where {Ai} is a certain positive sequence and o : N — N is a certain
bijection.

In this case the isomorphism 7 is said to be quasidiagonal and the families E and
F' are called quasidiagonally isomorphic.

Hereafter |M| denotes the cardinality for a finite set M and +oo for an infinite
set M and 1 stands for the sequence (1,1,...,1,...) or for a finite-dimensional vector
(1,1,...,1).

For a given family E = l,[1,a®,...,a™] (or E = I1{V[1,a®,...,a(]) and for a
natural number m we define the function (which will be called m-rectangle characteristic)

o (B3 7 1) U m ' <ad? <Py, (1)

r:( ®) 5 =1,2,. ..,r;k:1,2,...,m>,t: (t;k),j:1,2,...r;k:1,2,...,m>.

A set P(1,t) = {(z,y) 11 <z <t;,72 <y < ty} is called a rectangle if 7 < t;
and 7o < tz. It follows from the definition of the function u,, (E;7,t) for the triple F
that
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pm(B;7,1) = 16{1’: (aV,a®) € P (r0,40)y)
— i (a0,0®) € [ ) P (), 10y,
i+ (aV,a )EkL:JlP(T 1)}

where 7 = (T}k),jzl,Q;: 1,2,...,m),t = (tgk)’jzl,Q,k:LQ,,m), T(k) =

(Tl(k),’rz(k)> and tF) = (t(lk),ték)) ,k = 1,2,...,m, hence the function (1) calculates,

(1),

how many points (ai i ) are contained in the union of m rectangles.

F

m

We say that the functions g, (E;7,t) and p,, (F;7,t) are equivalent and write uZ ~ p
if a positive constant o = a(m) exists such that the following inequalities

um(E;ﬂt)S/hn<F¥IaaQ, um(FHﬂt)S/Mn(E;Z,aQ
o o
hold for any 7 = (T,(k),j =1,2,...m k= 1,2,...,m> and any

7
t:(#%j:LZ””nk:LZ”Wm)

Proposition 1 (/3], Theorem 8). If families E = I3[1,a", ... a"] and
F =1[0,6M, ..., are isomorphic, then uZ ~ ut, for each m.

It follows from this proposition that if there exists m € N such that pZ % uf | then the
triples E and F are nonisomorphic.

We say that the systems (u,, (E;7,t)) and (pm, (F;7,t)) are equivalent and write
(u2) ~ (pf,) if a positive constant § exists such that the following in equalities

.U'm(E;Tvt)Sﬂm <F':7/8t)7 /»Lm(F;Tat)Sﬂm (Ez,ﬂt)

'8 B

hold for each m € N and every 7 = <T;k),j: 1,2,...,7; k:1,2,‘..,m),

t:(#%j:LZ“qu:Lluwm)

Proposition 2 ([3], Theorem 6). For the families E = L[,aM,...,a"] and F =
L[, b0, ..., 6] the following statements are equivalent:
(a) families E and F are quasidiagonally isomorphic;

(b) (uf) = (uF).

Further, we shall consider only triples of Hilbert spaces with an unconditional basis.

495



CHALOV

3. The main Results

The following statement shows that the equivalence of any finite set of character-
istics (1) lacks to provide isomorphism for arbitrary pair of families of Hilbert spaces.

Theorem 3 (cf. [1], Theorems 1,2). For each natural number m there exist triples
E =l,[1,aM,a®] and F = I,[1,b", b)) satisfying the following conditions:

(i) puf ~ uf for each 1=1,2,...,m;

(iz) wal % lppy1 -

The next theorem shows that even with the equivalence of all functions (1) the
families of Hilbert spaces need not be quasidiagonally isomorphic.

Theorem 4 (cf. [1], Theorem 3). There exist two triples E = Iy[1,aV,a®] and
F = Io[1, 60,6 satisfying the following conditions:
(iii) pE ~ pk for each m € N;

(v) (uh) % (1) -

To prove Theorems 3 and 4 we shall cite the examples which show the correctness of
these theorems. In each example infinite-dimensional spaces will be collected from special
blocks of finite-dimensional spaces.

The following Central Lemma gives a construction of such blocks.

Lemma 5. Let m be any natural number, o and 3 arbitrary numbers such that
1 < a < B. Then there exists a natural number n = n(«a,3,m) and two triples of n-
dimensional spaces E — lén)[ll, a™,a®] and F = lgn)[ll, bW 6] satisfying the followign
conditions:

(v) for each | < m the inequalities

T
Hi (E77-7t)§/'l'l (F’aaat)) (2)

r
lu’l(EaTat)S,u'l (E;a7at)a (3)

J
t= (tg.’“),j:1,2;k:1,2,...,1);

(vi) the below mentioned statement is valid for ¢ = 3 but it fails for any ¢ < B: the
inequalities

hold for any ™ = (T(k),j =1,2;k= 1,2,...,l) and any

-
pmt1 (B57,t) < gt (F; Z’Ct) ; (4)

T
Hm+1 (F;T, t) < Hm+1 <E, Zact> ) (5)
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hold for any T = <T§k),j= 1,2;k:1,2,...,m+1) and any t = (tg’”,j: 1,2;
E=1,2,...,m+1).

4. Proof of Central Lemma

First we introduce a notion of an a-dense set. Let A and B be subsets of R2.
We say that the set A is a-dense in B if for each point (z,y) € B there is a point
(Z,9) € A such that

<z < \az, %Syéx/ag-
(0%

3

We take any natural number 8 m, arbitrary numbers o and 3 such that 1 < o < s,
and arbitrary positive numbers X; and Y;. Denote by X5, X3,Y5,Ys, ..., Ys,, numbers
defined by the following formulae: X; = 3°~1X;, i = 2,3; Y, =077, =2,3,...,2m.

In the first quadrant of the plane zOy we draw two “combs” each of them has m
“cogs”. The bases of these combs are parallel to the axis Oy and the cogs are parallel to
axis Oz (see Figure 1).

Yz,f L R —
Yomp f----1
Yoma p---mq-mmnae-- :
Yo - —%

e %
A —

/%) S I ]

Y, [-e--d ]

0 x X, X

Figure 1: The block

On these combs we select a bounded a-dense point set M such that all the points
(X:,Y;), 1=1,2,3; j =1,2,...,2m, are contained in M.

Suppose M consists of (n — 1) points, then we can write M = {(z;, Yi)y T =
1,2,...,n—1}. We take else two additional points N;(&,¢) on the left comb and Nao(&,9)
on the right comb.
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Let us define the vectors o) = {am,z = 1,2,. ..,n} and b = {b,,(;j),i =
1,2,...,n}, j = 1,2. By definition, put a(l) bgl =xz;,a E = b —yi,i =1,2,...,n—
1; all) = =z, a'? = y,bgl1 = :r,bng) =9.

Suppose E = 1§ [1,aV,a®] and F = 1[0, 60, b)) We assert that the triples
E and F satisfy the conditions (v) and (vi).

Indeed, let | be a natural number less than or equal to m. Let us take arbitrary

T = ( (k) , =12 k=1,2,. l), t = (t;k),jzl,Z; k:1,2,...,l), and show that
the inequality (2) holds.

Since agj) = bl(-j),j = 1,2, for all + = 1,2,...,n — 1, we can see that there is
nothing to prove as

!
(ag)’a;z)) AR (T(m,t(k)) ,
k=1
where 7(k) = ( (k ) tk) = (tgk),tgk)> k=1,2,...,1.

Supporse (agl ,a%2)> € U P ('r(k), t(k)) ; then the following two case may occur:
k 1

1) there is ( a; (2)) =4 UP( (k),t(k)) on the left comb;

2) all points (ai ,ag )) situated on the left comb are contained in the set

Ll:J ( (k) tk))

In the case 1, taking into account a-density of M , we get that there exists a point

!

<b§1>, b§2>> e [P(%, atFI )\ P (T(k)’t(k))]

on the left comb. Therefore, in this case the inequality (2) holds.
In the case 2 it will be observed that there is ¢ such that

.
(Xo,Y2;) € U P (T(k)’t(k)) )
k=1

Indeed, each of the combs has m cogs and number of the rectangles P (T(k),t(k)) is less
than or equal to m. Hence, there exists ¢ such that both points (X5,Y;) and (X2,Y;11)
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are contained in one of the rectangles P (T(k),t(k)) . Since the points (X2,Y;) € M for
any ¢ = 1,2,...,2m, there exists

l
(59,67) € UIPC atnp (<0, 0]
k=1

on the right comb. Whence, in this case the inequality (2) holds too.

By analogy we can get that the inequality (3) also holds. This completes the
proof of the condition (v). Before starting with the condition (vi) we note that the

inequalities (4) and (5) are valid obviously as ¢ = 3. Therefore to prove the condition

vi) we take an arbitrary c such that 1 < ¢ < 8 and put r®) < Xi,k=1,2,...,m+1;
1

tgk) = Xqg,k = 1,2,...,m; tgmﬂ) = Xi; 7'2(1) = T2(m+1) < Yl;'rz(k) = cYor_2, k =
2,3,...,m;tgk) =You-1,k=1,2,...,m; tgmﬂ) = Y5n_1. Then we have

m+1
(agl),a?)) € U P (T(k),t(k))
k=1
if and only if (agl), agz)) is a point on the left comb, and
m+1 (k)
(") e U P (T——,ct(’“))
k=1 ¢

if and only if (bgl), bgz)) is a point on the left comb.

Hence, according to the definition of the vectors al¥),b(), j = 1,2, we have

m—+1
mi (B, t) = |{i: (a0} e [ P (r®, e}
o B30 = 12 o1a?) € U (0.00)
O N LA T
> i (bi ,b; ) € kL_JlP<T,ct(k)>}|=um+1 (F;E,ct>.

This means that the inequality (4) is not true if ¢ < 3. Lemma 5 is proved.

Remark. It follows from the proof of Lemma 5 that we can constuct a block beginning
at any point (X;,Y7) from the first quadrant of the plane zOy.
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5. Proofs of Theorems 3 and 4

Let mp be an arbitrary natural number, o > 1 an arbitrary number. Let us
take an arbitrary sequence (8, k € N) T +oo such that 3; > o and arbitrary positive
numbers X and Y.

We define the sequence (Y(k), k € N) by the folllowing formulae: Y1) =Y, Y (¥) =
BB YR for all k=2,3,....

Taking into account Remark for each k¥ € N we apply Lemma 5 with m = mg,
B =0, X1=X,Y; =Y®,

Thus, we have the sequence of natural numbers (ng, k € N) and two sequences of
finite dimentional triples (E®) = 1{™/[1, aM) (k), a® (k)]) and (F®) = 1{™)[1, 5O (k), 5@ (k)])
where a (k) = (@Y (k),i = 1,2,...,m4), b (k) = (0 (k), i = 1,2,...,n1),5 = 1,2.

We define the sequences al/) = (al(.j),i € N) and bU) = (bgj),z' € N),j=1,2, by

k—1 k
the following formulae: agj) = agj)(k), bl(»j) = bgj)(k),j =1,2,if Zm <i< Zm, where
1=0 1=0
k—1
TLOZO, s:i—an,k € N.
1=0

By the choice of the numbers X,Y and by the definitions of the sequences
(Y®))  aD b9 j = 1,2, the following linear continuous injections I (@) C 1y (aW) ¢
l5 and [y (b(g)) Cl (b(l)) C Iy hold. Therefore, we have two triples E = lg]l,a(l),a(z)]
and F = [o[1,6() p)].

The condition (7) follows now from the condition (v) of Lemma 5. Since each comb
has mg cogs the condition (vi) of Lemma 5 implies the condition (i7). By Proposition 1
we deduce that the triples £ and F' are nonisomorphic. This example proves Theorem
3. .

If we define the sequence (Y(*) k € N) by the following formulae: Y1) = v,y (k+1) =
ﬁik_IBkHY(k) forall k& € N and then apply Lemma 5 with m =k, 3 = B, X, = X,Y; =
Y ) we obtain an example which proves Theorem 4.

Indeed, in this case, the number of cogs in each pair of combs increases together
with the number of blocks. Therefore the condition (iv) follows from the condition (vi)
of Lemma 5.
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3’LU HILBERT UZAYLARININ, iINVAZiAUTLARININ
KARSILASTIRILMASI

Ozet

Bu gahigmada [2] ve {3] nolu kaynaklarda tamimlanan invariantlar kendi aralarinda
kargilagtirilmig ve her mertebedeki invaziantlarin farklihklar ayriminda 6nem tasidig
gosterilmigtir.
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