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NORMAL BOUNDARY VALUE PROBLEMS FOR
DIFFERENTIAL EQUATIONS OF HIGHER ORDER

F. G. Maksudov, Z. I. Ismailov

Abstract

In this work the arbitrary order differential operator expression of the form

u) = BauT(:) + Au(t),
where A is a bounded normal operator in the Hilbert Space H is considered in the
Hilbert Space of vector functions L,(H(0,1)).
This paper describes all normal boundary value problem for the indicated difer-
ential expression in terms of abstnract boundary conditions and determines a con-
nection with other typea of boundary value problems.

As is known, the normality of a bounded operator is equivalent to the commutabil-
ity of two selfadjoint operators i.e, its real and imagenary parts. However, presentation
and verification of the commutability of two unbounded operators are accompanied by a
series of difficulties. Therefore, the conception of normality is introduced in a different
way.

Definition 1 A linear densely definite formally operator, C, in Hilbert space e with a
domain, D(C), is called formally normal if D(C) D D(Cx) and || Cf ||e=| C*f ||
for any f € D(C) and mazimal formal if it has no such extensions. A formally normal
operator is seid to be normal if D(C) = D(C*).

The theory of unbounded normal operators depending on the raised problems has
been investigated by many suthors (see, a.g. [1,2,5,6,7,10,13,15]). However, the results
obtained in these works are less afficient for differential operators varifying, otherwise,
that theory was not accommodated to the differential operators theory in Hilbert Space. In
this direction only some results of particular cases were published. [3,9,11,14].

Let us give some definitions.

Definition An arbitrary linear subset 8 O EQ E is called a linear relation in the Hilbert

space E. If 0, and 6, are linear relations and 6, D 6y then 05 is called an axtension of
01
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Definition A linear relation 0 is called dissipative (accumulative, symmetric) if for any

{z,z'} €6

Jm(z',z)g >: (Jm(z',z)g <0, Jm(z,z)g = 0).

A dissipative (accumulative, symmetric) relation is called mazimal dissipative (ac-
cumulative, symmetric) if it has no nontrivial dissipative (accumulative, symmetric) ez-
tensions, A symmetric relation is called Hermitian if it is mazimal dissipative and mazxi-
mal accumulative simultanaously.

Definition A linear densely definite operator, C, with domain, O(C), in a Hilbert space
is called dissipative if

Im(Cf, f)g > 0 for all f € D(C);

accumulative if

Jm(Cf,f)g <0 forall f € D(C); and

accretive if

Re(Cf,f)g >0 for all f € D(C).

A dissipative (accumulative, accretive) operator is called mazimal dissipative (accumula-
tive, accretive) if it dees not have any nontrivial (i.e. different from C itself) dissipative
(accumulative, accretive) extensions.
Considered in the present paper is the n'* order differential operator exprassion of
the form
T
o) = T2 4 gy, o<t <, (1)
dt™
where A is a bounded normal operator in Hilbert space, H.
Consider the expression formally adjoint to (1):

(u) = ()7, dT;’ZEt) b A*u(t). @)

Definition on the dense in Ly(H,(0,1)) set D, having elements of the from

m
> ex® v, er(t) eWR(0,1), freH
k=1

the operator L{ : Lou = l(u).

It is easy to verify that if n = 2k, Jm A > 0 (Jm A < 0), then the operator Lj
is dissipative (accumulative) and, in the case when n =2K — 1, Re A >0, the operator
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Ly is accrative, with Lo = (Lg). In a similar way is the niminal operator L = (L ",
according to expression (2).

The operator L(L*), adoint to the operator L{ = (Lo) in the space Lo(H,(0,1)),
is called a mazximal operator generated by the differential expression (1)((2)).

It is established that the minimaloperator, Lo, in both cases is formally normal but
s not maximal.

This paper describes all normal boundary value problems for the differential ex-
pression (1) in terms of abstract boundary conditions and indicates connection with other
types of boundary value problems.

Definition [S,p.158]. Let C be a closed symmetric operator in the Hilbert space E with
finite or infinite indices defect. The triplet (s.v1,72), where &= is a Hilbert spaces and
71 and 7y, are linear mappings from D(C*) to @ is called a space of boundary values of
operator C if

1) for any f,g € D(C),

(C*f,9)E = (£,C*9)p = (NS, 729)= — (2f,719)=;
2) for any Fy, F; € & there exists vector f € D(C*) such that

71’f:F1a ’72f=F2-

Note that for arbitrary n if u(t) € D(L), then u(t) € WI(H,(0,1)). So from the
embedding theorem (see [4], Introduction, item 6) it follows that, at thee of the interval
(0,1), the functions u(t),u'(t),--,u""(t) have boundary values in space H.

I'in this section we assume that n = 2k, k € N, and without loss of generality the
operator JmA in H to be positive definite, i.e.

0%ku(t
(u) = atz,E ) + Au(t), 0<t<1 (3)
it 15 easy to see that
0%t
1(u) = atz’g ) + ReAu + 1 JmAu.

Theorem 1.1. Whatever the unitary operators Wi and Wy in & may be, the restriction
of the mazimal operator L on the set of vector-functions, u(t) € D(L), satisfying the
conditions

(W1 — E)yyiu+ (W1 4+ E)y2u = 0. (4)

(Wy — E)y1((JmA)Y?u) 4+ (Wy + E)y2((JmA)?u) =0 (5)
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where E is a unity operator in H, presents a normal extension of the minimay operator
Lqy. Conversely, any normal extension of operatorLqy is the restriction of the operator L
on the set of vector-functions u(t) € D(L) satisfying uniguely conditions (1.2) and (1.3)
and the unitary operators Wi and Wy are defined by the extension.

The proof is baserd in general on following three theorems.

Theorem 1.2. /2] a) let L be a normal extension of the minimal operator Lo, then
the closure of operators ReLl = (L + L*)/2 and JmL = (L — L*)/2 are selfadjoint
extensions of minimal operators Ag and By, respectively, and on D(L) = D(L*) =
D(ReL) N D(JmL) we have

(ReLu, JmLu)z = (JmLu, ReLu) 2

(H,(0,1)) (H,(0,1))

where Ag = (Lo + L§)/2, Bo = (Lo — L(J)r)/(zl)
b) On the other hand, let A and B be selfadjoint operators such that Ay D Aand By D B
and the equality (Au, Bu) = (Bu, Au) holds on D(A)ND(B) then the operator L=A+IB
with D(L) = D(A) N D(B), where A is the restriction of A on D(L), and B is the
restriction of B on D(L) is the normal extension of the minimal operator L.

Theorem 1.3. [12]. For any symmetric operator with the indices of defect (n,n)
(n < 00) the space of boundary values

(%7 ’71772) with dim & =n

Theorem 1.4. [8]. Whatever unitary operator W in H may be the linear relation {z,z'}
difined by

(W —-E)s' + f(W+E)x=0
is a Hermitian relation. On the other hand, any Hermitian relation {r,z’} may be

presented by the last equation, where W is uniquely determined.

Proof of the Theorem 1.1 Let L be a normal extension of the minimal operator,

Lo. It is a restrection of the mazimal operator, L [6]. The operators ReL and ImL are

selfadjoint extensions of the minimal operators ReLo and ImLo (see Theorem 1.2).
Consequently, ReL is desctibed by the following boundary condition

(W1 — E)niu+ I(Wy + E)yeu =0,

where the space of boundary values of minimal operator generated by the exprassion
0%k /6t?* in L,(H,(0,1)) is denoted by (se,7v1,72). The existence of (,7v1,72) follows
from the Theorem 1.3.
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Note that every time on D(Ref)) the operator ImL will be a selfadjoint extension
of the operator JmAu(t) originally defined on W*(H(0,1)).
Since L is normal, then on
D(L) = D(L*) = d(ReL) n D(ImL)
the folloving relation (see Theorem 1.2) holds for any u(t) € D(L):

(Ref,u,Imf/u)Lz(H,(o,l)) - (ImEU,RCEU)Lz(H,(O,l)) =

82ku szu
(—8t2k + ReAu,ImAu) i, a,0,1)) — (ImAu, S0k T ReAu) 1, (m,0,1))
8*Fu 1/2 1/2
= ( 512k (ImA)/*u), (ImA) )Lz(h,(O,l))
8%k
—((ImA)*u, 2 (ImA) ) 1, 1, 0,1)) = (11 (TmA) P, 72 (ImA) P
—('yz(l'mA)l/2u,')fl(ImA)l/zu)ae =0 (6)

Hence, it follows that the linear relation

I{{72((ImA)!*u), 11 (ImA)Y/?u)}, u(t) € D(L)}

is symmetric. Since the operator (I mA)Y?u is boundedly invertible, then it can be easily
proved that the linear relation ¥ is Hermetian. So, there exists unitary operator Wy in &
such that the linear relation, ¥, is described by the following equation (see Theorem 1.4):

(W2 — By (ImA)!/?u) + U(Ws + E)ya(ImA)"/?u) = 0,u(t) € D(L)
Conversely let L be a restriction of the mazimal operator L on the set of vector-

functions, u(t) satisfying conditions (1.2) and (1.3). It is an extension of the minimal
operator, Lo. Then the linear relation,

7= {{y2um,ubu € D(D)},

is Hermitian. By virtue of property (1) for (2,71,72), the selfadjointness of the operator
ImL on D(L is obvious. The boundary condition (1.3) means that the linear relations

9 = {{m((ImA)"/*u),m((ImA)*u)},u(t) € D(L)}

are Hermitian. So, from relation (1.4), it follows that

(Ref)u,[mf/u)LQ(H,(O,l)) = (ImI:u,ReIiu)Lz(H’(o,l)),u e D(L).
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Remark 1.1. If in the differential expression (1.1) ImA = 0 then the minimal operator
Lg is symmetric and all its normal extensions coincide with the selfadjoint ones (there is
more general theorem in [5]), i.e. such normal extensions are described by the differential
exqpression (1.1) and the boundary condition (1.2). So, theorem 1.1 is true also in the case
when ImA = 0. Moreover, this theorem generalizes the analogous theorem on selfadjoint
extensions for the considered differential expression (1) (see [8], theorem 1.6, p.159).

Remark 1.2. In (1.1) if ImA is negative definite then one can prove that all normal
extensions of the minimal operator Lo are described by the differential expression (1.1),
boundary condition (1.2) and

(Wa — E)y1((—ImA)?u) + I(Wy + E)ya((—ImA)/?u) = 0.

Remark 1.3. Generally, if in (1.1) A is any bounded normal operator, then all kind
of normal extension of the minimal operator are described by expression (1.1), boundary
contition (1.1) and the following modified boundary condition:

(W — Ex)11((ImA — (m 4+ 1)Eg)Y?u) + (W + Ex)y2((ImA — (m + 1)Eg)?u) = 0

where Ey is the unit operator in H and m = ;22 (ImAf, f).

Corollary 1.1. If the exttension, L,Lo D L D L, is normal and ImA > 0 (ImA <0),
then it is mazimal dissipative (mazimal accumulative).

Dissipativanass (accumulativaness) of the normal extension follows from the fol-
lowing relation

Im(Ly, y) 1y, 0,1)) = (IMAY, Y) 1,(81,00,1)) = O(< 0)y(t) € D(L).

Remark 1.4. Maximal formally normal extansions of the minimal operator Ly are
described by differantial expression (1.1) and boundary conditions (1.2) and (1.3) where
W, and W, are isometric operators in H. The general form of formally normal extensions
of the operator L is given by the conditions

Ki(nu+ ly2u) = miu — ivou, viu +iveu € D(Ky),
Kz('yl(ImA)l/zu) + i’yz((ImA)l/zu) = 71((ImA)1/2u) — i'yz((ImA)l/Zu),
Y1 (ImA)Y2u) + iy, (ImA)Y?u) € D(K>),

Where K; and K, are isometric operators in H.
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Corollary1.2. If the extension, L Lo > L o L, is normal and described by the
differantial_expression (1.1) and boundary conditions (1.2) and (1.3), then the extansion
L*, L D L* D LT, is normal to and described by the differential expression
?*u(t
T (v(t) = %tzk +A*v(t), 0<t<1.
in the space Lo(H,(0,1)) and the boundary conditions of the form

(W + E)yov — (W7 — E)niv =0,
(W5 + E)ye((ImA)~" ) — (W3 — E)m((ImA)~"/?v) = 0.

II. In this section we suppose that n = 2k—1, k € N and, without loss of generality,
we will consider ReA positive definite in H, i.e. consider the differential expression of
the form

82k—1u t
1) = gy
where A is normal in H and ReA > 0.

Let Lo and L be minimal and mazimal operators generated by the expression (2.1)
in the space Ly(H,(0,1)) respectively.
t is easy to see that

+Au(t), 0<t<]1, (7)

a2k—1
Here again, denote by (&,71,72) the space of boundary values of the minimal operator,
generated by the symmetric expression

a2k—1
—latzk—l

in the space Ly(H,(0,1)). It exists (see [12]).

The following theorem gives a constuctive description in the terms of abstract
boundary conditions of all kinds of normal extansions of the minimal operator Lo, which
is easily proved with the help of the scheme offered in proving theorem 1.1.

Theorem 2.1. Whatever unitary operators Wi and Ws in 2 may be, the restriction of
mazimal operator L on the set of vector-functions u(t) € D(L) satisfying the conditions

(W1 = E)v1u+ (W1 + E)you =0, (8)
(Wa — E)y1((ReA)?u) + (W3 4+ E)y2((Red)Y?u) = 0 (9)
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presents a normal extension of the operator Lg. On the other hand, any normal extansion
of the operator Lg is the restriction of the operator L on the set of vector function
u(t) € D(L) satisfying the conditions (2.2) and (2.3), the unitary operators are defined
by the extension uniquely.

Remark 2.1. Depending on the characteristics of A the boundary condition (2.3) is
modified, but the boundary condition (2.2) remains invariable.
If R € A is negative definite, than

(Wa — Ez)v1((—ReA)?u) + t(Wa + Ez)v2((—ReA)?u) = 0.

If A is any bounded normal operator and m = flg}fq (ReAf, f), is of the form

(W — Ex)v1((ReA — (m + 1)Eg ) 2u)t(Wy + Ex)v2((ReA — (m + 1)Eg)Y?u) =0

If ReA = 0, then it can be proved that all normal extansions of the operator Lg
are generated by the differantial expression (2.1) and bouundary contition (2.2).

Remark 2.2. Maximal formally normal extansions of the minimal operator, Lg, are
described by the differantial expression (2.1) and boundary conditions (2.2) and (2.3) in
which W; and W, are isometric operators in H. The general form of formally normal
extensions of the operator Lo is given by the conditions

Ki(miu + ly2u) = yiu — lyau, mu + ly2u € D(K,),
Kz(’Yl((ReA)l/zu) + l’)/z((ReA)l/2u)) = fyl((ReA)l/zu) — l'yz((ReA)l/2u)),
71 ((ReA)2u) + lya((ReA)?u)) € D(K>),

where K; and K> are isometric operators in H .

Corollary 2.1. If the extension L,Lo > L D L is normal, then it is mazimal accretive.
The accretiveness of L follows from relation

Re(Ly,y)r,(r(0,1)) = (ReAY,Y) 1, (m(0,1)) > 0,
which is true for all y(t) € D(L).
Corollary 2.2. If the extenion L,Lo D T D L is normal, and described by the

differential expression (2.1) and boundary conditions (2.2) and (2.3), then the extension
L*,L§ D Lo D L*P is also normal and descrisbed by the differantial expression

_ an—lV(t)

1 (v) = pverss) + A*u(t)
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= and boundary contitions of the form

(Wi + E)yav — (WY — E)nv =0,
(W3 + E)72((Red)!/?v) — (W5 — E)y1((Red)™/?v) =0
in the space Ly(H,(0,1)).
ITI. Example 1. We consier in the space Ly(H, (0,1)) the differential expression of the

form

0%u
u) = 2 + Au, (10)
where A is a bounded normal operastor in H and ImA is a positive definite operator.

It is easy to establish that

e =H®H, niu={u(0),u(1)}, you={'(0),4'(1)}

is the space of the boundary values for the minimal operator generated by the differ-

ential values for the minimal operator generated by the differential expression 63—; in
L,(H,(0,1)). Taking into account

ImA)t/? ,0
"N l:[ImA]l/z u] = [ ( mo) (ImA)1/2 nu, t= 172’

and R(v1) = R(v:1) = H ® H, we obtain that every kind of normal extensions of the
minimal operator are described by the differential expression (3.1) and the boundary
condition
We)nu+ W + E)yu =0,
where the operators W and
(ImA)Y2 0 w | dmA)VZ 0
0 ,(ImA)Y/? 0 , (ImA)~1/2

are unitary operators in H ® H.
Example 2. Consider in Ly(H,(0,1)) the differential exprassion

() = 28+ Ay(o), (1)

where A is bounded and normal in H.
It is easy to verify that
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u(0) — u(1) u(0) + u(1)

2 T Ty
is the space of boundary values for minimal operator generated by the differential expres-
sion

aIJa’Ylu =

Ou(t)
=
1(u) 5
in Ly(H,(0,1)).
From the boundary conditions (2.2) ahr (2.3) i follows that all normal axtensions
are described by the following conditions:

u(1) = Wyu(0),

(ReA)Y?u(1) = Wy(ReA)'?u(0)

If ReA is positive definite, then from [9]

{u(0)lu(t) € D(Lnorm)} = {u(L)|u(t) € D(Lnorm)} = H,

It follows that all normal extensions of minimal operator are described by differen-
tial exprassion (3.2) and the boundary condition

u(l) = Wlu(O),
where Wy and (ReA)'/?W;(ReA)/? are unitary in the space H.
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DERECESi BUYUK DIFRANSIYEL DENKLEMLER iGiN NORMAL
SINIR DEGER PROBLEMLERI

Ozet
Bu caligmada I(u) = %% 4 Au(t), A ber H Hilbert uzay: ve A L,(H,(0,1))

dtv
iizerinde sinirli, normal bir operatér, tipi difransiye denklemlerin normal sinir deger
problemleri soyut bir gergevede ele alinmig ve degisik sinir deger problemleriyle

iligkileri iizerinde durulmustur.
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