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ADJUSTMENT COEFFICIENT FOR RISK PROCESSES IN

SOME DEPENDENT CONTEXTS

H. COSSETTE, E. MARCEAU, AND V. MAUME-DESCHAMPS

Abstract. Following [18], we study the adjustment coefficient of ruin
theory in a context of temporal dependency. We provide a consistent
estimator of this coefficient, and perform some simulations.

Adjustment coefficient w for risk processes may describe the behavior of
ruin probability. Several results for sums of i.i.d. claims exist: in [12], H.U.
Gerber gave an exact formula for finite time ruin probabilities involving the
adjustment coefficient w, [19] provide a consistent estimator of w, V. Mam-
misch [15] gave a necessary and sufficient condition for the existence of w.
In dependent contexts, let us cite H.U. Gerber [13] for auto-regressive pro-
cesses, [2] for an extension to ARMA processes and [3, 4] for the study of
the adjustment coefficients in Markovian environments . The main objective
of the parper is to provide a non parametric estimation of the adjustement
coefficient introduced in [18] in dependent contexts. We give a general de-
pendent context (weak temporal dependency in the sense of [7]) for which
our estimator is consistent.
The paper is organized as follows :

• Section 1 contains the definitions and elementary properties of weak-
dependent processes as well as adjustment coefficient. To make
short, wi, the independent coefficient, will be the adjustment coeffi-
cient if the process is i.i.d. while wd will be the adjustment coefficient
of a dependent sequence.

• In Section 2, we prove that wd may be seen as a limit (for r → ∞) of
independent coefficients wi

r. We also provide some general examples
for which the adjustment coefficient wd may be defined.

• Section 3 is devoted to the estimation of coefficients wi and wd and
contains the main results : we construct consistent estimators (see
Theorems 3.3, 3.5 and 3.10). Note that in [2], an estimation of wd is
given for ARMA processes which is based on the estimation of the
ARMA parameters. Our procedure is completely non parametric.

• In Section 4 we provide some simulations.

1. Setting

We consider (Yn)n∈N a sequence of random variables and Ru the event
{Yn > u for some n ≥ 1}. Yn is interpreted as the value of the claim surplus
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process of a company at the end of the year n. Ru is understood as the ruin
event for an intial reserve u > 0. We could write

Yn =
n∑

i=0

Xi

where Xi is the gain/loss of the company during the year i.

1.1. Weak dependent processes. This last decade, Doukhan and al. ([7,
6, 9, 8]) have developed new dependence definitions that both extend clas-
sical probabilistic definitions (as α or Φ mixing) and are satisfied for several
useful models (like ARMA or ARCH) that are neither α nor Φ mixing in
the standard way. Roughly speaking, in the classical probabilistic definitions
of mixing, the functions f and g in the definition below (1.1) belong to the
whole class of square integrable functions.
Define (see [7]) for a real valued or vector valued process (Xt)t∈N,

(1.1) ε(k) = sup
|Cov(f(Xi1 , . . . ,Xiu), g(Xj1 , . . . ,Xjv ))|

c(f , g)

where the supremum is taken over multi-indices i = (i1, . . . , iu), j = (j1, . . . , jv)
such that:

i1 < · · · < iu ≤ iu + k ≤ j1 < · · · < jv

and all functions f : R
u −→ R,g : R

v −→ R are bounded and Lipschitz
functions, with respect to the distance :

d(x, y) =

p∑

i=1

|xi − yi|, x = (x1, . . . , xp), y = (y1, . . . , yp).

Remark. We could replace the space of Lipschitz functions by other spaces
of regular functions (differentiable functions, functions of bounded variation
...), see [17] for a general condition of convenient functional spaces.

We define a notion of weak dependence according to the function c(f , g).

Definition 1. Consider the following functions c(f , g), defined for
f : R

u −→ R and g : R
v −→ R bounded and Lipschitz functions, lip(f)

is the Lipschitz coefficient of the function f .

(1) c(f , g) = v‖f‖∞lip(g), we say that the sequence (Xi)i∈N is θ-weakly
dependent if the corresponding mixing coefficients sequence (ε(k))k∈N

is summable.
(2) c(f , g) = ulip(f)‖g‖∞ + v‖f‖∞lip(g), we say that the sequence

(Xi)i∈N is η-weakly dependent if the corresponding mixing coeffi-
cients sequence (ε(k))k∈N is summable.

This class of dependent processes is very rich and enjoy lots of nice prob-
abilistic properties. Let us remark that weak dependent processes need not
to be stationary.
For completeness, we recall the definitions of α, Φ and Ψ mixing. Ψ mixing
may be defined in a formalism close to that of Definition 1 while for α and
Φ mixing, it is not clear that the same formalism is meaningfull.
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Definition 2. Consider mixing coefficients ε(k) defined by Equation (1.1)
where the supremum is taken over functions
f : R

u −→ R and g : R
v −→ R in L2 and c(f , g) = ‖f‖1‖g‖1.

We say that the sequence (Xi)i∈N is Ψ mixing if the corresponding mixing
coefficients ε(k) are bounded.
α and Φ mixing coefficients are defined as :

α(U ,V) = sup
U∈U , V ∈V

|P(U ∩ V ) − P(U)P(V )|,

Φ(U ,V) = sup
U∈U , V ∈V

∣∣∣∣
P(U ∩ V )

P(U)
− P(V )

∣∣∣∣ .

A process (Xt)∈Z is α (resp. Φ) mixing is the coeficients

αX(r) = sup
i∈Z

α(σ(Xt, t ≤ i), σ(Xt, t ≥ i + r)),

resp. ΦX(r) = sup
i∈Z

Φ(σ(Xt, t ≤ i), σ(Xt, t ≥ i + r))

go to 0.

1.2. Adjustment coefficient. In the classical i.i.d. (i.e. the Xi are i.i.d.
random variables) model of ruin theory, the adjustment coefficient w > 0 is
defined as the unique positive solution of λ(w) = 0 with

λ(t) = log E [exp(tX1)]

assumed to be well defined. Mammischt ([15]) gave a necessary and sufficient
existence condition for w. The importance of the adjustment coefficient is
revealed by the exact formula due to Gerber ([12]) : let T be the ruin time
(T = inf{k ∈ N / Yk > u}),

P(Ru) = P(T < ∞) =
e−wu

E[e−wYT |T < ∞]
,

and the famous de Finetti bound follows :

P(Ru) ≤ e−wu.

We shall focus on the following asymptotic result also due to Lundberg :

lim
u→∞

log P(Ru)

u
= −w.

As already mentioned above, several attempts to extend these results to
dependent and/or non stationary settings have been proposed. We wish to
give a general dependent setting in which such an asymptotic result holds,
as well as provide a consistent estimator to the adjustment coefficient in this
dependent context. Our approach does not require a precise knowledge of
the dependence structure, nor on the law of (Xi)i∈N but only an information
on the speed of mixing (given by Equation (1.1)).
Following [18] we assume that : there exists t0 > 0 such that for all 0 < t <
t0,

(1.2) c(t) = lim
n→∞

log E [exp(tYn)]

n
exists.

Also, there exists 0 < t < t0 such that c(t) = 0.
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We shall provide a sufficient condition that implies existence and unique-
ness of a positive solution to c(t) = 0, provided that (1.2) is satisfied. We
shall denote wd this unique solution. We shall also denote by wi the unique
positive solution to λ(t) = 0 with

λ(t) = log E [exp(tX1)] .

Of course, if the sequence Xi is i.i.d. then wi = wd.

1.3. Existence condition. In Mammisch ([15]) it is proven that wi exists
(and is unique as a positive solution to λ(t) = 0) if and only if the following
three conditions are satisfied. We shall denote by (E) these three conditions.

(1) E(X1) < 0,
(2) P(X1 > 0) > 0 and
(3) either a < ∞ and E(eaX1) ≥ 1 or a = ∞ where

(1.3) a = sup{t ≥ 0, E(etX1) < ∞}.
This condition, together with the weak dependence assumption is sufficient
to get consistency and asymptotic normality of the estimator of wi. In order
to get existence and uniqueness (as a positive solution to c(u) = 0) of wd,
we shall need some additional conditions.

Property 1.1. Assume that the limit c(u) is well defined on [0, u0[, in
particular, for all t < u0, for n large enough, E(etYn) < ∞. Assume that (E)
is satisfied for 0 < a ≤ u0, and

(1) cn(t) exists for all n and 0 ≤ t < a,
(2) for large enough n, P(Yn > 0) > 0

(3) if a < ∞ then for n large enough, lim
t→a−

E(etYn) ≥ 1,

(4) c′(0+) < 0 or equivalently, ∃t > 0 such that c(t) < 0

then there exists a unique positive solution to c(u) = 0. This solution is
denoted by wd.

Proof. We adapt Mammish’s arguments. Recall that any convex function
is continuous and admits left and right derivatives on all points where it
is defined. Moreover, if fn is a sequence of convex functions defined on
[0, u0[ and converging to f on [0, u0[ then f is a convex function and the
convergence is uniform on any compact subset of [0, u0[.
The function c is the limit on [0, u0[ of convex functions

cn(t) =
1

n
log E(etYn).

Thus c is a convex function with c(0) = 0 and we assume that c′(0+) < 0
(which is equivalent to ∃ t > 0 such that c(t) < 0 by convexity).

• If a < ∞ then, we assume that for large enough n, ∞ ≥ E(eaYn) ≥ 1
thus ∞ ≥ c(a) ≥ 0 . Since c is continuous (because it is convex), we
deduce that there exists w > 0 such that c(w) = 0. This solution is
unique because of the convexity of c.

• If a = +∞, then c(t) is well defined for any t ∈ R
+. Because

P(Yn > 0) > 0 for n large enough, we have that for large enough n,

lim
t→∞

E(etYn) = +∞. As a consequence, we have that lim
t→∞

c(t) ≥ 0.
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Since we assume that c(t) < 0 for some t, the convexity of c then
implies that there exists t0 such that c′(t±) > 0 for any t > t0.
We deduce that c(t) > 0 for t large enough. Since c is continuous
(because it is convex), we deduce that there exists w > 0 such that
c(w) = 0. This solution is unique because of the convexity of c.

�

Remark. The condition P(Yn > 0) > 0 is necessary because if it exists w > 0
such that c(w) = 0 then by convexity, either there exists t > 0 such that
c(t) > 0 or c(t) = +∞ for all t ≥ w which implies that E(etYn) > 1 for large
enough n which implies P(Yn > 0) > 0 for large enough n.

2. Limit result and examples

2.1. Asymptotic behavior for ruin probability. In [18], it is proven
that if the adjustment coefficient wd exists then it describes the asymptotic
behavior of the ruin probability in the following sense:

(2.1) lim
u→∞

log P(Ru)

u
= −wd.

As a consequence to (2.1), we obtain that if it exists, wd is the limit of the
adjustment coefficients of the sequence (Yn)n∈N.

Corollary 2.1. Assume that the hypotheses of Property 1.1 are satisfied.
For large enough n, there exists a unique wn > 0 such that

E(ewnYn) = 1

and wd = lim
n→∞

wn.

Proof. The existence of wn follows from [15]: Yn satisfies the existence hy-
potheses of Mammish for n large enough. Applying Markov’s inequality, we
get for all K > 0,

wn ≤ − log P(Yn > u)

u
.

Then, (2.1) implies that any limit point w of the sequence wn verifies :
w ≤ wd. The convergence of functions cn to c is uniform on [0, wd], thus
we have that c(w) = 0, so that either w = 0 or w = wd. Now, 0 cannot
be a limit point of the sequence wn because otherwise we would have that
c(t) ≥ 0 for all t ≥ 0 which contradicts the hypotheses of Property 1.1. We

conclude that wn
n→∞−→ wd. �

Let us give some examples for which the function c(t) is well defined.
We recall the following result on approximate sub additive sequences due to
Hammersley [14].

Lemma 2.2. Assume h : N −→ R be such that for all n,m ≥ 1,

h(n + m) ≤ h(n) + h(m) + ∆(m + n),

with ∆ a non decreasing sequence satisfying :

(2.2)

∞∑

r=1

∆(r)

r(r + 1)
< ∞.
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Then, λ = lim
n→∞

h(n)

n
exists and is finite. Moreover, for all m ≥ 1,

λ ≤ h(m)

m
− ∆(m)

m
+ 4

∞∑

r=2m

∆(r)

r(r + 1)
.

Of course, for ∆(r) = O(1), then (2.2) is satisfied. Lemma 2.2 asserts
that ∆(r) may go to infinity but not too fast.

2.2. Ψ-mixing processes. According to Definition 2, we consider the fol-
lowing classical Ψ-mixing condition :

(2.3) Ψ(k) = sup
Cov(f(Xi1 , . . . ,Xiu), g(Xj1 , . . . ,Xjv))

‖f‖1‖g‖1
< ∞,

where the supremum is taken over functions f , g ∈ L2 and over multi-indices
i = (i1, . . . , iu) and j = (j1, . . . , jv) with i1 < · · · < iu < iu + k ≤ j1 < · · · <
jv. The sequence if Ψ-mixing is bounded.

Proposition 2.3. Assume that for t ∈ [0, a[, for all n ∈ N, E(e2tSn) < ∞
and (Xn)n∈N is a Ψ-mixing process then

lim
n→∞

1

n
log E(etSn)

exists for any t ∈ [0, a[.

Proof. Using (2.3), we have :
∣∣E(etSn+m) − E(etSn)E(etSm)

∣∣ ≤ Ψ(1)E(etSn)E(etSm).

We conclude the proof by using Lemma 2.2. �

Examples of Ψ-mixing processes are finite state Markov chains of any
order but also Variable Length Markov Chains (VLMC) on a finite state
(see Lemma 3.1 in [11]).
Even if Ψ (Φ, α)-mixing processes are often used in probability theory, lots
of useful processes (like ARMA processes) are not Ψ (Φ, α)-mixing. In the
following two subsections, we provide a class of η mixing processes for which
the function c(t) is well defined provided the mixing is sufficiently fast and
the variables Xi are almost surely bounded. This condition is close to the
one used in [1] by Bric and Dembo for one other class of mixing processes
(namely α mixing processes). Then we prove that if the sequence has some
structure (here, the sequence is a Bernoulli shift) then the condition on the
speed of mixing may be weakened. We refer to [7] for other examples of θ
and η weakly mixing processes (including ARMA and ARCH processes).

2.3. Super mixing processes. We prove that if the process (Xi)i∈N is η
weakly dependent (recall Definition 1) with dependence coefficient ε(n) =

O
(
θn(lnn)β

)
with 0 < θ < 1 and β > 1 then the function c(t) is well defined

provided |Xi| ≤ Ma.e. A η weakly dependent process with dependence

coefficient ε(n) = O
(
θn(lnn)β

)
will be called a super mixing process.
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Proposition 2.4. Assume (Xn)n∈N is a η weakly dependent process with

mixing coefficients ε(n) = O(e−cn(ln n)β

) with c > 0, β > 1. Moreover,
assume that there exists M > 0 such that |Xi| ≤ M a.e. Then the sequence
c(t) is well defined on R.

Proof. For any 0 < j < k, let Sk
j =

k∑

ℓ=j

Xℓ, because |Xi| ≤ M a.e.,

e−t(k−j)M ≤ E(etSk
j ) ≤ et(k−j)M .

Also, for any j ≤ ℓ ≤ j,

e−t(ℓ−j)M
E(etSk

ℓ ) ≤ E(etSk
j ) ≤ et(ℓ−j)M

E(etSk
ℓ ).

Remark that the function : x 7→ etx is bounded above by etM and has
Lipschitz constant tetM for x ∈ [−M,M ].
Fix an integer 0 < r < max(n,m). Firstly, assume that n ≤ m and, using
the definition of η weak dependence, we get:

E(etSn+m) = E(etSn
1 etSn+m

n+1 )

= E

(
etSn

1 · etSn+m
n+r+1 · etSn+r

n+1

)

≤ etrM
(
E(etSn

1 ) · E(etSn+m
n+r+1) + ε(r)(n + m)tetnMet(m−r)M

)

≤ e2trM
E(etSn)E(etSm) + (n + m)ε(r)te2t(n+m)M

E(etSn)E(etSm)

≤ E(etSn)E(etSm)(e2trM + (n + m)ε(r)te2t(n+m)M ).

We conclude the proof by choosing r = O( n+m
ln(n+m)κ ), 1 < κ < β and applying

Lemma 2.2 with a function:

∆(r) = O

(
r

(ln r)κ

)
.

If n > m, the proof is similar but uses the decomposition :
Sn+m = Sm

1 + Sm+r
m+1 + Sn+m

m+r+1. �

2.4. Bernoulli shifts. Causal Bernoulli shifts are processes defined as:

Xn = H(ξn−j, j ∈ N)

with H a measurable function and (ξn)n∈Z an i.i.d. process. We shall assume
the following regularity condition on H : define the continuity coefficients

dn = ‖ sup
u=(u0,u−1,...)

|H(ξn−i, i ∈ N) − H(ξn, . . . , ξ1, u0, u−1, . . .)|‖∞

and assume that the sequence dn is summable. By adapting the arguments
of [7] we may prove that such a process is θ-dependent with mixing coefficient
θ(n) = dn.

Proposition 2.5. Assume that (Xn)n∈N is a Bernoulli shift satisfying the
summability condition for the continuity coefficients dn. Then the sequence
ln E(etSn) satisfies the hypotheses of Lemma 2.2 and thus c(t) is well defined.
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Proof. We fix a sequence of real numbers u = (u0, u−1, . . .) and we write

Sℓ
i =

ℓ∑

j=i

Xj

=

ℓ∑

j=i

H(ξj , . . . , ξi, . . .)

=

ℓ∑

j=i

H(ξj , . . . , ξi, u0, u−1, . . .)

︸ ︷︷ ︸
:=Uℓ

i

+

ℓ∑

j=i

H(ξj , . . . , ξi, . . .) − H(ξj , . . . , ξi, u0, u−1, . . .)

︸ ︷︷ ︸
:=dℓ

i(u,ξ)

.(2.4)

Using the stationarity of (ξn)n∈N, we have that

dℓ
i ≤

ℓ∑

j=i

dj−i =
ℓ−i∑

j=0

dj .

Now, Un
1 and Um

n+1 are independent random variables and thus,

E(etSn+m) ≤ et(
Pn

i=1 di+
Pm

i=1 di)E(etUn
1 )E(etUn+m

n+1 ).

Applying once more (2.4), we get:

E(etSn+m) ≤ exp


4t

max(n,m)∑

i=1

di


E(etSn)E(etSm).

If we denote D =
∑

j∈N

dj , we get

E(etSn+m) ≤ e4tD
E(etSn)E(etSm)

and we conclude by applying Lemma 2.2. �

Remark. In the above proposition, we could replace the hypotheses of summa-
bility of the sequence (dj)j∈N by the summability of

∆(r)

r(r + 1)
with ∆(r) =

r∑

j=0

dj ,

Lemma 2.2 would apply as well and the limit c(t) would be well defined.

In [7], it is mentionned that stationary ARMA processes are examples of
Bernouilli shifts. Non linear autoregressive processes may also be examples
of Bernouilli shifts. Nevertheless, in order to satisfy that the dj are well de-
fined, it requires that the innovation is bounded. We claim that Proposition
2.5 remains true for some unbounded Bernouilli shifts but we where unable
to prove it.
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3. Estimation

3.1. Definition of estimators. In this section, we assume that the se-
quence (Xi)i≥1 is stationary and that the hypotheses of Proposition 1.1 are
satisfied. For r ∈ N, the functions E(etX1) and E(etYr) may be estimated by
their empirical moment versions: for k ∈ N,

m̂k(t) =
1

k

k∑

i=1

etXi ,

M̂ r
k (t) =

1

k

k−1∑

i=0

etZr
i ,

where Zr
i =

r∑

j=1

Xj+ir. Then we define ŵi as the positive solution to

log m̂k(t) = 0 and ŵr as the positive solution to 1
r log M̂ r

k (t) = 0. We shall

prove that ŵi is a consistent estimator of wi and there exists an r = r(k)
such that ŵr = ŵd is a consistent estimator of wd. We shall also prove that
they satisfy a central limit theorem.
Before stating and proving our main results on the asymptotic properties of
the estimators ŵi and ŵr, we prove that ŵi exists almost surely (the proof
for ŵr will be done later because it requires some weak dependence property
for (Zr

i )i∈N which is proven in Lemma 3.4).

Proposition 3.1. Assume that the sequence (Xi)i∈N is η or θ weakly depen-
dent and satisfies Condition (E). Then, ŵi exists eventually almost surely
as k −→ ∞.

Proof. We begin by noting that the θ or η weak dependence implies ergod-
icity, see for example [6]. Following Section 1.3, we have that ŵi exists and
is unique if and only if,

(1) 1
k

∑k
i=1 Xi < 0,

(2) {i = 1, . . . , k / Xi > 0} is not empty.

Mammisch’s third condition is satisfied with a = ∞ because here, expec-
tations are finite sums. The two above conditions are eventually almost
everywhere satisfied because of the ergodic theorem. �

3.2. Asymptotic properties of ŵi. Asymptotic properties of the estima-
tors ŵi and ŵr are done by using the same approach as the one used to prove
results on asymptotic properties for M -estimators in a parametric context
(see [20] section 5). It is known (see [9, 7]) that the process (Xi)i∈N satisfies
a central limit theorem with asymptotic variance

Γ2 =

∞∑

i=0

Cov(X0,Xi),

provided that the sequence Cov(X0,Xi) is summable.
We obtain a central limit theorem for m̂k(t) by proving that the sequence
(etXn)n∈N is also weakly dependent. Then we prove a central limit theorem
for the M -estimator ŵi.
Let us recall the following results from [7] (Theorem 7.1 and Section 7.5.4).
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Theorem 3.2. Let (Zn)n∈N be an η-weakly dependent sequence with ε(n) =
O(n−2−κ) for κ > 0. Then,

Γ2 =
∑

n≥0

Cov(Z0, Zn),

is well defined and

√
n

(
1

n

n−1∑

i=0

Zi − E(Z0)

)
n→∞−→ N (0,Γ2).

As a consequence, we get the following consistency result for ŵi as well as
asymptotic normality. In order to use Theorem 3.2, we first need to prove
that the sequence (etXn)n∈N is also η-weakly dependent with ε(n) decreasing
to zero sufficiently rapidly.

Theorem 3.3. Assume (Xn)n∈N is η-weakly dependent with ε(n) = O(θn),
0 < θ < 1. We have for any t ∈ [0, u0[ that

Γ2(t) =
∑

n≥0

Cov(etX0 , etXn)

is well defined on [0, u0[ and
√

n
(
m̂n(t) − E(etX0)

) k→∞−→ N (0,Γ2(t)).

ŵi converges in probability to wi and
√

n
(
ŵi − wi

) n→∞−→ N (0,Γ2
i )

with Γ2
i =

Γ2(wi)

E(X1ewiX1)2
.

As already mentioned, we begin by proving that the sequence of random
variables (etXn)n∈N is η-weakly dependent.

Lemma 3.4. Assume (Xn)n∈N is η-weakly dependent with mixing coefficient
ε(r). Then, for any t ∈ [0, u0[, the sequence of random variables (etXn)n∈N

is η-weakly dependent with mixing coefficient εt(r) ≤ 2E(e(t+κ)X1)ε(r)
κ

t+κ

with κ > 0 such that t + κ ∈ [0, u0[.

Proof. We follow the proof of Proposition 2.1 in [7]. Let f and g be two
Lipschitz functions and for M > 0 fixed, x ∈ R, denote x(M) = min(x,M).
Assume (i, j) are multi-indices such that

i1 < · · · < iu ≤ iu + r ≤ j1 < · · · < jv,

and define:

F (Xi) = f(etXi1 , . . . , etXiu ) F (M)(Xi) = (e
tX

(M)
i1 , . . . , etX

(M)
iu ),

G(Xj) = g(etXj1 , . . . , etXjv ) G(M)(Xj) = (e
tX

(M)
j1 , . . . , etX

(M)
jv ).

Then,

|Cov(F (Xi), G(Xj))| ≤ 2‖f‖∞E(|G(Xj) − G(M)(Xj)|)
+2‖g‖∞E(|F (Xi) − F (M)(Xi)|)
+|Cov(F (M)(Xi), G

(M)(Xj))|.
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Recall that E(esXi) < ∞ for any s ∈ [0, u0[ and let κ > 0 be such that

t + κ ∈ [0, u0[,

then E(|e(t+κ)Xi |) < ∞, using the Markov inequality, we get:

E(|G(Xj) − G(M)(Xj)|) ≤ lip(g)
v∑

k=1

E(|etXjk − e
tX

(M)
jk |)

≤ 2vlip(g)e−κM
E(e(t+κ)X1).

Also, since (Xn)n∈N is η-weakly dependent,

|Cov(F (M)(Xi), G
(M)(Xj))| ≤ (ulip(f) ‖g‖∞ + vlip(g)‖f‖∞)tetMε(r).

Finally, we obtain for M ≥ 1,

|Cov(F (Xi), G(Xj))| ≤ (ulip(f) ‖g‖∞ + vlip(g)‖f‖∞)

×(tetMε(r) + 2E(e(t+κ)X1)e−κM ).

To conclude, we choose M = − 1
t+κ ln(ε(r)). �

Proof of Theorem 3.3. Lemma 3.4 together with Theorem 3.2 imply that for
any t ∈ [0, u0[,

√
n
(
m̂n(t) − E(etX0)

) n→∞−→ N (0,Γ2(t))

provided that the sequence εt(r) = ε(r)
κ

t+κ = O(r−2−α) for some α > 0.
Since we assume that ε(r) = O(θr), 0 < θ < 1, this condition is satisfied.
This convergence in law also leads to

m̂n(t)
n→∞−→ E(etX0) in probability,

moreover we have that this convergence takes place almost everywhere be-
cause of the ergodic theorem.
Now, let us consider the estimator ŵi of wi. Following the proof of Lemma
5.10 in [20], we have that ŵi converges to wi in probability (this uses the
convergence in probability of m̂k(t), the continuity of the map t 7→ m̂k(t)
and the uniqueness of ŵi as a positive solution to m̂k(t) = 1). The central
limit theorem follows now from the ∆ method :

m̂k(ŵ
i) − m̂k(w

i) = (ŵi − wi)
∂m̂k(w

i)

∂t
+

1

2
(ŵi − wi)2

∂2m̂k(w̃)

∂t2
,

with w̃ ∈ [min(wi, ŵi),max(wi, ŵi)]. Thus,

√
k(ŵi − wi) =

√
k(m̂k(ŵ

i) − m̂k(w
i))

∂m̂k(w
i)

∂t
+

1

2
(ŵi − wi)

∂2m̂k(w̃)

∂t2

.

We have that√
k(m̂k(ŵ

i) − m̂k(w
i)) =

√
k(1 − m̂k(w

i))

=
√

k(E(ewiX1) − m̂k(w
i))

and therefore it is asymptotically normal with zero mean and variance
Γ2(wi). Moreover,

∂m̂k(w
i)

∂t
=

1

k

k∑

j=1

Xje
wiXj .
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This quantity converges in probability to E(X1e
wiX1) and we have that

(ŵi −wi)
∂2m̂k(w̃)

∂t2
goes to zero in probability. Finally, we have proven that

√
n(ŵi − wi)

k→∞−→ N
(

0,
Γ2(wi)

E(X1ewiX1)2

)
.

�

Remark. We could relax the hypotheses that ε(r) decreases to 0 exponen-

tially fast. It is sufficient that ε(r)
κ

t+κ = O(r−2−α) for some α > 0. For ex-

ample, some intermediate speed of mixing like ε(r) = O
(
e−K(ln r)β

)
, K > 0,

β > 1 or ε(r) = O
(
θnα)

, 0 < θ < 1, 0 < α < 1 is convenient.

3.3. Asymptotic properties of ŵd. Now, we are interested in the consis-
tency of ŵd.

Theorem 3.5. Assume that hypotheses of Theorem 3.3 are satisfied. Then

there exists a sequence r = r(k)
k→∞−→ ∞ such that ŵd converges in probability

to wd.

Theorem 3.5 will be proven by rewriting 3.3 for ŵr instead of ŵi and then
by using Corollary 2.1. We only need to prove that the sequence (Zr

i )i∈N

satisfies some weak dependence property.

Lemma 3.6. Assume that (Xn)n∈N is η-weakly dependent with mixing coef-
ficient ε(k). Then, the sequence (Zr

i )i∈N is η-weakly dependent with mixing
coefficient εZ(k) = rε(r(k − 1)).

Proof. Let f and g be two Lipschitz functions. Assume (i, j) are multi-indices
such that

i1 < · · · < iu ≤ iu + k ≤ j1 < · · · < jv.

Then,Cov(f(Zr
i1, . . . , Z

r
iu), g(Zr

j1 , . . . , Z
r
jv

))

= Cov
(
f̃(Xi1r+1, . . . ,Xi1(r+1),Xi2r+1, . . . ,X(iu+1)r) ,

g̃(Xj1r+1, . . . ,Xj1(r+1),Xj2r+1, . . . ,X(jv+1)r)
)

≤ rε((k − 1)r) (ulipf‖g‖∞ + v‖f‖∞lipf) ,

where ϕ̃(x1, . . . , xr, . . . , xrk) = ϕ

(
r∑

i=1

xi, . . . ,
r∑

i=1

xr(k−1)+i

)
. �

As a corollary to Lemma 3.6, we deduce that for any r, ŵr exists eventually
almost surely.

Corollary 3.7. Assume that the hypotheses of Property 1.1 are satisfied
and that the sequence (Xi)i∈N is η-weakly dependent. Then, for any r, ŵr

exists eventually almost surely.

Proof. This is a direct consequence of Proposition 3.1 and Lemma 3.6. �

Proof of Theorem 3.5. From Lemma 3.6 and Theorem 3.3, we get
√

k
(
M̂ r

k (t) − E(etZr
1 )
)

L−→ N (0,Γ2
r(t))
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with

Γ2
r(t) =

∑

n≥0

Cov(etZr
0 , etZr

n)

and if we denote by wr the i-adjustment coefficient of the sequence Zr
0 and

ŵr the positive solution to M̂ r
k (t) = 1,

√
k(ŵr − wr)

L−→ N (0,Γ2
r)

with

Γ2
r =

Γ2
r(wr)

E(Zr
1ewrZr

1 )2
.

This implies that ŵr goes to wr in probability, as k goes to infinity. We
conclude the proof of Theorem 3.5 by using Corollary 2.1 : there exists a

sequence r(k)
k→∞−→ ∞ such that ŵr converges to wd in probability. �

Theorem 3.5 is interesting from a theoretical point of view but it is not
so useful from a practical point of view. Indeed, it proves that ŵr converges
to wd for a sequence r = r(k) but we have no information on how to choose

r with respect to k. Moreover, provided that Γ2(wr)

E(Zr
1ewrZr

1 )2
is converging, we

could obtain a central limit theorem for
√

k(ŵr − wd) with limit variance

Γ2
d = lim

r→∞

Γ2(wr)

E(Zr
1ewrZr

1 )2
. This expression of the asymptotic variance in the

central limit theorem is not useful from a practical point of view. We might
nevertheless use moment and Bienaimé-Tchebitchev inequalities in order to
get a useful relationship between r and k.
We apply the following inequality on the order 2 moment.

Proposition 3.8. Let (Wi)i∈N be a sequence of centered random variables
and

Cj,2 = sup
t1, t2

t2−t1=j

Cov(Wt1 ,Wt2).

E(S2
n) ≤ 2n

n−1∑

j=0

Cj,2,

where Sn =
n∑

i=1

Wi.

As a consequence, if Wi is η-dependent and stationary, with mixing coeffi-
cient ε(k) ≤ Cθk, we have that

E(S2
n) ≤ 16nM

2
m
m C

m−2
m

1

1 − θ
m−2

m

where Mm = E(|Wi|m).

Proof. The first part of the proof of Proposition 3.8 may be found in [7]
(see Lemma 4.6 p.79). For the second part, we proceed as in the proof of
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Lemma 3.4 (see also [10]) : let W
(M)
t = max(min(Wt,M),−M), (so that

W
(M)
t = Wt provided that |Wt| ≤ M). Then,

Cov(Wt,Wt+j) ≤ Cov(W
(M)
t ,W

(M)
t+j ) + Cov(W

(M)
t , (Wt+j − W

(M)
t+j )) +

Cov(W
(M)
t+j ,Wj − W

(M)
j ) + Cov((Wt+j − W

(M)
t+j ),Wj − W

(M)
j )

≤ 2M2ε(j) + 2M‖Wt − W
(M)
t ‖1 + ‖(Wt − W

(M)
t )2‖1

≤ 2M2ε(j) + 6M2−mMm,

where the last line is obtained by noting that

‖Wt − W
(M)
t ‖1 =

∫
1|Wt|>M |Wt − W

(M)
t |dP

≤ 2

∫
1|Wt|>M |Wt|dP

≤ 2M1−mMm.

Similarly, we obtain

‖(Wt − W
(M)
t )2‖1 ≤ 4M2−mMm.

We conclude by choosing M =

(
Mm

ε(j)

) 1
m

. �

Proposition 3.9. Assume that (Xi)i∈N is an η weakly-dependent process,
with mixing coefficient ε(k) ≤ Cθk, C > 0, 0 < θ < 1. Then, for any
t ∈ [0, u0[, such that 3t ≤ u0, for any v > 0, we have:

P

(
|M̂ r

k (t) − E(etYr )| > v
)
≤ 4(Cr + 3)E(e3tYr )2/3

v2k(1 − θ
1
6 )

.

Proof. We apply the Bienaimé-Tchebitchev inequality and Proposition 3.8
with m = 3. Let

Wℓ(t) = et
Pr

i=1 Xi+rℓ .

Following the lines of the proof of Proposition 3.8, we have that the covari-
ance coefficients associated to (Wℓ(t))ℓ∈N are:

C2,j ≤ M
2
m
m θ

j
2

m−2
m (2Cr + 6),

with Mm = E(etmYr ). We have used the fact that

Cov(W
(M)
ℓ (t),W

(M)
ℓ+j (t)) ≤ 2M2

mrε(r(j − 1) + 1) ≤ 2M2
mrCθ

j

2 .

We choose m = 3 and apply Proposition 3.8, so that

E([kM̂ r
k (t) − kE(etYr )]2) ≤ 2k(2Cr + 6)[E(e3tYr )]

2
3

1

1 − θ
1
6

.

We conclude by using the Bienaimé-Tchebitchev inequality. �

This proposition shows that in order to get the consistency for ŵr we
should choose r(k) = o(ln k).

Theorem 3.10. Assume that (Xi)i∈N is an η weakly-dependent process,
with mixing coefficient ε(k) = O(θk), 0 < θ < 1 and that 3wd < u0. Then,
for r = r(k) = o(ln k), ŵr goes to wd in probability.



ADJUSTEMENT COEFFICIENT IN SOME DEPENDENT CONTEXTS 15

Proof. We have that

E(ewrZr
1 ) − M̂ r

k (wr) = M̂ r
k (ŵr) − M̂ r

k (wr)

= (ŵr − wr)
∂M̂ r

k (wr)

∂t
+

ŵr − wr

2

∫

bIr

∂2M̂ r
k (w)

∂t2
dw,

with Îr = [min(ŵr, wr),max(ŵr, wr)], so that

|ŵr − wr| = |E(ewrZr
1 ) − M̂ r

k (wr)|




∂M̂ r
k (wr)

∂t
+

1

2

∫

bIr

∂2M̂ r
k (w)

∂t2
dw




−1

≤ |E(ewrZr
1 ) − M̂ r

k (wr)|
[

∂M̂ r
k (wr)

∂t

]−1

remark that
∂2M̂ r

k (w)

∂t2
> 0.

For any L > 0,

P(|ŵr − wr| > u) = P

(
|E(ewrZr

1 ) − M̂ r
k (wr)| > u

∂M̂ r
k (wr)

∂t

)

≤ P(|M̂ r
k (wr) − E(ewrZr

1 )| > uL) + P

(∣∣∣∣∣
∂M̂ r

k (wr)

∂t

∣∣∣∣∣ ≤ L

)
.

Denote αr(t) = E

(
∂ cMr

k
(t)

∂t

)
= E(Zr

1etZr
1 ) = ∂

∂tE(etYr ) and take L = αr(wr)
2 .

Note that αr(wr) > 0 because of the convexity of E(etZr
1 ) and the fact that

wr is the unique positive solution to E(etZr
1 ) = 1. Hence,

P

(∣∣∣∣∣
∂M̂ r

k (wr)

∂t

∣∣∣∣∣ ≤ L

)
≤ P

(∣∣∣∣∣
∂M̂ r

k (wr)

∂t
− αr(wr)

∣∣∣∣∣ >
αr(wr)

2

)

≤ 16(Cr + 3)E(Y 3
r e3wrYr)

2
3

kαr(wr)2(1 − θ
1
6 )

(we proceed as in the proof of Proposition 3.9). Finally,

(3.1) P(|ŵr−wr| > v) ≤ 16(Cr + 3)

αr(wr)2k(1 − θ
1
6 )

(E(e3wrYr)
2
3

1

v2
+E(Y 3

r e3wrYr)
2
3 ).

Remark that αr(wr) = rE(ewrYr)c′r(wr). Consider an interval [u1, u2] ⊂
[0, u0[ such that wd ∈ [u1, u2], 3u2 < u0, c is non decreasing on [u1, u2],
c(u1) < 0, c(u2) > 0 (this exists because of the convexity of the function
c). Since cr converges uniformly to c and wr converges to wd, for r large
enough, wr ∈ [u1, u2], and

E(e3wrYr) ≤ er(ε+c(3u2)).

We also have that for r large enough, αr(wr) ≥ 1 − er(c(u1)−ε)

u2 − u1
. By taking

r(k) = o(ln k), we have that ŵr goes to wd in probability. �
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4. Simulations

We conclude by giving some simulation results. We present some models
for which the adjustment coefficient is computable - namely MA and AR
linear processes with an innovation following an exponential law. We provide
also a non linear example. We refer to [5] for non linear and computable
examples. These examples are also more realistic from an actuarial point of
view.
Recall that if ξi follows an exponential law with parameter θ > 0 then for
0 ≤ t < θ,

E(etξi) =
θ

θ − t
.

Let εi = ξi − c, with cθ > 1. Then, the independent adjustment coefficient
wi is the positive solution to :

e−tc θ

θ − t
= 1.

The simulation results are summarized below. The graphs represent the

estimator log m̂k(t) and 1
r log M̂ r

k (t) of λ(t) and cr(t) respectively in grey
and in black.

4.1. Independent case. We have simulated an independent sample of εi =
ξi − c of length 10000 and θ = 1.2, c = 1. We have computed ŵi and ŵd:

r = 6 wi = wd = 0.38 ŵi = 0.36 ŵd = 0.37

0.30 0.32 0.34 0.36 0.38 0.40

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

 

 

4.2. AR(1) model. We consider the following AR(1) model: Xn = aXn−1+
εn. Following [13], we have that wd = (1−a)wi. We have simulated a sample
of length 10000 for θ = 1.2, c = 1, a = 0.3. Then,

r = 6 ŵi = 0.45 wd = 0.26 ŵd = 0.27
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4.3. MA(1) model. We consider the following MA(1) model: Xn = εn +
aεn−1, with θ = 1.2, c = 1, a = 0.2. Then, wd is the positive solution to:

−tc(1 + a) + ln θ − ln(θ − t(1 + a)) = 0.

We have simulated a sample of length 10000,

r = 6 ŵi = 0.47 wd = 0.31 ŵd = 0.32
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05
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10
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15
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20

 

 

4.4. A non linear AR(1) model. We consider the following non linear
AR(1) model (which may be seen as a particular case of Bernoulli shifts,
see [7]): Xn = aX2

n−1 + 0.7εn. We have simulated a sample of length 10000,
with θ = 1.2, c = 1, a = −0.2.

r = 6 ŵi = 0.8 ŵd = 1.21
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4.5. How to choose the r-parameter ? When performing the estima-
tion of the wd coefficient, we are faced with the choice of the parameter
r. Following Theorem 3.10, we should take r = o(ln(k)) but the practical
choice of r for n given is not clear. We have performed several simulations
for the independent, MA(1), AR(1), non linear AR(1) models, for several
values of r. These experiments tend to show that when r increases, the
estimator ŵd behaves monotonically in the beginning and then has a more
chaotic behavior. We propose to choose r as the largest integer for which
ŵd is monotonic on [0, r]. This is illustrated in the graphs below for several
models.

4.5.1. Independent case. We have simulated an independent sample of εi =
ξi − c of length 10000 and θ = 1.2, c = 1. Below is represented ŵd for
r = 1, . . . , 35, wi = wd = 0.38.
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4.5.2. Linear MA(1). We consider the following MA(1) model: Xn = εn +
aεn−1, with θ = 1.2, c = 1, a = 0.3. We have simulated a sample of size
10000 and represented below ŵd for r = 1, . . . , 40, wd = 0.26.
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4.5.3. Linear AR(1). We consider the following AR(1) model: Xn = aXn−1+
εn. We have simulated a sample of length 10000 for θ = 1.2, c = 1, a = 0.4,
wd =.
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4.6. Non linear AR(1). We have represented below ŵd for r = 1, . . . , 35
for the non linear AR(1) model of section 4.4.
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4.7. On the empirical distribution of ŵd. We conclude this simulation
section with a short study of the empirical distribution of ŵd. We have
performed 100 simulations of a sample of size 10000 in the MA(1) model
(Section 4.3). The mean value of ŵd is 0.317, with standard deviation 0.04.
The computed value of wd is 0.314. The histogram and a Shapiro test
indicate that the distribution of ŵd is probably asymptotically normal.
Shapiro-Wilk normality test

W = 0.9871, p-value = 0.4462
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