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APPLICATION OF THE RESIDUE METHOD TO A
MIXED PROBLEM

Y. A. Mamedov & M. Can

Abstract

In this paper, the residue method of separation of variables is applied to a
mixed problem which includes the flow of a stratified compresslble fluid and inner
gravitational waves of a stratified incompressible fluid for special values of the
coefficients of the equation. To apply this method one defines two auxiliary problems.
The first one is a spectral problem and the second is a Cauchy problem. Using the
solutions of auxiliary problems, an existence and uniqueness theorem is proved for
the given mixed problem. an explicit formula for the unique solution is also given.

Introduction

In this paper the following mixed problem will be studied by the residue method

of the seperation of variables:

(e (3)o(3)
(z,t) €Q={(z,0)]0 <z <1, t >0}

1y
Witzo =¢r(z) (k=1,2,...,9), 05z <1,

811y
+Biim—5—=
=0 T

2 81y
Ui(U)EZ[am’W } =0 (i=1,2),t>0,
j=1 =1

where

Ko 2 2
M(z) = Miz*, N(z) =) Np¥, P(z) = Piz*
k=0 k=0 k=0

(2)

3)
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and

Mk(k = O, 1, N ,Ko), Pk(k = 0, 1,2), aijﬁij(i,j = 1,2)

are complex constants with Mg, # 0, No # 0, P, = 1. Also K;,0 < Ky < 4 is an
integer, and ¢ = max(2, Ko). In the above, the function u(z,t) is the unknown of the
problem and the initial data ¢r(z)(k =1,2,...,q) are given continuous functions.

It is easy to see that in dimensionless quantities, for

Ko=4,My=e* My =Ny =Ny=1,My=My=M3s=N, =P, =P, =0

Eq. (1) is reduced to the one dimensional equation of dynamics of an exponentialy
stratified compressible fluid [2,5]:

0% 52

€ %—w(um—u)—um=0. (4)

For

KQZQ,M2=N2=N0=1,M0=M1=N1 :P0=P1 20

Eq. (1) gives the equation of dynamics of one dimensional inner gravitational waves of a
stratified incompressible fluid [2]:

82
= 75 (Uzz — u) — Ugy = 0. (5)
ot

Our investigation will cover both of these problems and the results obtained for
these equations will be noted in the following sections. Let us specify what we understand
of a classical solution:

Definition The classical solution of the problem (1)-(8) is a function u(z,t) which has
continuous derivatives

o*tiy O*u
Y 0<ki<2), LY k=12, ..
othor Skis2)mp (k=120

in the domain Q0 and satisfies the equations (1)-(3) in the ordinary sense.
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1. Auxiliary Problems and Facts

To apply the residue method to our problem, following [7(see p.211, 239)], let us
define the auxiliary spectral problem

d
U(y) =0 (1=1,2) (7)
and the Cauchy problem
d d
01z
W =¢k(.’17) (k=1,2,,q), OS.’L‘S]., (9)
t=0

where )\ is a complex parameter.

Let D(P) be the subset of C?([0,1]) of functions satisfying the boundary conditions
(3). Apperently D(P) is the domain of the operator P generated by the differential form
P () and the boundary conditions (3). Let ¢(z) € DX (P) whenever P! (L) ¢(z) €
D(P) (:=0,1,...,K) where

P° (%) =1, D°P)= D(P), and P! (%) = pi! (%) P (%) :

Assume that the following condition holds:

1°. The boundary conditions (3) are regular in Birkhoff sense [6 (see pp. 120-130)].
Then it is known that [7 (see p. 249 Lemma 1.)] the eigenvalues of the auxiliary spectral
problem (6)-(7) form a countable set {),} and these eigenvalues have the asymptotic
representation

A = —(2m0)? [1 +0 G)] . (10)

And it is also known that for all values A # A, (v =1,2,...) of the parameter A and for
the arbitrary function h(x) € C([0,1]) the nonhomogeneous problem

has a unique solution and this solution has the integral representation
1
y(xz, A\ h) = / G(z, &, \)h(&)dE, (11)
0
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where G(z,£, ) is the Green function of the spectral problem (6)-(7), and is analytic in
) outside the set {A}. This set is the set of poles for the Green function G(z,§,\) and
for large values of |A| and in some é-neighborhood of the poles ), , this function has the
estimation

8’“G(33, &)
Ozk

] <OP' (k=0,1,2), (12)

where C > 0 is a constant.

It is also known that [5], [7 (see p.145 Thm. 10)] the function h(z) € D(P) has
the expansion

ha) =Y ress, /0 Gz, €, h(£)dE. (13)

" 2. Discussion of the Cauchy Problem
Let F(w,)) be the characteristic polynomial of the Eq.(8):

F(w,\) = M(w) — AN(w),

and R(F,F,) is the resultant of the polinomials F(w,\) and F,(w, ). Simple manupu-
lations show that R(F,F,) is a polynomial of A of degree ¢ + 1 and the coeflicients of
the highest degree terms are

No(NE — 4NgN,), for Ko =0,1,2,
—M3N22(N12 - 4NON2), for KO = 3,
4MZN§(N12 — 4NON2), for KO =4.

Let us further assume that

2°.N2 — 4NoN, # 0.
Then the equation R(F, F,) = 0 has ¢g+1 (g = g(Kj)) roots, counting the multiplicities,
AD AR At where

| 2, for 0<Kp<1,
7= K(), for 2§K0S4

In the neighborhoods of points A & {A(® = 0o, \(D A(?) . AT} there exist g
different analytic functions [4] wi(X),w2(A),...,we(A) such that

AN [T, (@ — wi(N)), for Ko =0,1,.

F(w,\) =14 (Ma = ANo) T2, (w — wi(N)), for Ko = 2,
MKO HiKzol(w - Wz(A)), for Ko = 3,4.
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Remark 1. For Eq. (4) one obtains Ky = 4,

R(F,F,) = —163\[4e2 X + (A — 1)?)]?,
A = 0,A®) = \®) = 92 (—1 e 1) +1,

and
A = \6) = 9.2 (—1 +/z2 - 1) 1,
whereas for Eq. (5), Ko =2 and

R(F,F,) = -4+ (1 =222 =003 = )® =1,

It is not difficult to see that for 3 < Ky < 4, the Cauchy problem (8)-(9) has a
unique solution, and the solution is analytic in A for A # oo according to the Poincare
theorem [3(see p. 20)]. This solution has the representation

q(Ko) |q(Ko)
Wk (A
Z(ta/\a(bla"'a(bq) - 5 I/I‘ifzg\))(bk(x) eLUk(/\)ta (14)
k=1 | j=1

where W () is the Wandermond determinant of the quantities w1 (), ..., wq(X), Wjg() is
algebraic complement of its (j, k)’ th element, and A(M, A2/ /A4T1) are the removable
singularites for the function z(¢, A, ¢1,...,¢k,) in (14).

It is also not difficult to show that for Ko = 4, the point \?) = oo is a critical
singularity for the functions w; (i = 1,2, 3,4), whereas the functions w;(u?) (i = 1,2,3,4)
are analytic in the neighborhood of the point p = co and has the asymptotic representa-
tion

1
wi(p?) =+ w® +0 (;) (i=1,2,3,4), (15)
I

where

N1My — NoM;
2N2N4 ’

1
WP = o) = 0,009 = IV (—Nl +4/N? - 4N0N2> :

N
IO Oy S KO S O
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Remark 2. For Eqg. (4} one obtains

wrall?) =10+ 0 G) wsaut) =2V 40 G) .

If Ko =3, the functions wy(g®} {i = 1,2,3) are analytic in the neighborhood of
the point g = oo and has the asymptotic representation

wild) = witA +J“*+cr( ) (i=1,23), (16)

whern

(y NE )y 1] _ 0. (o - N[J"‘f:t Sy IH'?EME
I||.'| = M_3|U2 ""?3. .hl-'-l 4"!1:1 [
i
2

3 1 J
o v 2 T
s g = —MNy £ N — AN :
: 2N ( 1 1 Yo 2)

Let us consider the case for 0 < Ky < 2. Away from the points A = oo and A =
twe take Ms; =0 for Ko < 2], the Cavcliy problem (8)-(9) has a unigue solution. Tlm
solution is analytic in A and has the representation (14) with g{ Ky) = 2. Furthermore
the points A% =1,2,...,g 4 1) other than A = My/Ny are the removable singularities
for the function z(6, 5, dy, e b in (14]

By standard reasoning it possible to deduce that [4] if My Nz — N0 # 0, the
funetions wy(A)(i = 1.2} are analvtic in the neighborhood of the point A = M3 /N: and
thiz point is a simple pole for the first and a removable singularity for the second one.
For A — M3/Ns these functions have the asymptotic representation

[1]
wilA) = ﬁ;_—mm (i=1,2),

where

uj” o J"l.fmj'lrfgl"‘r.—d M Ny c..él'l

If My Ny = N My =0, which is possible when Ky = 2, impossible when Ky =1,

and s the case when Ky = 0, then the paint A = Ma /N i the braonch point for the

functions wilA) (1 = 1,2} but the functions w; (E‘r,:—’}:} (i = 1,2) are analviic in the
neighborhood of the point = = 0 and for z = 0, has the asyvmpiotic representation

— 2 w!]
& (‘ll-'fg _ -4 ) =1 4N (i= 112}1
Nz .

= {].

-
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where

- [No Mo —
u)1(1) _ (—1)7’\/M, (i=1,2).
Ny

Finally the functions w;(A) (¢ = 1,2) are analytic in the neighborhood of the point
A =oc and for A — oc they have the asymptotic representation

v =w® 40 (%) (i=1,2), (17)

where

1 /
wi?z) = m (—Nl + le - 4N()N2> .

Hence the point A = 0o is a removable singularity for w;()\) (i = 1, 2)

Remark 3. For Eq. (5) the point A = 1 is the branceh point for the functions w;())
(i = 1,2) but the functions w;(1 — 2?) i = 1,2) are analytic in the neighborhood of the
point z = 0 and for z — 0. has the asymptotic representation

1)

will=2%) =2 1+ 0(1), wM = (-1)'V/=1 (i = 1,2).

z

However the point A = oo is a removable singular point for the functions w;(\) (i = 1,2)
and for z — oo, and they have the asymptotic represntation

wiA)=w® +0 G) , Wl = (1), (i =1,2).

All of the reasonings above reveal that, in all cases (0 < Ky < 4)) the solution
z(t,A) of the auxiliary Cauchy problem (8)-(9) has a finite number of singular points

AD A® 2@ A@HD and away of these points the solution can be represented by
the formula (14). Now let us prove that the points A9, (i = 0,1,2,...,q + 1) are all

) 7 2

singular points of univalent character for the solution z(¢{,)). The above assertion is
evident for the points except the point A = co when Ky = 4, the point \ = % when
Ko =2 and Ny M, — M;N; =0, and the point A =0 when Ky = 0. Only these points
are brach type (more precisely algebraic) singular points, and all others are singularities
of univalent character for the functions w;(A). According to the cyclic property of the
roots of the algebraic equations [1], the value of the function wy()), completing one
revolution on a closed path surrounding a brach point, takes on the value of another root

we, (A) (1 < sp < gq). Hence rewriting the solution z(¢,\) in (14) as

At N) = (e“’l(’\)t . ewq“)t) VYN [b1(2), - .., dg(2)]T
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where

i q
v =l P0)||
k=1
is the Wandermond matrix and [ ]7 is for the transpose, after a complete rotation around
a brach point, the matrix V() transforms into a new matrix V())-J. Here J is a matrix

whose (s, k) (k=1,2,...,q) elements are one, and all other elements are zero. Since

(ewsl()\)t’ o ,ewsq(z\)t) -J_IV_I()\) _ (ewl(/\)t7 o ,ewq(x\)t) V~1()\)’

then in the domain of definition, the function z(¢,)) is a univalent analytic function of

A

Le us summarize the results of this section.

Lemma 1. Let the condition 2° holds and 3 < Ko < 4. Then for all values of the
spectral parameter X, except A = oo, the auziliary Cauchy problem (8)-(9) has a unige
solution z(t,\). This solution is analytic every where except at the finite number of roots
A (i =0,1,2,...,q) of the resultant R(F,F,), and has the integral representation (14).
The points \® = oo, and XD (i = 1,2,...,q) are isolated singularities of univalent
character of the solution z(t,\). While at the points XV (i = 1,2,... ,q), the solution has
removable singularities, the point \(©) = oo is an essential singular point.

Lemma 2. Let the condition 2° holds and 0 < Ko < 2. Then for all values of the
spectral parameter X\, except A = 0o, and \ = %, (M; =0 when Ko < 2), the auziliary
Cauchy problem (8)-(9) has a unige solution. This solution is analytic everywhere except
at the finite number of roots A\ (i = 0,1,2,...,q) of the resultant R(F,F,, and has
the integral representation (14). The points M9 = co, and AV (i = 1,2,...,q) are
isolated singularities of univalent character of the solution z(t,\). Furthermore, all of

the singular points, ercept the one at A = %—22 € {\D} are removable singularities. If

MiNy — N1 M3 # 0 then the point A = % is an essential singular point. On the other

hand if MiyNy — NyMy = 0 then the point A = %—22 15 an essential singular point if
MyN; — NoMs # 0, and a removable singularity if MoNs — NoMy = 0 for the solution

z(t, A).
Remark 4. As it is seen from Lemma 2, the solution z(¢,A) of the auxiliary Cauchy

problem associated to Eq. (4) is analytic everywhere except points A(?), ..., A\(5) and has
the representation given in Eq. (14). At the points,

A =0, 2B = \O®) =1 _ 92 (1 +e? — 1) ,
AW = \6) =1 _ 92 (1 — ez = 1)
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the solution z(t,)) has removable singularities, while at the point A(®) = oo it has an
essential singularity.

Remark 5. As it is seen in Lemma 2, the solution z(¢,A) of the auxiliary Cauchy
problem associated to Eq. (5) is analytic everywhere except points A(®), X(1 A and
has the representation given in Eq. (14). At the points, A(?) = co and A() = 0 the
solution z(¢, A) has removable singularities, while at the point A(?) = 1 it has an essential
singularity.

Finally from the explicit equations for W(\) and Wj;(\) and expansions (15)-(17)
let us state the estimates for large |A| of the ratio Wjx(A)/W()) in the formula (14): for
Ky =4.

Wlk()\) W,k(x) C
Wa (V| _ WM C . _ .
oo | < g =09 [ | < g 012
Wak(N) c _
WO < BE (k=1,2), (18)
for Ky = 3,
le()\) _C'_ . ij()‘) - b= .
T < w12, [ <o G-Lak=2)
WB’“&?] <57 (k=23) (19)
and finally for 0 < Ky < 2,
IWWJ/’Z(AA C (j,k=1,2). (20)

3. The Method of Residue

In this section, along the general scheme given in [7 (see chapter 5.)], first a formal
solution to the problem (1)-(3) is constructed and the uniqueness theorem is proved, then
in the basis of the investigation of the appropriate formal series for the derivatives of the
solution we are seeking for, the existence of the clasical solution is proved.

Let us consider the following linear operators from C([0,1]) to D(P);

Hys(h) = hys(z) =
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1
ET‘eS)\V)\s/ G(z,&,)h(&)d€ (s =0,1,2,.. ;0 =1,2...).
0

According to the expansion formula (13), if h(z) € D(P) then

> huo(z) = h(z). (21)

Let x, be the order of the pole A, of the Green function G(z,&, \). Let us assume
that ¢r(z) € C ([0,1]) (k=1,2,...,q), and the problem (1)-(3) has the classical solution
u(z,t). applying operators H,s (s =0,1,...,x, — 1) on the both sides of the identities

(8o (3) (3) s

k—1
] 6t’°(§ ,t) $k(€) (k=1,2,...,9)

t=0

one obtains the identities

M (i) s (2,1) = <%> resy, A° /01 Glz, £, )P (-(%) w(E, t)de =
=N (%) resy, A° /0 G [P (%) w(E,t) — (g, 1) + Au({,t)] de =
N (%) resy, \° [u(m,t) + A/Ol G(x,g,,\)u(g,t)dg] =

N((i)u,,sﬂ(a:,t) (5=0,1,. . x0 — 1), (22)
d*lu, s(x,t
WS*‘) = bee(@) (k=1,2,...,q). (23)
t=0

It is not difficult to see that

1
resxy (A — Ay )X / G(z,&, Mu(&,t)dE = 0.
0

Hence
Z CJ =W)X Ty, (z,t) = 0, (24)
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where (7 = REJHL—:'J From Eq. {24) one obiains

=1

Ui, (mth 2 = ¥ €2 (=2 P Tuyy(z, 1),
i=0

Substituting this result in the nght hand side of (22) for 2 = y, — 1 and regarding the
obtaimed eguations together with equations (23), as the Cauchy problem for the system of
linear differential equation for the unknown funetions wen(e, t), we (e, t), . .. 2ty —1 Ty 2]
one ohtains

M (%) Upa[Z,8) = N (%) Upasi (28] =0 (s=0,1,... % - 2),

K1
M (g) bene-s{n8)+ 3 C (AP0 (;) s 2,) =0 (25)
d* " u,, (2, £)

II:"I'-_I' ='¢'*.I-'i[£] {k — 1:2:' "rq': & ='I:I'1 Il"-1:'i:J.- et ]:I- (H}

ta=i

It 15 not difficult to see that the solution of the above Cauchy problem is unique
for 3 = Kp = 4. When 0 < Ky < 2, for arbitrary functions @y .z}, the necessary
and sufficient condition for th existence and uniqueness of solution is that the number
Maf/Ny (M =0 when Ky < 2) is not an eigenvalue of the matrix

0 1 1 0

0 i | ]

L] Lt 1] 1
—C‘,‘i'_[—.]'-..-:l":" _f-'l;:-.,i'j'u}h_l 'Cip{""-:"-u)x' =3 _C-;::_.{_-llp'}

It can be shown that this latter condition is eguivalent to Mo /N: & {X.}.

For the above reasons if 3 < Kg <4 arif 0 < Ky = 2 and Mz/Ne & {A.), the
problem {25), [26) has a unique solution. We are going to prove that this solution can be
given by the formula

i
sl ) = T'ﬂn.,-"-“f Glx, £, A )zl Ay, oo b, {27)

i
where the function z{f, A, ¢y} is the solution of the auxiliary Cauchy problem (8),(8) given

by the formouola [14),
By direct caleulation one obtains
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d d s !
M E) uys(z,t) — N (E) Usst1(z,t) =resy, A /0 G(z,&, ) x

d d
X M(E) Z(t,/\,¢1,.,.,¢q)—)\N (a) Z(t,)\,¢1,...,¢q)] dé'EO
(s=0,1,...,x, — 2)

1
d w1 r
M () s+ 3 Ch(-AIN (&) wite=
=
' d
Ere%/o G(z,€,A) [/\X"‘IM (E) z(t,/\,¢1,...,¢q)+]

Xv—1
+ 3 G (N TINN (ai) 2t X1, 0) | dE =

- t
Jj=0

d 1
N <£) TES), /0 G(l‘,&, A)(A — )\V)sz(t’ )\,¢1’ el ¢q)d£ =0.

According to the Lemma 1 and Lemma 2, the singular points of the functions
z(t, A, ¢1,...,¢4) are all removable when 3 < Ky < 4, when 0 < Ky < 2 all of the
singularities with the exception A = M;/N, are removable and the essential singular
point A = M3/N; is not in {)\,}. Hence

d*lu, o(z,1)
dtk—l

dk—l
sz(t,)\,¢1, N ,d)q)

1
Eres,\u/\s/ G(z, &, N) x
=0 0

d€ = ¢rs (k=1,...,9).

t=0

By assumption u(z, 1) is a classical solution, hece for all ,u(z,t) € D(P) in x. Therefore
from equations (21), (27) one obtains

00 1
uat)= Yo ress, [ G@&Ns(t,0, 01,060 (28)
v=1 0
Hence we proved the following theorem:

Theorem 1. Let ¢x(z) € C ([0,1]) (k=1,2,...,q), and the conditions 1° and 2° hold
and for 0 < Ko < 2 the point M/Ny ¢ {),}. Then if the problem (1)-(3) has a classical
solution, this solution is defined by the formula (28).
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Corollary 1. Let the hyphoteses of Theorem 1. be satisfied, then the problem (1)-(3)
has at most one solution.

Using the asymptotic representations (10), (15)-(17), estimations (18)-( 20), and
the uniform convergence of the series (28), its first two derivatives in x, and first ¢ =
max(2, Kq) derivatives in t, it is also possible to prove the following theorem about the
existence and uniqueness of the classical solution of the problem (1)-(3):

Theorem 2. Let the conditions 1° and 2° hold and

Mo 5 0,¢1(z) € D3(P), ¢x(x) € D*(P) (k =2,3,4) for Ko = 4,
Rz > 0,¢x(x) € D*(P) (k =1,2,3) for Ko =3, (29)
M /Ny & (A}, éi(z) € D*(P) (k=1,2) for 0 < Ko < 2

Then the problem (1)-(3) has a unique classical solution given by (28).
Proof. We are going to give the proof for 0 < Ky < 2 (in this case ¢ = 2). Applying

the operator
0 0 0
()= (5) 7 (5:) .

to the both sides of (28) and interchanging the operator by the summation on the right
hand side formally one obtains

M (%) w(z t) — N (%) P (%) u(z, t) =
- i‘;r@% /01 Gz, &, )M (%) (b2, Gu, 62)dé

-P (%) /01 G(z,&,\)N (%) z(t, N, é1, p2)dE. (31)

Using the property

0 ! 0
P(%)/O G(Lf,)\)N (a) Z(t7/\7¢17¢2)d£
1
:)\/0 G(m,f,)\)N <%) Z(t,)\,¢1,¢2)df

of the Green’s function, and the relation (8) we can write equation (31) as
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:ires/\u /01 G(z,€,)\) [M (%)z—)\N (;) }dg_o (32)

8k

t=0

formally to the both sides of (28) and interchanging the operator by the summation on
the right hand side one also obtains

Ui(u) = stA / G)z(t, N\, 1, . . ., By )dE,
8k
Wg Z/ (0N atk at =
=0
= ZTPS,\ / / z, €&, >\)¢k )d§:¢k(x)

=0

by (13).

Hence to prove that the function given by (28) is a solution of the problem (1)-
(3), one needs to prove that the operators (30) and (33) can be interchanged by the
summation. For this, the uniform convergence of the series

<

g 1
Soress 5 [ Gl e NG A paE 0<i<20<i<2)  (31)

v=1

is sufficient, and according to the asymptotic representations in (10), the uniform conver-
gence of these series is equivalent to the uniform convergence of the sequences

[ 05 [ awenStara@men 0siszo<i<y @)

for v — oco. Since ¢i(x) € D*(P), according to the formulae (5), (11) and (14) one has
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1 o\ 0 &z 8jz(t,)\,¢ (z), $2(z))
f owenp () a5 ) - z): da(=)

Hence

! o7 A
/O Gl ) T 2(t, »Ggltgf),@(ﬁ))dg
 1852(5 N ¢1(), d2(z)) 1 T o\ dz
= -3 50 + X/0 G(z,&,\)P (a—§> o5 %=
_ _laz(t,A,¢1($),¢2(I)) _ i i %
=5 Bt )\ZP((%> o %t

1 [t 5[0\ &z

(36)

(37)

Therefore, to prove the uniform convergences of the sequences ( 35), it is sufficient to

prove the uniform convergences of the sequences

dx ¢ [? [0\ &z
/AV 2 83:1/0 G(z, &, \)P (8{) 50 d¢, (0<i<2,0<75<2),
where

Ay ={A =7 = (1] + [Aus, 1)/2.
According to the inequalities (12), (20) and formulae (14), (17) one has

o [t o [0\ &2

Hence from (38) one obtains
dx o [t o\ &z |d\|
- G MNP = ) =Zde| < —.
AV AQ B‘TZ/O (-T7§7 ) (8§> 8t]d§‘_C/AV |/\!3/2

N =7, [dA| = |7,€"%d¢| = 7,d¢ (0 < ¢ < 27) on A,

<CIT < OE,

Since

we have

2 Y S |
/AU|—)\‘—3—/—2— ; 73/2d¢—ﬁ-27r—>0(asy—>oo).

(38)

(39)

(40)
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Hence the sequences (38) are uniform convergent.

Since
Ko=4,9# =% >0, N2 —4NoN; = —4 # 0; for Eq. (4),
Ko=2,82 =1, N} —4NoN; = —4 #0; for Eq. (5),
then for these equations we can formulate a final theorem as follows: O

Theorem 3. Let the condition 1° holds and

¢1(z) € D*(P), ¢i(z) € D*(P) (k = 2,3,4),

then the mixed problem (4), (2), (3) has a unique classical solution. If

M A1 (v=12,...), ¢x(z) € D*(P) (k=1,2,),

then the mixed problem (5), (2), (3) has a unique classical solution. In both cases this
solution is given by (28).
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REDIDU YONTEMININ BiR KARISIK PROBLEME UYGULANISI

Ozet

Bu makalede degigkenlere ayirma rezidii yontemi, denklemin katsayilarinin &zel
degerleri icin sikigabilir tabakal sivimin akigimi ve sikigmaz tabakali sivinin i gravite
dalgalarini da modelleyen bir karigik probleme uygulanmaktadir. Yontemin uygulan-
masi i¢in once iki tane yardimci problem tanimlaniyor. Bunlardan birincisi bir spek-
tral problem, ikincisi de bir Cauchy problemidir. Yardimc: problemlerin ¢6ziimleri
kullamilarak daha sonra karigik problem igin bir varlik ve teklik teoremi ispat edilmisg,
ayrica tek olan ¢ozlim igin agik bir formil verilmistir.
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