Tr. J. of Mathematics 20 (1996), 379 – 387. © TÜBİTAK

SUBORBITAL GRAPHS FOR THE NORMALIZER OF $\Gamma_o(N)$

M. Akbaş & T. Başkan

Abstract

In this paper we examine some properties of suborbital graphs for the normalizer \mathcal{N} of $\Gamma_0(N)$ in PSL(2,R) and show that, if $\mathcal{N}/\Gamma_0(N)$ and the set of orbit representatives are denoted by B and Ω respectively, the permutation group (B,Ω) is regular and m-regular where m is an odd natural number.

Introduction

Let PSL $(2,\mathbb{R})$ denote the group of all linear fractional transformations

T: $z \to (az + b)/(cz + d)$, where, a,b,c,d are real and ad-bc=1. This is the automorphism group of the upper half plane $\mathcal{U} = \{z \in \mathbb{C} | \text{Im} z > 0\}$.

 Γ , the modular group, is the subgroup of $PSL(2,\mathbb{R})$ such that a,b,c and d are rational integers. $\Gamma_0(N)$ is the subgroup of Γ with N|c. As a matrix representation the elements of $PSL(2,\mathbb{R})$ are the pairs of matricess

$$\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} (a, b, c, d \in \mathbb{R}, ad - bc = 1)$$
 (1.1)

We will omit the symbol \pm , and identify each matrix with its negative.

Let \mathcal{N} denote the normalizer of $\Gamma_0(N)$ in $\mathrm{PSL}(2,\mathbb{R})$. The normalizer is studied by Lehner and Newman [7] in connection with the Weierstrass points of $\Gamma_0(N)$. Lehner and Newman calculated the normalizer directly. In [4] Conway and Norton gave a more elegant description derived from [7] in connection with the Monster Simple group. The normalizer consists exactly of the matrices

$$\begin{pmatrix}
ae & b/h \\
cN/h & de
\end{pmatrix}$$
(1.2)

where $e \parallel N/h^2$ and h is the largest divisor of 24 for which $h^2 \mid N$ with the understandings that the determinant of the matrix is e > 0, and that $r \parallel s$ means that $r \parallel s$ and

^{*}AMS Subject Classification 46A40

(r, s/r) = 1 (r is called an exact divisor of s). From now on, unless otherwise stated explicitely, N will denote a square-free integer which means that every divisor of N is exact. In this case it is seen that h=1.

2. The Action of N on Q

Every element of $\hat{\mathbb{Q}}$ can be represented as a reduced fraction x/y, with $x,y\in\mathbb{Z}$ and (x,y)=1. Since x/y=-x/-y this representation is not unique. We represent ∞ as 1/0=-1/0. As in §1 the action of the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on x/y is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
: $x/y \rightarrow \frac{ax + by}{cx + dy}$.

It is easily seen that if $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and if $x/y \in \hat{\mathbb{Q}}$ is a reduced fraction then, since c(ax+by)-a(cx+dy)=-y and d(ax+by)-b(cx+dy)=x,

$$(ax + by, cx + dy) = 1$$
 (2.1)

The action of a matrix on x/y and on -x/-y is identical.

Lemma 2.1 (i) The action of the normalizer N on \hat{Q} is transitive.

(ii) The stabilizer of a point is an infinite cyclic group

Proof. Before we prove this let us give the following theorem from [2].

Theorem 2.1 Let N be any integer and $N = 2^{\alpha_1} \cdot 3^{\alpha_2} \cdot p_3^{\alpha_3} \dots p_n^{\alpha_n}$, the prime power decomposition of N. Then N is transitive on $\hat{\mathbb{Q}}$ if and only if $\alpha_1 \leq 7, \alpha_2 \leq 3$ and $\alpha_i \leq 1$, where $i = 3, \dots, r$.

The proof of the Lemma 2.1 (i) Since N is square-free, the $\alpha_i \leq 1$, i = 1, 1, ..., r. so we conclude that the action is transitive.

(ii) Since the action is transitive, the stabilizer of any two points in Q are conjugate in N. So it is sufficient to consider the stabilizer N_∞ of ∞. This consists of the elements of the form

$$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$$
, with $b \in \mathbb{Z}$.

So N_{∞} is the infinite cyclic group generated by the element $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

We now consider the imprimitivity of the action of N on \mathbb{Q} . This will be a special case of the following:

Let (G,Ω) be a transitive permutation group, consisting of a group G acting on a set Ω transitively. An equivalence relation \approx on Ω is called G-invariant if, whenever $\alpha, \beta \in \Omega$ satisfy $\alpha \approx \beta$ then $g(\alpha) \approx g(\beta)$ for all g inG. The equivalence classes are called blocks. We cal (G,Ω) imprimitive if Ω admits some G-invariant equivalence relation different from

- (i) the identity relation, $\alpha \approx \beta$ if and only if $\alpha = \beta$;
- (ii) the universal relation, $\alpha \approx \beta$ for all $\alpha, \beta \in \Omega$.

Othervise (G,Ω) is called primitive.

We give the above notion in a different way as follows.

The set Δ of Ω is called a set imprimitivity of (G,Ω) if for every $g\in G$ either $g(\Delta)=\Delta$ or $g(\Delta)\cup\Delta=\varnothing$.

Therefore the empty set, the one point subsets and Ω itself are sets of imprimitivity, called the trivial sets of imprimitivity. If (G,Ω) has a non-trivial set of imprimitivity, the (G,Ω) is called imprimitive, otherwise primitive.

In fact the above defined blocks are sets of imprimitivity. Conversly if $\{\Delta_i\}_{i\in I}$, where I is an indexing set, denote the defferent elements of the set $\{g(\Delta)|g\in G\}$, where Δ is a non-empty set of imprimitivity. Then Ω can be written as a direct sum: $\Omega = \bigcup_{i\in I} \Delta_i \cdot \{\Delta_i\}_{i\in I}$ is called a system of sets of imprimitivity of (G,Ω) . Therefore if we are given a system $\{\Delta_i\}_{i\in I}$ of course, we can define a G- invariant equivalence relation on Ω .

Lemma 2.2.[3] Let (G,Ω) be transitive. The (G,Ω) is primitive if and only if G_{α} , the stabilizer of apoint $\alpha \in \Omega$, is a maximal subgroup of G for each $\alpha \in \Omega$.

What the lemma is saying is whenever $G_{\alpha} < H < G$, then Ω admits some G-invariant equivalence relation other than the trivial cases. In fact, since G acts transitively, every element of Ω has the form $g(\alpha)$ for some $g \in G$. If we define the relation \approx on Ω as

$$g(\alpha) \approx g'(\alpha)$$
 if and only if $g' \in gH$.

Then it is easily seen that it is non-trivial G-invariant equivalence relation. That is (G,Ω) is imprimitive.

From the above we see that the number of blocks is equal to the index |G:H| [6].

We now apply these ideas to the case where G is the normalizer \mathcal{N} , and Ω is $\hat{\mathbb{Q}}$. An obvious choice for H is Γ_0 (N).

Clearly $\Gamma_{\infty} < \Gamma_{\circ}(N) < \mathcal{N}$, if N > 1.

So, from the above discussion, the normalizer \mathcal{N} acts imprimitively on $\hat{\mathbb{Q}}$.

Let \approx denote the \mathcal{N} -invariant equivalence relation induced an \hat{Q} by $\Gamma_{\circ}(N)$. And let v=r/s and w=x/y be elements of $\hat{\mathbb{Q}}$ such that $(s,N)=e_1,(y,N)=e_1'$ and $s=s_1e_1,\ y=y_1e_1'$. If $e_2=N/e_1$ and $e_2'=N/e_1'$ then it is easily verified that there exist elements

$$g = \begin{pmatrix} re_2 & \star \\ s_1 N & d_1 e_2 \end{pmatrix}, det = e_2 \text{ and } g' = \begin{pmatrix} ye'_2 & \star \\ y_1 N & d_2 \cdot e'_2 \end{pmatrix}, det = e'_2.$$

belanging to \mathcal{N} and send ∞ to v and to w, respectively. If v and w are of the above form then we get that

$$v_e \approx v_f$$
 if and only if $e = f$.

By our general discussion of imprimitivity, the number $\Psi(N)$ of blocks (equivalence classes) under \approx is given by $\Psi(N) = |\mathcal{N}: \Gamma_{\circ}(N)|$.

The following formula for $\Psi(N)$ is knomwn [1], but for completeness we will sketch a proof here.

Lemma 2.3. $\Psi(N) = 2^r$, where r is the number of prime factors of N.

Proof. We will count equivalence classes under \approx . From the above we know that $v_e \approx v_f$ if and only if e = f. So counting the blocks is equivalent to counting the number of divisors of N. This means that the number of blocks is just 2^r , where r the number of primes dividing N.

3. Suborbital Graphs For $\mathcal N$ on $\hat{\mathbb Q}$

Let (G,Ω) denote a transitive permutation group. For $(\alpha,\beta) \in \Omega^2$ and $g \in G$, we define $g(\alpha,\beta) = (g(\alpha),g(\beta))$. Therefore (G,Ω^2) becomes a permutation group. The orbits of this action are called suborbitals of G, that containing (α,β) being denoted by $0(\alpha,\beta)$. From $0(\alpha,\beta)$ we form a suborbital graph $\Delta(\alpha,\beta)$: its vertices are the elements of Ω and there is a directed edge from γ to δ if $(\gamma,\delta) \in 0(\alpha,\beta)$.

 $0(\alpha, \beta)$ is also a suborbital, and it is either equal to or disjoint from $0(\alpha, \beta)$. In the latter case $\Delta(\beta, \alpha)$ is just $\Delta(\alpha, \beta)$ with the arrows reserved, and we call, in this case, $\Delta(\alpha, \beta)$ and $\Delta(\beta, \alpha)$ paired suborbital graphs.

In the former case, $\delta(\alpha, \beta) = \Delta(\beta, \alpha)$ and the graph consists of pairs of oppositly directed edges; it is convenient to replace each such pair by a single undirected edge, so that we have an undirected graph which we call self-paired.

The above dieas were first introduced by Sims [11], and are also described in a paper by Neumann [9] and in books by Tsuzuku [13] and by Biggs and white [3], the emphasis being on applications to finite groups.

We now apply the above to the normalizer \mathcal{N} an $\hat{\mathbb{Q}}$. Since \mathcal{N} acts transitively on $\hat{\mathbb{Q}}$, each suborbital contains a pair (∞, v) for some $v \in \hat{\mathbb{Q}}$; writting v = u/n, wih $n \geq 0$ and (u, n) = 1, we denote this suborbital by $O_{u,n}$, and corresponding suborbital graph by $\Delta_{u,n}$.

If $v = \infty = 1/10 = -1/0$, then this is the trivial suborbital graph $\Delta_{1,0} = \Delta_{-1,0}$, so assume that $v \in \hat{\mathbb{Q}}$ (we are not interested in trivial suborbital graphs). If $v' \in \hat{\mathbb{Q}}$, then $0(\infty, v) = 0(\infty, v')$ if and only if v and v' are in the same orbit of \mathcal{N}_{∞} ; since \mathcal{N}_{∞} is generated by $z : v \to v + 1$, this is equivalent to v' = u'/n where u = u' modn. Therefore

 $\Delta_{u,n} = \Delta_{u'}, n'$ if and only if n = n' and u = u' modn.

We will write $r/s \rightarrow x/y$ in $\Delta_{u,n}$ if $(r/s, x/y) \in O_{u,n}$.

Theorem 3.1 $r/s \rightarrow x/y$ in $\Delta_{u,n}$ if and only it $\exists e \in \mathbb{Z}$ with e|N, N/e|s and if $(n, e) = e_n, n = n_1 e_n, e = e_1 e_n$ then either

- a) $ry sx = n_1$ and $x = re_1u \mod n_1, y = e_1 su \mod e_1n$ or
- b) $ry sx = n_1$ and $x = -re_1u \mod n_1$, $y = -e_1 su \mod e_1n$.

Proof. let $r/s \to x/y$ in $\Delta_{u,n}$. Then there is an element $\begin{pmatrix} ae & b \\ cN & de \end{pmatrix} \in \mathcal{N}$ sending ∞ to r/s, and u/n to x/y and therefore ae/cN = r/s and (aeu + bn)/(cNu + dn) = x/y. Since the determinant $ade^2 \cdot bcN = e$, we get (a, cN/e) = 1. So a = r and s = cN/e, that is N/e|s. Let $(n, e) = e_n, n = n_1e_n$ and $e = e_1e_n$. Since $\begin{pmatrix} ae & b \\ cN/e & d \end{pmatrix}$ has determinant 1, then using (2.1) we see that (aeu + bn, cNu/e + dn) = 1. Hence we will have the following matrix equation:

$$\begin{pmatrix} ae & b \\ cN & de \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & n \end{pmatrix} = \begin{pmatrix} ae & aeu + bn \\ cN & cNu + den \end{pmatrix} =$$

$$\begin{pmatrix} ae & e_n(ae_1u + bn_1) \\ cN & e_ne_1(cNu/e + dn) \end{pmatrix} = \begin{pmatrix} (-1)^ier & (-1)^je_nx \\ (-1)^ies & (-1)^je_ny \end{pmatrix}, \quad (3.1)$$

where i, j = 0, 1. If i = j = 0 then ae=er, $en(ae_1u+bn_1) = e_nx$, cN = es, $e_ne_1(cNu/e+dn) = e_ny$. That is, $x = ae_1u + bn_{x1}$ and $y = cNue_1/e + dne_1$. So $x = re_1u \mod n_1$ and $y = e_1$ su mode₁n and taking determinants in (3.1) we see that $ry - sx = n_1$, and so (a) holds. Similarly if i=1 and j=0 we obtain (b). If i = j = -1, then again (a) holds. If, finally, i=0 and j=1, then (b) holds.

Conversly, if (a) holds, then there exist integers b,d such that $x = re_1u + bn_1$ and $y = e_1su + de_1n$. We now show that the element $\begin{pmatrix} re & b \\ se & de \end{pmatrix}$ belongs to N and sends ∞ to r/s, and u/n to x/y.

In fact, using $ry-sx=n_1$ and N/e|s we get $rde^2-sbe=e$, that is, the above element is in \mathcal{N} . Finally re/se=r/s and $(reu+bn)/(seu+dne)=e_n(re_1u+bn_1)/e_n(se_1u+de_1n)=x/y$. As above $(re_1u+bn_1,se_1u+de_1n)=1$. If (b) holds the proof follows similarly. \square

Notation Let " $r/s \rightarrow x/y$ in $\Delta_{u,n}$ " be denoted by " $r/s \stackrel{e_1}{\rightarrow} x/y$ in $\Delta_{u,n}$ ", where e_1 is as in Theorem 3.1. The set of e_1 's occurred in $\Delta_{u,n}$ will be denoted by $E_{u,n}$.

Corollary 3.2 Let $E_{u,n} = E_{v,n} = \{1\}$ and let uv = -1 mod n, then the suborbital graph $\Delta_{u,n}$ is paired with $\Delta_{v,n}$.

Proof. We will observe that $r/s \to x/y$ in $\Delta_{u,n}$ if and only $x/y \to r/s$ in $\Delta_{v,n}$. Since $r/s \to x/y$ in $\Delta_{u,n}$, using the hypothesis and Theorem 3.2, we have that $\exists e | N, N/e | s$, $(n,e) = e, n = n_1 e$ such that either $x = ru \mod_1$, $y = su \mod_1$ and $ry - sx = n_1$, or $x = -ru \mod_1$, $y = -su \mod_1$ and $y = -su \mod_1$.

Suppose that the former holds. Then $xs - yr = -n_1$ and $vx = ruv \mod_1$, $vy = suv \mod_1$. Since vy=-1 modn, we have $xs - yr = -n_1$ and $r = -vx \mod_1$, $s = -vy \mod_1$, that is, $x/s \to r/s$ in $\Delta_{v,n}$.

Corollary 3.3 $\Delta_{u,n}$ is self-paired if and only if $\exists e | N$ such that N—ne and $u^2e = -1$ modn.

Proof. Suppose $\Delta_{u,n}$ is self-paired. So the pair $(\infty, u/n)$ is sent to $(u/n, \infty)$ by \mathcal{N} . It is easily seen that such elements of \mathcal{N} must be of the form $\begin{pmatrix} ue & b \\ ne & -ue \end{pmatrix}$, where determinant is e. Therefore e|N and N|ne and $u^2e=-1$ modn.

Conversly, let e|N Such that N|ne and $u^2e=-1$ modn. since $u^2e=-1$ modn, then there exists an integer b such that $-u^2e-bn=1$, that is, $-u^2e^2-bne=e$. Therefore the element $\begin{pmatrix} ue & b \\ ne & -ue \end{pmatrix}$ is in $\mathcal N$ and satisfies the required properties. \square

4. The Quotient Group $B = \mathcal{N}/\Gamma_{\circ}(N)$

In this final section we do some calculations about the representatives of orbits of $\Gamma_{\circ}(N)$. Then we show that the permutation group (B,Ω) is regular and m-regular where m is an odd natural number.

Theorem 4.1 Given an arbitrary rational number k/s with (k, s)=1, then there exists an element $A \in \Gamma_{\circ}(N)$ such that $A(k/s) = (k_1/s_1)$ with $s_1|N$.

Proof.

$$\left(\begin{array}{cc} a & b \\ cN & d \end{array}\right) \left(\begin{array}{c} k \\ s \end{array}\right) \left(\begin{array}{c} ak + bs \\ Nck + ds \end{array}\right)$$

we find some pairs $\{c,d\}$ for which the equation

$$Nck + ds = (N, s) \tag{4.1}$$

holds, for (N, s)|N, so $s_1 = (N, s)$ works.

Since (Nk/(N,s), s/(N,s)) = 1 there exists a pair $\{c_{\circ}, d_{\circ}\}$ so that the equation (4.1) is satisfied. Therefore, as we know, the general solution of (4.1) is

$$c = c_{\circ} + sn/(N, s)$$

$$d = d_{\circ} \cdot + Nkn/(N, s), \text{ where } n \in \mathbb{Z}$$

$$(4.2)$$

Let $N=q_{\circ}^{\alpha_{\circ}}q_{1}^{\alpha_{1}}\dots q_{k_{\circ}}^{\alpha_{k_{\circ}}}$ be the prime power decomposition of N. We must show that there exists a pair $\{c_{\star},d_{\star}\}$ obeying (4.2) such that

$$(Nc_{\star}, d_{\star}) = 1.$$

If $(d_{\circ}, N) = 1$, there is nothing to prove. If $(d_{\circ}, N) > 1$ then d_{\circ} does have a commen factor with N, q_{\circ} say. using (4.1), $(q_{\circ}, Nk/(N, s)) = 1$ therefore taking n=1 in (4.2) we get an integer d_1 such that $q_{\circ}|d_1$.

If $(d_1, N) > 1$ then d_1 has a common factor with N, q_1 say. Let $d_2 = d_1 - q_0 Nk/(N, s)$ then d_2 does not have q_1 as a factor. If $(d_2, N) > 1, d_2$ has a common factor with N, q_2 say. eventually we arrive at

$$d_3=d_2-q_\circ q_1Nk/(N,s), \text{ and so } d_3 \text{ has no } q_\circ,q_1,q_2 \text{ as factors}$$

$$d_{k_\circ+1}=d_{k_\circ}-q_\circ q_\circ\dots q_{k_\circ-1}Nk/(N,s), \text{ and so } d_{k_\circ+1} \text{ has no } q_\circ,q_1,\dots-q_{k_\circ}$$

as factors. Hence $(d_{k_o+1}, N) = 1$. Let $d_{\star} = d_{k_o+1}$ and the corresponding c, c_{\star} say, and so $(Nc_{\star}, d_{\star}) = 1$. This implies that there exists an element $A \in \Gamma_{\circ}(N)$ such that $A(k/s) = k_1/s_1$ with s_1/N .

Therefore we have

Corollary 4.2. Let $d_1|N$ and for some $A \in \Gamma_0(N)$ $A(a_1/d_1) = (a_2/d_1)$ with $(a_1, d_1) = (a_2, d_1) = 1$. Then $a_1 = a_2 \mod t$, where $t = (d_1, N/d_1)$.

Corollary 4.3. Let $d \mid N$ and let $(a_1, d) = (a_2, d) = 1$. Then $\begin{pmatrix} a_1 \\ d \end{pmatrix}$ and $\begin{pmatrix} a_2 \\ d \end{pmatrix}$ are conjugate under $\Gamma_{\circ}(N)$ if and only if $a_1 = a_2 \mod t$, where t = (d, N/d).

Proof. Using the above and a theorem from [10] the result follows.

From the above lemma and corollaries we can write down the set of orbits of $\Gamma_{\circ}(N)$ as $O = \{ \left[\frac{1}{d} \right] | d|N \}$ and it can be easily seen that the number of them is just 2^r , where r is the number of primes dividing N. So we take Ω as the set $\{ \frac{1}{d} : d|N \}$, as the set of representatives of O.

We see that W_e of all matrices of the form $\begin{pmatrix} ae & b \\ cN & de \end{pmatrix}$ is a single coset of $\Gamma_{\circ}(N)$, where $e \parallel N$ and the determinant is e. We have the relation $W_e^2 = 1$, $W_e W_f = W_f W_e = 1$

 $W_g(mod\Gamma_{\circ}(N))$, where $g = \frac{e}{(e,f)} \cdot \frac{f}{(e,f)}$. This means that any element (except the identity) of B has order 2. since \mathcal{N} acts transitively on \hat{Q} , then B acts transitively on Ω . Therefore (B,Ω) is a transitive permutation group.

Furthermore, we have the following results

Corollary 4.4. (B,Ω) is a regular permutation group.

Proof. As we see above the number $|\Omega|$ is equal to 2^r , and on the other hand $|B| = 2^r$. So the stabilizer B_x of any element x is just the identity. Hence the action is regular. \square

Corollary 4.5 Let m be an odd natural number. Then the group B is m-regular.

Proof. Since the abelian group B is finite then is it a torsion group. On the other hand, the order of any element of B is relatively prime to m. so B is m-regular. \Box

References

- [1] M. Akbaş and D. Singerman, The normalizer of $\Gamma_{\circ}(N)$ in PSL(2 \mathbb{R}). Glasgow Math. J. 32 (1990) 317-327.
- [2] M. Akbaş and D. Singerman. The signature of the normalizer of $\Gamma_{\circ}(N)$. London Math. Soc. Lecture Notes 165 Cambridge University Press, Cambridge, 1992.
- [3] N. L. Bigg and A. T. White. Permutation group and combinatorial structures. London Math. Soc. Lecture Notes 33, Cambridge University Press, Cambridge, 1979.
- [4] J. H. Conway, and S. P. Norton, Montrous Moonshine. Bull. London Math. Soc. 11, 308-339 (1979).
- [5] G. A. Jones, and D. Singerman, Complex funtions: an algebraic ang geometric viewpoint. Cambridge university Press. Cambridge, 1987.
- [6] A. Jones, D. Singerman and K. Wicks, The modular group and generalized Farey graphs, London Math. Soc. Lecture Notes 160, Cambridge university Press, Cambridge 1991, 316-338.
- [7] J. Lehner and M. Newman, Weierstrass points of $\Gamma_{\circ}(n)$. annals of Mathematics Vo: 79. No:2, March, 1964.
- [8] W. J. LeVeque, Fundamentals of number theory. Addison-Qesley, Reading, Mass., 1977.
- [9] P. M. Neumann, Finite permutation groups, edge-coloured graphs and matrices. Topics in group theory and computation, Ed. M. P. J. Curran, Academic Press, London, New York, San Francisco, 1977.
- [10] B. Schoeneberg, Elliptic modular functions. Springer-Verlag, Berlin, Heidelberg, New York, 1974.

- [11] C. C. Sims, graphs and finite permutation groups. Math. Z. 95 (1967), 76-86.
- [12] M. Suzuki, Group Theory I. Springer-Verlag, Berlin, Heidelberg, New York, 1982.
- [13] T. Tsuzuku, Finite groups and funite geometries. Cambridge University Press, Cambridge, 1982.

$\Gamma_{\circ}(N)$ nin NORMALLEŞTİRİCİSİ İÇİN ALT ÇEVRESEL GRAFİKLER

$\ddot{\mathbf{O}}\mathbf{zet}$

Bu çalışmada $\Gamma_o(N)$ nin PSL $(2, \mathbb{R})$ deki η normalleştiricisi için altyörüngesel grafiklerin bazı özellikleri belirtildi ve eğer $\mathcal{N}/\Gamma_o(N)$ ve yörünge temsilciler kümesi sırası ile B ve Ω ile gösterilirse, (B,Ω) parmütasyon grubunun regular ve ayrıca m bir tek doğal sayı ise m-reguler olduğu gösterildi.

Mehmet AKBAŞ Karadeniz Technical University Department of Mathematics Trabzon-TURKEY Turgut BAŞKAN Uludağ University Department of Mathematics Bursa-TURKEY Received 9.11.1995