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Abstract

The generalized wordlength pattern (GWLP) introduced by Xu and Wu (2001) for an
arbitrary fractional factorial design allows one to extend the use of the minimum aber-
ration criterion to such designs. Ai and Zhang (2004) defined the J-characteristics of a
design and showed that they uniquely determine the design. While both the GWLP and
the J-characteristics require indexing the levels of each factor by a cyclic group, we see
that the definitions carry over with appropriate changes if instead one uses an arbitrary
abelian group. This means that the original definitions rest on an arbitrary choice of group
structure. We show that the GWLP of a design is independent of this choice, but that the
J-characteristics are not. We briefly discuss some implications of these results.
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1 Introduction

In a regular fractional factorial design D, the quantities

Ai(D) = the number of defining words of length i

contain useful information about the design. In particular, the smallest index i for which
Ai(D) > 0 is the resolution of the design. Moreover, one way of comparing two designs having
k factors and equal resolution is to compare their wordlength patterns (A1, A2, . . . , Ak) [6, 7].
The better design is said to have less aberration.

While nonregular designs no longer have defining words as such, a generalized wordlength
pattern (GWLP) can be defined for them combinatorially. This was done for two-level designs
by Tang and Deng [13], and was generalized to arbitrary (possibly mixed-level) designs by Xu
and Wu [15] using group characters.

An intermediate computation in the two-level case gives a set of values that Tang and Deng
called J-characteristics (first introduced in [4]), and Tang [12] showed that these numbers
completely determine the design D, somewhat analogous to the way that a defining subgroup
determines a regular design. Ai and Zhang [1] generalized this to arbitrary designs by looking
closely at the corresponding computation in [15].
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In defining generalized wordlength patterns of arbitrary designs, Xu and Wu [15] assigned
to the ith factor the cyclic group Zsi

, where si = the number of levels of the factor. While this
choice is a computational convenience, it is also arbitrary, and in fact the calculation of the
GWLP can be carried through using other abelian groups as well, as we indicate below.

This, however, raises the following question for non-prime si. Since the (irreducible) char-
acters of two groups of equal order will generally be different, does the choice of group affect
either the J-characteristics or the GWLP of a given design? Certainly any dependence of the
GWLP on an arbitrary choice would raise a serious question about its use in comparing designs
using relative aberration. It will be clearly seen that the J-characteristics do depend on this
choice. However, perhaps surprisingly, this does not affect the values of the GWLP. That is
our main result.

There are many excellent expositions of character theory, such as [8], [9] and [10]. In
general we will mention known results without citation. We will also use a number of results
from multilinear algebra (the theory of tensor products). These are collected in an appendix.

Notation. We will denote the integers by Z, and the integers modulo s by Zs as above.
The complex numbers will be denoted by C and complex Euclidean space by C

s. Vectors in
C

s will be viewed as columns. The conjugate of z ∈ C will be denoted by z̄, the transpose of a
vector or matrix by a prime (′), and the adjoint (or conjugate transpose) of a matrix or linear
transformation A by A∗. The inner product of v = [v1, . . . , vs]

′ and w = [w1, . . . , ws]
′ ∈ C

s is
given by

〈 v,w 〉 =

s
∑

i=1

viwi. (1)

The cardinality of a set E will be written |E|.
The Hamming weight of u = (u1, . . . , uk), wt(u), is the number of nonzero components of

u. (In Section 2 we will replace “nonzero” by “nonidentity” in order to deal with groups whose
identity element is not 0.)

We alert the reader to the fact that we will use G (or Gi) as an index set, with elements g
or h. Sometimes such sets will be groups, but often they will be viewed just as sets. We will
try to make absolutely clear from context when a result requires a group structure and when
it doesn’t.

2 Definitions

A fractional factorial design on k factors is a multisubset D of a finite Cartesian product
G = G1 × · · · × Gk, that is, the set G with the element g repeated O(g) times, O(g) ≥ 0.
The set Gi indexes the si levels of factor i, and we let s = s1 · · · sk. We will refer to O as the
counting or multiplicity function of D. The elements (k-tuples) of the design are referred to as
runs, and the number of runs in the design, counting multiplicities, is

N = |D| =
∑

g∈G

O(g). (2)
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The design D may also be viewed as an orthogonal array, particularly if its runs are displayed
in matrix form, say as columns of a k × N matrix.

In [15] Xu and Wu defined the generalized wordlength pattern (A1(D), . . . , Ak(D)) of D as
follows. If Gi has si elements, we take Gi = Zsi

, the additive group of integers modulo si. This
makes G an abelian group. To each g ∈ Zs we associate a function χg : Zs → C such that

χg(h) = ξgh, (3)

where ξ is a primitive sth root of unity (say ξ = e2πi/s). For elements g = (g1, . . . , gk) and
h = (h1, . . . , hk) of G = G1 × · · · × Gk, we let

χg(h) =
∏

i

χgi
(hi), (4)

and define1

χg(D) =
∑

h∈G

O(h)χg(h). (5)

Finally, the “generalized wordlengths” are given by

Aj(D) = N−2
∑

wt(g)=j

|χg(D)|2 for j = 1, . . . , k, (6)

where wt(g) is the Hamming weight of g.
Ai and Zhang [1] note that when s1 = · · · = sk = 2 the quantities χg(D) are the J-

characteristics of Tang and Deng, and rename them so in the general case, with the notation
Jg(D).

We now indicate the way in which other groups may be used in (5) and (6).
The functions χgi

are the irreducible characters of the group Zsi
, and so the functions

χg are the irreducible characters of G. Among these is χe ≡ 1, the trivial character of G,
corresponding to the identity e of G. Something similar holds for abelian groups, in particular
the indexing of irreducible characters by group elements.

Specifically, the irreducible characters of an abelian group G are precisely the homomor-
phisms of G into the multiplicative group C

∗ = C\0. The indexing of these characters is based
on the following result.

Theorem 2.1. Let Irr(G) denote the set of irreducible characters of the group G. If G is
abelian, then Irr(G) forms a group under pointwise multiplication, and if G is also finite, then
G ∼= Irr(G). In particular, the identity element of G corresponds to the trivial character of G.

The isomorphism is not canonical – and, in particular, not unique – as it depends on the
representation of an abelian group as a product of cyclic groups (the Fundamental Theorem
of Abelian Groups), and for cyclic groups on the choice of root of unity in (3). (See, e.g., [9,
Theorem 2.4]). We will assume that we have fixed an isomorphism Gi → Irr(Gi) for each i,
and thus an indexing of the irreducible characters of Gi by group elements. We will not need

1In [15] χg(D) is defined as
P

h∈D
χg(h), and it is to be understood that the hth term is repeated the number

of times h appears in the design [14]. Equation (5), which is essentially the same as that used in [1], makes this
explicit.
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to know the indexing explicitly. The irreducible characters of the direct product G are still
given by (4).

J-characteristics and generalized wordlength counts are still defined by (5) and (6), respec-
tively, where we now define the weight of the element g = (g1, . . . , gk) ∈ G to be the number of
nonidentity components of g. Our main result is this:

Theorem 2.2. The quantities Aj(D) in (6) are independent of the group structure of G.

The proof of this theorem is given in Section 4. Before considering this, we take a moment
to study the effect of the choice of group on the J-characteristics of a design.

3 J-characteristics. The character table.

We see that the irreducible characters of a finite abelian group G of order s may be written
χg1

, . . . , χgs , where gi are the elements of G in some order. The values χgi
(gj) form the character

table of G, the columns of which are mutually orthogonal and of norm
√

s (with respect to the
inner product (1)). Another way to say this is that the s × s matrix H formed by this table
has the property that H∗H = HH∗ = sI, where H∗ is the adjoint of H (H is thus a complex
Hadamard matrix).

Let G = G1 × · · · ×Gk where each Gi is an abelian group, so that G is as well, and assume
that the elements of G are ordered in some fashion. (Ai and Zhang [1] use a lexicographic or
Yates order).) If we consider the set of J-characteristics χg(D) and the counts O(g) as s × 1
vectors χ and O indexed by g ∈ G, then (5) may be written

χ = HO. (7)

Multiplying through by H∗, we see that H∗χ = H∗HO = sO, so that

O = (1/s)H∗χ,

and in particular that the J-characteristics determine the design. This is Theorem 1 of [1].
However, in general H depends on the group structure of G, and so from (7) or directly

from (5) we see that the values of the J-characteristics depend on the choice of group structure.
This is illustrated with the following example.

Example 3.1. Consider the 3-factor design

D =





0000 aaaa bbbb cccc
0abc 0abc 0abc 0abc
0abc b0ca ac0b cba0



 . (8)

Each factor has 4 levels, namely 0, a, b, and c, and each column is a treatment combination.
One can check that this is an orthogonal array of strength 2 and index 1 (it is taken from [5],
where it is shown to be non-regular).

For each factor the symbol set Gi = {0, a, b, c} may be given two group structures, namely
that of the cyclic group Z4 and that of the “Klein 4-group” V (isomorphic to Z2×Z2). Table 3.1
displays the non-zero values of χg(D) as g runs over the 64 elements of G = G1 × G2 × G3,
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Table 1: J-Characteristics for Design D under two different group structures
For the design in (8), the value of χg(D) is given for each g ∈ G, where G = either
Z4 × Z4 × Z4 or V × V × V . Those g for which both values of χg(D) = 0 are omitted.
(Computation was done in Maple.)

g = 000 aaa aab aac aba abb abc aca acb acc

Z4 16 −6 − 2i 4i 6 − 2i −4i 4 + 4i −4 6 − 2i 4 6 + 2i
V 16 8 8 0 −8 8 0 0 0 0

g = baa bab bac bba bbb bbc bca bcb bcc

Z4 4i −4 − 4i 4 4 + 4i 8 4 − 4i 4 −4 + 4i −4i
V 8 −8 0 8 8 0 0 0 0

g = caa cab cac cba cbb cbc cca ccb ccc

Z4 6 − 2i 4 6 + 2i −4 4 − 4i 4i 6 + 2i −4i −6 + 2i
V 0 0 0 0 0 0 0 0 16

where the groups Gi are all Z4 or all V . For example, χaaa(D) = −6 − 2i using Z4, but = 8
using V . Thus we see that the values of the J-characteristics depend on the group structure.
Note that for both group structures we have χg(D) = 0 if wt(g) = 1 or 2. Such group elements
have been omitted from the table for convenience.

It is not hard to calculate the values Aj(D) given by equation (6), where we have N = 16.
(The computation is shortened by the fact that |±a± bi|2 = a2 + b2.) We find that under both
group structures we have A1(D) = A2(D) = 0 and A3(D) = 3, as guaranteed by Theorem 2.2.

Before we leave this topic, we develop the properties of the character table a little further.
In enumerating the elements of a group G one typically chooses g1 = the identity. With

this convention, which we shall adopt, χg1
is the trivial character of G, so that χg1

(h) = 1 for
all h ∈ G. On the other hand, since G is abelian, χg(g1) = 1 for every g ∈ G, and so we see
that H must have the form

H =











1 1 · · · 1
1 ∗ · · · ∗
...

...
...

1 ∗ · · · ∗











.

The matrix U = (1/
√

s)H is said to be the normalized character table of G. We list its
important properties here, which follow from the preceding.

Lemma 3.2. U unitary (U∗U = UU∗ = I), and in particular defines an isometry on C
s

(〈Uv,Uw 〉 = 〈 v,w 〉). If e = [1, 0, . . . , 0]′ and b = (1/
√

s)[1, . . . , 1]′ then

Ue = b = U∗e.
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4 Independence of group structure

By imposing a group structure on the set G = G1×· · ·×Gk, we define the irreducible characters
χg. We want to show that the numbers

∑

wt(g)=j

|χg(D)|2, j = 1, . . . , k,

appearing in (6) are independent of the group structure chosen. This sum is somewhat unwieldy,
and so we will break it into smaller sums over elements g which are not only of weight j but
also differ from the identity in exactly the same components.

To begin with, we fix an order of the elements in each set Gi, with the understanding that
whenever we impose a group structure, the first element will be the identity of the group. We
may denote by 1i the chosen element of Gi.

Now, for each J ⊂ {1, . . . , k} with |J | = j, let

SJ = {g = (g1, · · · , gk) ∈ G : gi 6= 1i iff i ∈ J}. (9)

(Here J is merely an index set and has no relation to the J-characteristics mentioned earlier.)
Clearly the sets SJ are disjoint and their union is the set of elements of G of weight j. Then

∑

wt(g)=j

|χg(D)|2 =
∑

|J |=j

∑

g∈SJ

|χg(D)|2.

We will show that for each J the inner sum
∑

g∈SJ

|χg(D)|2 (10)

is independent of the group structure chosen.
To do this, we will write these sums as squared norms of elements in an appropriate subspace

VJ of C
s. Assuming a fixed ordering of the elements of G, the components of a vector v ∈ C

s

are complex numbers indexed by the elements of G, something like

v = [· · · , vg, · · · ]′. (11)

The standard basis elements are of form

eg = [0, . . . , 0, 1, 0 . . . , 0]′, (12)

where 1 occurs in just the g-th coordinate. Then

v =
∑

g∈G

vgeg. (13)

Let
VJ = {v = [· · · , vg, · · · ]′ ∈ C

s : vg = 0 if g /∈ SJ}.
It is clear that dim VJ = |SJ | =

∏

i∈J(si − 1), and that the sum (10) is ‖MJ (χ)‖2 where MJ

is the orthogonal projection of C
s onto VJ . Now the next result follows immediately from (7)

and the fact that H =
√

s U .
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Proposition 4.1. Suppose that G = G1 × · · · × Gk where Gi is an abelian group. Then the
sum in (10) is equal to

s‖MJUO‖2, (14)

where MJ is the orthogonal projection of C
s on the subspace VJ , U is the normalized character

table of G, and O is the vector of multiplicities of the design D.

Our goal is now to show that the quantity (14) is independent of the group structure of G.
A very useful way to describe VJ is as follows. Associate to Gi the Euclidean space C

si ,

where the components of a vector v are indexed by the elements of Gi. Let e
(i)
g be the unit

vector in C
si having a 1 in the gth place and zeros elsewhere, so that e

(i)
1 = [1, 0, · · · , 0]′. Define

the subspaces Vi ⊂ C
si , i = 1, . . . , k, by setting

Vi = (e
(i)
1 )⊥, i ∈ J,

= span(e
(i)
1 ), i /∈ J,

where orthocomplement (⊥) and span are within C
si . Thus the vectors of Vi have a zero in the

first position if i ∈ J and zeros in all the other positions if i /∈ J .

Let Pi be the projection of C
si onto span(e

(i)
1 ), Ii the identity matrix, and Qi = Ii − Pi.

Proposition 4.2. With the above definitions, we have

VJ = V1 ⊗ · · · ⊗ Vk. (15)

The orthogonal projection MJ of C
s on VJ is given by

MJ = M1 ⊗ · · · ⊗ Mk, (16)

where Mi is the orthogonal projection of Csi on Vi. We have

Mi = Qi, i ∈ J,
= Pi, i /∈ J.

Proof. The vectors in this tensor product are sums of vectors of the form

v1 ⊗ · · · ⊗ vk, vi ∈ Vi.

It is not hard to see that a vector of this form has zeros in exactly the positions indexed by
g /∈ SJ , so that V1 ⊗ · · · ⊗ Vk ⊂ VJ . However,

dimVi = si − 1, i ∈ J,
= 1 otherwise,

so dimV1 ⊗ · · · ⊗ Vk = dim V1 · · · dimVk =
∏

i∈J(si − 1) = dim VJ . Thus (15) holds, and (16)
follows immediately. The formula for Mi is obvious.

We also note the following, which is implicit in equation (4).

Proposition 4.3. If Gi is a finite group having character table Hi and normalized table Ui,
then G = G1 × · · · ×Gk has character table H = H1 ⊗ · · · ⊗Hk and normalized character table
U = U1 ⊗ · · · ⊗ Uk.
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We use this to evaluate the vector MJUO appearing in (14). As in (13), the vector O of
multiplicities may be written

O =
∑

g∈G

O(g)eg .

But if g = (g1, . . . , gk) ∈ G1 × · · · × Gk, then

eg = e(1)
g1

⊗ · · · ⊗ e(k)
gk

where e
(i)
j is the unit vector in C

si having a 1 in the jth place and zeros elsewhere. Then

O =
∑

g=(g1,...,gk)

O(g) e(1)
g1

⊗ · · · ⊗ e(k)
gk

.

Thus

MJUO =
∑

g=(g1,...,gk)

O(g)MJU(e(1)
g1

⊗ · · · ⊗ e(k)
gk

)

=
∑

g=(g1,...,gk)

O(g)M1U1(e
(1)
g1

) ⊗ · · · ⊗ MkUk(e
(k)
gk

). (17)

To analyze the (squared) norm of this, we need to analyze the terms in such sums. This leads

to evaluating MiUi on the basis elements e
(i)
gi . We will just need to do this when Mi = Pi.

Lemma 4.4. For each i and for every g ∈ Gi we have

PiUi(e
(i)
g ) =

1√
si

e
(i)
1 .

Proof. For simplicity, suppress the index i. Now for any w ∈ C
s we have

Pw = 〈w, e1 〉e1,

so from Lemma 3.2 we have

PUv = 〈Uv, e1 〉e1 = 〈 v, U∗e1 〉e1 = 〈 v, b 〉e1

for any v, with b = (1/
√

s)[1, . . . , 1]′. In particular,

PU(eg) = 〈 eg, b 〉e1 =
1√
s

e1,

as claimed.

We now evaluate the squared norm of sums of form (17). This will rest on the following
calculation.
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Lemma 4.5. Let Ij be identity matrix of order sj, and let

cg1···gi
=

∑

gi+1,...,gk

O(g),

the sum of the numbers O(g) over those g ∈ G with the first i values fixed at (g1, . . . , gi). Then
for every 0 ≤ i ≤ k,

‖(I1 ⊗ · · · ⊗ Ii ⊗ Pi+1 ⊗ · · · ⊗ Pk)UO‖2 =
1

si+1 · · · sk

∑

g1,...,gi

c2
g1···gi

. (18)

In particular, this quantity is independent of the group structure on G.

Proof. We see that (I1 ⊗ · · · ⊗ Ii ⊗ Pi+1 ⊗ · · · ⊗ Pk)UO

=
∑

g=(g1,...,gk)

O(g) I1U1(e
(1)
g1

) ⊗ · · · ⊗ IiUi(e
(i)
gi

) ⊗ Pi+1Ui+1(e
(i+1)
gi+1

) ⊗ · · · ⊗ PkUk(e
(k)
gk

)

=
∑

g=(g1,...,gk)

O(g) U1(e
(1)
g1

) ⊗ · · · ⊗ Ui(e
(i)
gi

) ⊗ 1
√

si+1
e
(i+1)
1 ⊗ · · · ⊗ 1√

sk
e
(k)
1

=
1√

si+1 · · · sk

∑

(g1,...,gi)





∑

(gi+1,...,gk)

O(g)



 U1(e
(1)
g1

) ⊗ · · · ⊗ Ui(e
(i)
gi

) ⊗ e
(i+1)
1 ⊗ · · · ⊗ e

(k)
1

=
1√

si+1 · · · sk

∑

(g1,...,gi)

cg1···gi
U1(e

(1)
g1

) ⊗ · · · ⊗ Ui(e
(i)
gi

) ⊗ e
(i+1)
1 ⊗ · · · ⊗ e

(k)
1 .

But for each j, the set {Uj(e
(j)
g ), g ∈ Gj} is orthonormal in C

sj as the unit vectors e
(j)
g , g ∈ Gj ,

are orthonormal and Uj is an isometry. Hence the elements U1(e
(1)
g1

) ⊗ · · · ⊗ Ui(e
(i)
gi ) ⊗ e

(i+1)
1 ⊗

· · · ⊗ e
(k)
1 are orthonormal in C

s, and so ‖(I1 ⊗ · · · ⊗ Ii ⊗ Pi+1 ⊗ · · · ⊗ Pk)UO‖2

=
1

si+1 · · · sk

∑

(g1,...,gi)

c2
g1···gi

‖U1(e
(1)
g1

) ⊗ · · · ⊗ Ui(e
(i)
gi

) ⊗ e
(i+1)
1 ⊗ · · · ⊗ e

(k)
1 ‖2.

But this

=
1

si+1 · · · sk

∑

(g1,...,gi)

c2
g1···gi

‖U1(e
(1)
g1

)‖2 · · · ‖Ui(e
(i)
gi

)‖2 ‖e(i+1)
1 ‖2 · · · ‖e(k)

1 ‖2

=
1

si+1 · · · sk

∑

(g1,...,gi)

c2
g1···gi

as all the norms in the next-to-last line are 1. This is formula (18).

Now fix J ⊂ {1, . . . , k}.

Proposition 4.6. ‖MJUO‖2 is independent of the group structure of G.
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Proof. Actually, we will prove something more general, namely that the proposition holds for
projections M made up of a tensor product of Pi’s, Qi’s and Ii’s, where Qi = Ii − Pi. Letting
q = the number of factors Qi in the projection, we prove this by induction on q.

We simplify matters by proving our result for projections of form

M = Q1 ⊗ · · · ⊗ Qq ⊗ Iq+1 ⊗ · · · ⊗ Iq+i ⊗ Pq+i+1 ⊗ · · · ⊗ Pk. (19)

The proof is the same for projections with other ordering of the tensor factors.
The base case (q = 0) is precisely Lemma 4.5. For the induction step, assume that the

result holds for projections having q− 1 factors Q (not necessarily the first q − 1 factors). Now
Qq = Iq − Pq, so the projection (19) is

M = Q1 ⊗ · · · ⊗ Qq−1 ⊗ Iq ⊗ Iq+1 ⊗ · · · ⊗ Iq+i ⊗ Pq+i+1 ⊗ · · · ⊗ Pk

−Q1 ⊗ · · · ⊗ Qq−1 ⊗ Pq ⊗ Iq+1 ⊗ · · · ⊗ Iq+i ⊗ Pq+i+1 ⊗ · · · ⊗ Pk

= T1 − T2,

say. Since T1 = M + T2 and M and T2 are orthogonal, the Pythagorean Theorem gives

‖MUO‖2 = ‖T1UO‖2 − ‖T2UO‖2. (20)

But since T1 and T2 contain q − 1 factors Qi, the induction hypothesis applies to both terms
on the right-hand-side of (20), and therefore to the left-hand-side, as desired.

By Proposition 4.1 this shows that the sum (10), and therefore the quantities Aj(D), are
independent of the group structure of G. Theorem 2.2 is now proved.

5 Conclusion

The definition of the generalized wordlength pattern (GWLP) given in [15] makes sense if one
chooses abelian rather than cyclic groups to index the levels of each factor. The choice to use
cyclic groups in [15] is arbitrary, and we have shown that while it does affect the so-called
J-characteristics of a design, it does not affect the GWLP. This removes a possible ambiguity
in the definition of the GWLP, and therefore in the use of minimum aberration as an optimality
criteria for nonregular designs. The choice of cyclic groups may be useful computationally as
the irreducible characters are then especially simple.

A special case of the invariance with respect to group structure is already implicit in the
coding literature [3]. (The connection with regular designs is given in [15].) However, this
covers designs in which (a) the index sets Gi are the same (the alphabet) and (b) the design is
actually a subset of G (so that the counting function O is simply an indicator function). Our
Theorem 2.2 is quite general, and makes no use of concepts borrowed from coding theory.

The wordlength pattern of a regular design does not determine the design, and in particular
does not tell us its alias structure. For that, one needs the defining words. We have seen that an
analog of the set of defining words of a nonregular design is the set of J-characteristics, at least
in respect of determining the design. However, as we noted in Section 3, the J-characteristics
vary with the choice of group structure assigned to factors. Certainly the aliasing structure of a
design does not depend on this arbitrary choice. The GWLP is independent of this choice, and
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one may therefore ask just what statistical information it carries. This is a question worthy of
further investigation.

Acknowledgment. We thank Dan Lutter for some useful discussions, and the referee and
editor for some helpful suggestions.
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A Multilinear background

In this section we briefly review some results on tensor products that we have used in this
paper. We only deal with Euclidean spaces (specifically C

k) since that is all we need here. For
simplicity we concentrate on the bilinear case (two tensor factors).

There are many expositions of multilinear algebra, such as that in [2]. An interesting
exposition with some statistical applications is given in [11].

As is well-known, the Kronecker or tensor product of the matrices A (m × n) and B is

A ⊗ B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






.

For vectors v ∈ C
a and w ∈ C

b we thus have

v ⊗ w =







v1w
...

vaw






∈ C

ab,

where v = [v1, . . . , va]
′. This product satisfies the usual bilinear properties, for example, cv ⊗

w = c(v ⊗ w) = v ⊗ cw (c a scalar) and A ⊗ (B + C) = A ⊗ B + A ⊗ C.
If V ⊂ C

a and W ⊂ C
b are subspaces, then we define their tensor product to be the subspace

of C
ab given by

V ⊗ W = span{v ⊗ w : v ∈ V,w ∈ W}.
(Technically, V ⊗W is constructed as a free vector space modulo bilinear relations, and is only
isomorphic to a subspace of C

ab, but we will identify it with that subspace.) If {e1, · · · , ek} is
a basis of V and {f1, · · · , fℓ} is a basis of W , then

{ei ⊗ fj : i = 1, . . . k, j = 1, . . . ℓ}

is a basis of V ⊗ W . Thus in particular

dim(V ⊗ W ) = dim(V ) · dim(W ).

If we use 〈 v1, v2 〉 to denote the inner (or dot) product and ‖v‖ =
√

〈 v, v 〉 the norm, then
we have

〈 v1 ⊗ w1, v2 ⊗ w2 〉 = 〈 v1, v2 〉〈w1, w2 〉,

and in particular

‖v ⊗ w‖ = ‖v‖‖w‖.
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The norm and inner product of vectors of the form
∑

vi ⊗wi are calculated by expanding the
inner product in the usual way.

If Ti is a linear transformation on Vi, then T = T1⊗T2 is a linear transformation on V1⊗V2

such that
T (v1 ⊗ v2) = T1(v1) ⊗ T2(v2).

T is evaluated on sums of such terms by linearity. The matrix of T is given by the Kronecker
product of the matrices Ti. Finally, if S = S1 ⊗ S2 is a linear transformation such that SiTi is
defined for each i, then

ST = S1T1 ⊗ S2T2.

All of the preceding extends in the obvious way to more than two tensor factors.
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