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Abstract

In this paper we examine some properties of suborbital graphs for the normalizer
N of To(N) in PSL(2,R) and show that, if N//To(N) and the set of orbit repre-
sentatives are denoted by B and ) respectively, the permutation group (B,Q) is
regular and m-regular where m is an odd natural number.

Introduction

Let PSL (2,R) denote the group of all linear fractional transformations

T: z— (az + b)/(cz 4+ d), where, ab,c,d are real and ad-bc=1. This is the
automorphism group of the upper half plane U = {z € C|Imz > 0}.
I, the modular group, is the subgroup of PSL(2,R) such that a,b,c and d are rational
integers. I'g(IV) is the subgroup of I' with N|c. As a matrix representation the elements
of PSL(2,R) are the pairs of matricess :

ﬂ:(i Z)(a,b,c,deR,ad—bczl) (1.1)
We will omit the symbol %, and identify each matrix with its negative.

Let A denote the normalizer of T'o(N) in PSL(2,R). The normalizer is studied
by Lehner and Newman [7] in connection with the Weierstrass points of I'o(N). Lehner
and Newman calculated the normalizer directly. In [4] Conway and Norton gave a more
elegant description derived from [7] in connection with the Monster Simple group. The
normalizer consists exactly of the matrices

ae b/h
( ¢N/h de > (1.2)
where e || N/h? and h is the largest divisor of 24 for which h?|N with the understandings
that the determinant of the matrix is e > 0, and that r || s means that r || s and
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{r.s/r) = 1 (r is called an exact divisor of s). From now on, unless otherwise stated
explicitely, ¥ will denote a square-free integer which means that every divisor of N is
exact. In this case it is seen that h=1.

2. The Action of N on

Every element of § can be represented as a reduced fraction x/y, with =,y €
and (r,y) = 1. Since x/y = —x/ — y this representation is not unique. We represent oo

as 1/0=-1/0. As in §1 the action of the matrix ( : 3 ) on x/v is

a &Y. i + by
(E' d)'ﬂy—' ez + dy’

It is easily seen that if ( :
since clax 4 byl = aler 4 dy)

) €I and if z/y € Q is a reduced fraction then,

h
d
="y and daz + by} - bler +dy) =z,

(ax+by, cx+dy) =1 [2.1)
The action of a matrix on z/y and on =x/ = y is identical.

Lemma 2.1 (i) The action of the normalizer N on £} is transitive.
(i1} The stabilizer of o point i an infinife cyelic group
Proof. Before we prove this let us give the following theorem from [2]. O

Theorem 2.1 Let N be any integer and N = 2™ - 370 . g20 | pfn the prime power
decomposition of N, Then N is transilive on ll* if and ondy 1if o = T,o02 < F and
oy % l, where i=23,...,7

The proof of the Lemma 2.1 (i) Since N is square-free, the a; <1, t = 1,1,...,r.
s0 we conclude that the action is transitive,
(ii} Since the action is transitive, the stabilizer of any two points in Q) are conjugate in

N'. 8o it is sufficient to consider the stabilizer A, of oo. This consists of the elements

of the form
| . =
(IZI I).wu.hb-E.:....

S0 N is the infinite cyclic group generated by the elemant ( {1] 1[ )

We now consider the imprimitivity of the action of A" on t‘@ This will be a special
case of the following:

a5l



AKBAS & BASKAN

Let (G,Q) be a transitive permutation group, consisting of a group G acting on
a set (1 transitively. An equivalence relation =~ on  is called G-invariant if, whenever
a, 3 € Q2 satisfy o ~ (3 then g(a) = g(8) for all g inG. The equivalence classes are called
blocks. We cal (G,Q) imprimitive if Q admits some G-invariant equivalence relation
different from

(i) the identity relation, o ~ 3 if and only if a = 3;

(ii) the universal relation, o ~ 3 for all a,3 € Q.

Othervise (G, Q) is called primitive.

We give the above notion in a different way as follows.

The set A of Q is called a set imprimitivity of (G,) if for every g € G either
g(A)=Aor g(A)UA=2. :

Therefore the empty set, the one point subsets and (2 itself are sets of imprimitivity,
called the trivial sets of imprimitivity. If (G, ) has a non-trivial set of imprimitivity, the
(G,9) is called imprimitive, otherwise primitive.

In fact the above defined blocks are sets of imprimitivity. Conversly if {A;}ier,
where I is an indexing set, denote the defferent elements of the set {g(A)lg € G},
where A is a non-empty set of imprimitivity. Then € can be written as a direct sum:
Q= z‘LeJIAi {Ai}ier is called a system of sets of impimitivity of (G, Q). Therefore if we

are given a system {A;};cr. of course, we can define a G- invariant equivalance relation
on .

Lemma 2.2.[3] Let (G,Q) be transitive. The (G,Q) is primitive if and only if G, the
stabilizer of apoint o € Q, is a mazimal subgroup of G for each o € Q.

What the lemma is saying is whenever G, < H < G, then Q admits some G-
invariant equivalence relation other than the trivial cases. In fact, since G acts transitively,
every element of Q0 has the form g(a) for some g € G. If we define the relation ~ on
as

g(a) = ¢'(a) if and only if ¢’ € gH.

Then it is easily seen that it is non-trivial G-invariant equivalence relation. That is (G, 2)
is imprimitive.

From the above we see that the number of blocks is equal to the index |G : H| [6].

We now apply these ideas to the case where G is the normalizer A/, and Q is Q
An obvious choice for H is T'g (N).

Clearly I'no < T'o(N) <N, if N > 1.

~ So, from the above discussion, the normalizer N acts imprimitively on Q.
Let ~ denote the A -invariant equivalence relation induced an Q by I',(N). And let
v = r/s and w = z/y be elements of Q such that (s, N) = ey, (y,N) = €} and
s =s1e1, y =yiey- If e = N/e; and e}, = N/e) then it is easily verified that there exist
elements
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[ rex * _ r | yeh * .
g_(slN d162>,det—ezandg-<y1N d2.e,2),det—62.

belanging to A/ and send oo to v and to w, respectively.
If v and w are of the above form then we get that

ve &~ vy if and only if e = f.

By our general discussion of imprimitivity, the number W(N) of blocks (equivalence
classes) under =~ is given by ¥(N) = |N : To(N)|.

The following formula for ¥(N) is knomwn [1], but for completeness we will sketch
a proof here.

Lemma 2.3. U(N) = 2", where r is the number of prime factors of N.

Proof. We will count equivalence classes under ~. From the above we know that
ve ~ vy if and only if e = f. So counting the blocks is equivalent to counting the number
of divisors of N. This means that the number of blocks is just 2", where r the number
of primes dividing V. g

3. Suborbital Graphs For A on Q

Let (G,Q) denote a transitive permutation group. For (a,8) € Q* and g € G,
we define g(a, 3) = (g(a),g(8)). Therefore (G,Q?) becomes a permutation group. The
orbits of this action are called suborbitals of G, that containing («, 3) being denoted by
0(a, 3). From 0(c, 3) we form a suborbital graph A(a, 3): its vertices are the elements
of Q and there is a directed edge from v to ¢ if (v,6) € 0(e, 3).

0(a, B) is also a suborbital, and it is either equal to or disjoint from 0(c, 3). In the latter
case A(S3,«) is just A(a, 3) with the arrows reserved, and we call, in this case, A, )
and A(f3,a) paired suborbital graphs.

In the former case, 6(a, ) = A(S, ) and the graph consists of pairs of oppositly directed
edges; it is convenient to replace each such pair by a single undirected edge, so that we
have an undirected graph which we call self-paired.

The above dieas were first introduced by Sims [11], and are also described in a
paper by Neumann [9] and in books by Tsuzuku [13] and by Biggs and white [3], the
emphasis being on applications to finite groups.

We now apply the above to the normalizer A an (@ Since N acts transitively on
@, each suborbital contains a pair (co,v) for some v € Q; writting v = u/n, wih n >0
and (u,n) = 1, we denote this suborbital by O, ,, and corresponding suborbital graph
by Ayn-
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If v = oo = 1/10 = —1/0, then this is the trivial suborbital graph A, = A0, s0

assume that v € ) (we are not interested in trivial suborbital graphs). If +' € §, then

O(ee,v) = Ofog,v') if and only if v and ©' are in the same orbit of A, : since A is

generated by z ;v — v+ 1, this is equivalent to «' = «"/n where u = v* modn. Therefore
Ayn =8, 0 ifand only il n=n' and 4 = 4" modn.

We will write rfs — z/fy in A, , if (rfs,2/y) €0

LUTEL

Theorem 3.1 r/s — xfy in Ay, if and only it 3¢ € £ with e|N |, N/e|s and if
(1, &) = e, 11 = Wy €4, & = €18, then cither

a) ry=sr=mny and ¥=re;n modn,,y=e, sumod en or

b) rijy—sr=ny and £ = =reju modn,, ¥ = —e; su mod en.
ae b
elN  de
to rfs, and u/n to x/y and therefore ae/cN =r/s and [geu + bn)/(eNe +dn) = z/y.
Since the determinant ade® - belN = e, we get (a,cNfe) = 1. So a = r and & = eNje,
that is Nfels. Let (n,e) = ey, n = me, and e = eye,. Since ( f;., ” z ) ]:IEI.'E
determinant 1, then using (2.1} we see that {aex 4 bn, eNufe +dn) = 1, Hence we will
have the following matrix equation:

ae b 1 u Y\  ae asu+bn
(:N de)(l_'l-n)_( i.|:+|'.'I!-Eﬂ)=
[ ae  enloeit+buy) ] [ (~1fer (=1)enr ] (3.1)
eN  epey(eNuwfe + dn) (=1 es [—1 ey : 3
where 1,7 = 0,1. If i = j =0 then ae=er, en(aeyu+bm ) = ez, eN = es, epeg(eNufe+
idr) = eqy. That is, r = aeyu+bnyy and y = eNue fe+dne;. 8o £ = reju modn, and
¥ =€ sumode;n and taking determinants in (3.1} we see that ry — sx = ny, and so |
a) holds. Similarly if i=1 and j=0 we obtain (b). If i = j = —1, then again { a) holds.
If, finally, i=0 and j=1, then (b) holds.
Conversly, if (a) holds, then there exist integers byd such that z = reju + bny and

§ = g5t + degn. We now show that the element ( :c ) belongs to A" and sends

Proof. let rfs — z/y in A, ,. Then there is an element )E AN sending oo

b
de
oo foorfs, and u/n to x/v.

In fact, using ry—sr = ny and N/e|s we get rde® —sbe = e, that is, the above element is in
A, Finally re/se=r/s and (rex+bn)/{seu+dne) = e, (re,ut+bn, | /e, (56 u4de; n) = xfy.
As above (reju 4 bng, seju 4 deyn) = 1. 11 (b)) holds the proof follows similarly. a

Notation Let “rfs — zfy in Ay, 7 be denoted by “rfs 2 2y in Ay n 7, wwhere &) is
as in Theorem 3.0, The set of ) 's oveured in A, will be denoted by E, .
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Corollary 3.2 Let E,,, = E,,, = {1} and let wv = —1 modn, then the suborbital grapl
Ay n ts paired with Ay, .

Proof. We will observe that r/s — z/y in A, if and only z/y — /s in A, . Since
r/s — x/y in Ay, using the hypothesis and Theorem 3.2, we have that Je|N, N/els,
(n,e) = e,n = nie such that either £ = 74 modn,, y =su modn and ry — sz =ny, or

z = —ru modny, ¥y = — sumodn and ry — sz = —n;.
" Suppose that the former holds. Then zs — yr = —n; and vz = ruv modn;, vy = suv
modn. Since vy=-1 modn, we have zs —yr = —n; and r = —vz modn;, s = —vy modn,
that is, z/s — r/s in Ay . O

Corollary 3.3 A, is self-paired if and only if 3e|N such that N—ne and u?e = —1
modn.

Proof. Suppose A, , is self-paired. So the pair (co,u/n) is sent to (u/n,c0) by N.

. . b
It is easily seen that such elements of A" must be of the form ue ) , Where

—ue

determinant is e. Therefore ¢|N and N|ne and u?e = —1 modn.
Conversly, let e|N Such that N|ne and u?e = —1 modn. since u?

then there exists an integer b such that —u’e — bn = 1, that is, —uZe?

fore the element ( ue b
ne —ue

e = —1 modn,
—bne = e. There-

) is in N and satisfies the required properties. O

4. The Quotient Group B = N/T',(N)

In this final section we do some calculations about the representatives of orbits
of T'o(N). Then we show that the permutation group (B,) is regular and m-regular
where m is an odd natural number.

Theorem 4.1 Given an arbitrary rational number k/s with (k, s)=1, then there exist:
an element A € T'o(N) such that A(k/s) = (k1/s1) with s1|N.

Proof.
a b k ak + bs
cN d s Nck + ds

we find some pairs {c,d} for which the equation

Nck+ds = (N,s) , (4.1)

holds, for (N, s)|N, so s; = (N, s) works.
Since (Nk/(N,s), s/(N,s)) =1 there exists a pair {c,,d.} so that the equation (4.1) is
satisfied. Therefore, as we know, the general solution of (4.1) is

384



AKBAS & BASKAN

¢ = co+snf/(N,s) (4.2)
d = do-+Nkn/(N,s), wheren € Z

Let N = q$°q7". ..q,(::" be the prime power decomposition of N. We must show that
there exists a pair {c,,d.} obeying (4.2) such that

(Nex,dy) = 1.

If (do, N) = 1, there is nothing to prove. If (d,, N) > 1 then d, does have a commen
factor with N,qo say. using (4.1), (go, Nk/(N,s)) = 1 therefore taking n=1 in (4.2) we
get an integer d; such that g,|d; .

If (d1, N) > 1 then d; has a common factor with N,q; say. Let dy = dy — ¢o Nk/(N, s)
then dy does not have ¢, as a factor. If (d2, N) > 1,d> has a common factor with N, 92
say. eventually we arrive at

d3 = dy — goq1 Nk/(N,s), and so d3 has no q,,q1,q2 as factors
dky+1 = dky — Qoo - - - Qoo —1Nk/(N, s), and so di, 1 has no go,¢q1,... — Tk,

as factors. Hence (dk,+1,N) = 1. Let d, = di_ 41 and the corresponding ¢, ¢, say,
and so (Nc,,d,) = 1. This implies that there exists an element A € I',(N) such that
A(k/s) = k1/s1 with s1|N. O

Therefore we have

Corollary 4.2. Let di|N and for some A € To(N) A(a1/d1) = (az/dy) with (a1,d;) =
(a2,d1) = 1. Then a; = az mod t, where t = (d1, N/d,).

Corollary 4.3. Let d|N and let (a1,d) = (az,d) = 1. Then < o ) and ( ;2 ) are

d
conjugate under I's(N) if and only if a; = ap modt, where t = (d, N/d).
Proof. Using the above and a theorem from [10] the result follows. O

From the above lemma and corollaries we can write down the set of orbits of I', (V)
as O = {[%] |d|N } and it can be easily seen that the number of them is just 2", where
r is the number of primes dividing N. So we take Q as the set {é :d|N }, as the set of
representatives of O. . :
ae b
cN de
where ¢||N and the determinant is e. We have the relation W2 =1,WW; = WiW, =

We see that W, of all matrices of the form ( > is a single coset of T',(N),
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Wy(modl'o(N)), where g = IR (7% . 'This means that any element (except the identity)

of B has order 2. since A acts transitively on Q, then B acts transitively on Q. Therefore
(B,0) is a transitive permutation group.

Furthermore, we have the following results

Corollary 4.4. (B,Q) is a regular permutation group.

Proof. As we see above the number || is equal to 27, and on the other hand |B| = 2.
So the stabilizer B, of any element x is just the identity. Hence the action is regular. O

Corollary 4.5 Let m be an odd natural number. Then the group B is m-regular.

Proof. Since the abelian group B is finite then is it a torsion group. On the other hand,

the order of any element of B is relatively prime to m. so B is m-regular. m]
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i

I'; (N) nin NORMALLESTIRIiCiSi iCIN ALT CEVRESEL GRAFIiKLER

(")zet

grafiklerin baz1 6zellikleri belirtildi ve eger N /T,(N) ve yoriinge temsilciler kiimesi
sirasi ile B ve Q ile gosterilirse, (B, ) parmiitasyon grubunun regular ve ayrica m
bir tek dogal say1 ise m-reguler oldugu gosterildi.
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