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A Law of Likelihood for Composite Hypotheses
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Summary

The law of likelihood underlies a general framework, known as the likelihood paradigm, for representing

and interpreting statistical evidence. As stated, the law applies only to simple hypotheses, and there have

been reservations about extending the law to composite hypotheses, despite their tremendous relevance in

statistical applications. This paper proposes a generalization of the law of likelihood for composite hypothe-

ses. The generalized law is developed in an axiomatic fashion, illustrated with real examples, and examined in

an asymptotic analysis. Previous concerns about including composite hypotheses in the likelihood paradigm

are discussed in light of the new developments. The generalized law of likelihood is compared with other

likelihood-based methods and its practical implications are noted. Lastly, a discussion is given on how to

use the generalized law to interpret published results of hypothesis tests as reduced data when the full data

are not available.

Key words: likelihood paradigm, likelihood ratio, profile likelihood, statistical evidence, support interval,

support set.

1 Introduction

A major part of statistics is to interpret observed data as statistical evidence, often in response to questions

like “what do the data say?”. Yet there is no consensus among statisticians on what constitutes statistical

evidence and how to measure its strength. Hypothesis tests and posterior probabilities are commonly used

to interpret and communicate statistical evidence with regard to two competing hypotheses. The Neyman-

Pearson theory for testing hypotheses was developed under a decision-theoretic framework that attempts to

answer such questions as “what should I do?”. The theory can lead to serious logical inconsistencies when

used to address the problem of representing and interpreting statistical evidence (Royall, 1997, Chapter 2).

The Bayesian approach, on the other hand, is more appropriate for questions of the form “what should I

believe?”. A posterior distribution, which incorporates prior information as well as the data, may not provide

an objective representation of evidence in the observed data alone. A proper concept of evidence is missing

from standard statistical theories.

The missing concept of evidence can be found in what Hacking (1965) termed the law of likelihood (LL):

If one hypothesis, H1, implies that a random variable X takes the value x with probability f1(x),

while another hypothesis, H2, implies that the probability is f2(x), then the observation X = x is

evidence supporting H1 over H2 if f1(x) > f2(x), and the likelihood ratio,f1(x)/f2(x), measures
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the strength of that evidence.

This point of view has led to a likelihood paradigm for interpreting statistical evidence, which carefully

distinguishes evidence from error probabilities and personal belief (Royall, 1994, 1997; Blume, 2002). Royall

(1997) also proposes benchmarks for the strength of statistical evidence. Specifically, a likelihood ratio (LR)

exceeding k = 8 is considered fairly strong evidence, while k = 32 is used to define strong evidence. Royall

(2000) analyzes the probability of observing misleading evidence under parametric models, and Blume (2008)

provides a parallel analysis for sequential trials. Royall and Tsou (2003) and Blume et al. (2007) develop

adjusted likelihood functions with certain robustness properties under model failure. Zhang (2008) advocates

the use of empirical likelihood functions in nonparametric and semiparametric situations.

Most of the discussion so far about the likelihood paradigm has been limited to simple hypotheses. This

is in sharp contrast to the tremendous relevance of composite hypotheses in statistical applications. In

confirmatory clinical trials, for example, the primary objective is often to demonstrate that a new treatment

is superior to a placebo/sham control, or not inferior to the standard of care by more than a specified amount.

Also, there are bioequivalence trials designed to show that a generic drug is similar to a brand drug with

respect to pharmacokinetic parameters. While Royall (1997, 2000) has considered some very special types

of composite hypotheses (to be described in Section 2), he and Blume (2002) have not encouraged efforts to

further extend the LL to general composite hypothese, due to concerns that will be addressed in Section 5.

Blume (2002) argues that a graph of the likelihood function suffices for an evidential analysis and “no further

reduction or summarization of the evidence is necessary”. However, in many situations including the clinical

studies mentioned earlier, it is important to not only look at the graph but also decide explicitly whether

there is evidence supporting one specific hypothesis over another and, if so, how strong that evidence is.

The LL makes this possible for simple hypotheses, and a reasonable generalization of the law for composite

hypotheses will certainly be helpful. He et al. (2007) consider this problem in a finite parameter space

without suggesting a practical solution. This article proposes a solution for general composite hypotheses.

The proposed solution will be derived in an axiomatic fashion in the next section, illustrated with real

examples in Section 3, and analyzed asymptotically in Section 4. Section 5 discusses previous concerns about

including composite hypotheses in the likelihood paradigm. Section 6 compares the proposed method with

other likelihood-based methods. Lastly, a discussion is given in Section 7 on how to interpret published

results of hypothesis tests as reduced data when the full data are not available.

2 Generalizing the law of likelihood

Let X represent the data and suppose X follows a distribution with density f(·; θ), which is known up to a

parameter (vector) θ taking values in Θ. Then the likelihood for θ, based on the observation X = x, is given

by L(θ) = f(x; θ). According to the LL, the data provide evidence supporting one parameter value θ1 over

another value θ2 if L(θ1) > L(θ2), and the strength of that evidence is measured by the LR L(θ1)/L(θ2).
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For this purpose, it is irrelevant whether the values θ1 and θ2 are predetermined or data-driven.

What do the data say about general hypotheses of the form H1 : θ ∈ Θ1 ⊂ Θ versus H2 : θ ∈ Θ2 ⊂ Θ?

Only some special cases have been considered. Obviously, if the likelihood L is constant over each hypothesis

with respective values L1 and L2, then the two hypotheses should be compared on the basis of the LR L1/L2

(Royall, 1997, Sections 1.7, 1.8). It has also been suggested that if the images L(Θ1) and L(Θ2) are intervals

that do not overlap, then the evidence supports the hypothesis with larger likelihood values over the other

one, with little discussion on how to measure the strength of that evidence (Royall, 2000; He et al., 2007).

We shall take as an axiom a slight generalization of the latter suggestion.

Axiom 1. If inf L(Θ1) > supL(Θ2), then there is evidence supporting H1 over H2.

Also, it seems reasonable to expect evidential interpretations to be logically consistent, in the following

sense.

Axiom 2. If there is evidence supporting H∗
1 over H2 and H∗

1 implies H1, then the evidence also supports

H1 over H2.

These axioms together suggest the following generalization of the LL.

Theorem 1. Let Axioms 1 and 2 hold. If sup L(Θ1) > sup L(Θ2), then there is evidence supporting H1

over H2.

Proof. Let sup L(Θ1) > sup L(Θ2); then Θ1 is not empty and there exists θ1 ∈ Θ1 such that L(θ1) >

sup L(Θ2). It follows from Axiom 1 that the simple hypothesis H∗
1 : θ = θ1 is supported over H2. The result

now follows directly from Axiom 2.

It also seems natural to use the generalized likelihood ratio (GLR) supL(Θ1)/ supL(Θ2) to measure the

strength of the evidence, although this does not follow from the axioms. This generalized law of likelihood

(GLL) is consistent with the original law for simple hypotheses, and with previous suggestions for special

cases of composite hyotheses (Royall, 1997, 2000). Moreover, the GLL coincides with the profile likelihood

approach in the presence of nuisance parameters. Suppose θ = (γ, ω), where γ is of primary interest and ω

is a nuisance parameter. While there may be ad hoc solutions available depending on the specific problem, a

viable general approach is to represent the evidence about γ with the profile likelihood L̃(γ) = supω L(γ, ω),

which has good properties that justify its use (Royall, 2000, Section 5). The GLL, treating a “simple”

hypothesis about γ as a composite one about (γ, ω), would lead to the same answer for comparing two

values of γ. Of course, unlike the profile likelihood approach, the GLL also applies to arbitrary composite

hypotheses concerning (γ, ω).

As a by-product, the GLL allows one to assess the “absolute” evidence about a single parameter value or

a single hypothesis, using its complement as the default comparator. This would not be possible without a

mechanism to deal with composite hypotheses (Royall, 1997, 2000). Under the GLL, a hypothesis H1 : θ ∈ Θ1
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is supported by the data if supL(Θ1) > sup L(Θc
1), where the superscript c denotes complement, and the

strength of that evidence is measured by the GLR supL(Θ1)/ supL(Θc
1). In particular, the evidence about a

single parameter value, say θ1, is represented by the ratio L(θ1)/ supθ 6=θ1
L(θ). As we shall see in the examples

to follow, excluding a single parameter value does not usually alter the supremum of the likelihood, which

means L(θ1)/ supθ 6=θ1
L(θ) = L(θ1)/ supL(Θ) ≤ 1. Thus it is usually impossible to obtain empirical evidence

supporting a single parameter value in a smooth model over its complement.

3 Real examples

The GLL will now be illustrated with some real examples. The first example, taken from Royall (1997,

Section 1.9), is a clinical study in which 17 subjects were enrolled and given a new treatment. The outcome

of interest was a binary indicator of treatment success, for which a binomial model is assumed. The success

probability for the new treatment, denoted by θ, was to be compared with the same probability for a

standard treatment which was believed to be about 0.2. This gave rise to two composite hypotheses of

interest: H1 : θ ≤ 0.2 versus H2 : θ > 0.2. At the end of the study, nine subjects were found to have achieved

treatment success and the resulting likelihood for θ is plotted in Figure 1. (In this and the subsequent

likelihood plots, each likelihood function is divided by its maximum value so the peak value is invariably 1.)

Royall (1997) recognizes that the LL does not allow us to compare H1 and H2 directly, and suggests that

we should instead make pairwise comparisons between selected parameter values in H1 and values in H2.

However, the choice of parameter values for pairwise comparisons can be rather subjective, and even after

a large number of pairwise comparisons it may remain unclear how to answer the original question: Do the

data support H1 or H2 and by how much? An application of the GLL yields a direct, unambiguous and

objective answer: H2 is supported over H1 with a GLR of 91, which indicates strong evidence.

[Figure 1 about here.]

The second example is a randomized clinical study first reported by Rodary et al. (1989) and later

discussed by many authors. The trial enrolled 164 children with nephroblastoma, who were randomly

assigned to either chemotherapy or radiation therapy. The primary objective of the trial was to demonstrate

that chemotherapy is non-inferior to radiation therapy with respect to the response rate. More precisely,

non-inferiority here means that the response rate for chemotherapy is not lower than that for radiation

therapy by more than a margin of 10%, which is considered the smallest clinically meaningful difference

between two groups. The observed response rates were 94.3% (83/88) for chemotherapy and 90.8% (69/76)

for radiation therapy. The profile likelihood function for the difference between the response rates in the

two groups is computed using a bisection method as in Zhang (2006) and plotted in Figure 2. Under the

GLL, the non-inferiority hypothesis is strongly supported with a GLR of 138. In fact, with a higher observed

response rate in the chemotherapy group, there is even evidence supporting the superiority of chemotherapy

to radiation therapy. This latter piece of evidence is rather weak, though, with a GLR of 1.4.
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[Figure 2 about here.]

Finally, let us consider a bioequivalence trial described in Wellek (2003, Chapter 9). Bioequivalence trials

are conducted to show that a generic drug or new formulation (test) is nearly equivalent in bioavailability to

an approved brand-name drug or formulation (reference). There are different ways to measure bioavailability,

but this example is primarily concerned with the area under the curve (AUC) for the serum concentration

of the drug changing over time. The trial involved 25 patients and followed a crossover design where each

patient was randomly assigned to a treatment sequence (test followed by reference or the opposite, with equal

probabilities). Let (YT , YR) denote the log-transformed AUC measurements in the test and reference periods,

respectively, on the same subject. Following Choi et al. (2008), we assume that there are no sequence or

period effects and that the measurements follow a simple bivariate normal model:

YT

YR


 ∼ N





µT

µR


 ,


 σ2

T ρσT σR

ρσT σR σ2
R





 .

In this setting, it is natural to assess bioequivalence by comparing µT with µR and σT with σR. Figures 3 and

4 display the profile likelihood functions for µT −µR and σT /σR, respectively, both based on formulas given

by Choi et al. (2008, Appendix A). In terms of the means, bioequivalence is usually defined as |µT − µR| <

0.223, which corresponds to 0.8 < exp(µT )/ exp(µR) < 1.25. As is clear in Figure 3, this bioequivalence

hypothesis enjoys overwhelming support by the observed data, with a GLR greater than 106. There is

not a general definition of bioequivalence in terms of the standard deviations. One might, however, follow

the same reasoning about the exponentiated means and consider the standard deviations close enough if

0.8 < σT /σR < 1.25. The evidence regarding this latter hypothesis is largely neutral, with a GLR of 1.1.

[Figure 3 about here.]

[Figure 4 about here.]

4 Large-sample theory

In this section we consider the behavior of the GLL in large samples. Specifically, let X = (Y1, . . . , Yn), a

collection of independent copies of some random variable Y , and let the density of Y be modeled as g(·; θ),
θ ∈ Θ. Then the likelihood for θ, based on the observations Yi = yi, i = 1, . . . , n, is given by

Ln(θ) =

n∏

i=1

g(yi; θ).

It is instructive to begin with the simple case of two simple hypotheses: H1 : θ = θ1 versus H2 : θ = θ2. The

law of large numbers implies that, with probability 1,

ln(θ) :=
1

n
log Ln(θ) =

1

n

n∑

i=1

log g(Yi; θ) → E log g(Y ; θ) =: l∞(θ).

It follows that Ln(θ1)/Ln(θ2) tends to ∞ if l∞(θ1) > l∞(θ2) and to 0 if l∞(θ1) < l∞(θ2). Thus the LL

essentially orders the values in Θ according to l∞. If l∞ has a unique maximum at θ0, then θ0 will eventually
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dominate any other fixed value in Θ. Obviously, θ0 is just the true value of θ if the model g(·; θ) is correctly

specified and suitably identified. Under an incorrect model, θ0 may be considered the “object of inference”

(Royall and Tsou, 2003).

Under the GLL, the subsets of Θ are ordered according the suprema of their images under l∞. This can

be formalized as follows.

Theorem 2. Let Θ1, Θ2 be subsets of Θ. If the collection of functions {log g(Y ; θ) : θ ∈ Θj} is Glivenko-

Cantelli for j = 1, 2, then, with probability 1,

sup Ln(Θ1)

sup Ln(Θ2)
→





∞ if sup l∞(Θ1) > sup l∞(Θ2),

0 if sup l∞(Θ1) < sup l∞(Θ2).

This follows directly from the uniform law of large numbers. An extensive discussion of the Glivenko-

Cantelli property, including techniques for its verification, can be found in van der Vaart and Wellner (1996).

Certainly, any parameter set that contains θ0 (if it exists) attains the global maximum of l∞. On the other

hand, a set that does not contain θ0 may or may not attain the global maximum, depending on certain

properties of l∞. Some general characterizations are given below.

Lemma 1. Suppose l∞ is continuous and maximized at θ0. If θ0 ∈ Θ1 (closure of Θ1), then sup l∞(Θ1) =

max l∞(Θ).

Lemma 2. Suppose θ0 is a well-separated maximizer of l∞ in the sense that for every ǫ > 0,

sup
θ:‖θ−θ0‖≥ǫ

l∞(θ) < l∞(θ0).

If θ0 /∈ Θ1, then sup l∞(Θ1) < max l∞(Θ).

The preceding discussion leaves open the case that sup l∞(Θ1) = sup l∞(Θ2), which can happen if θ0 lies

on the boundary between Θ1 and Θ2 or, more generally, if θ0 ∈ (Θ1 ∩Θ2). Take the first example in Section

3 comparing H1 : θ ≤ 0.2 with H2 : θ > 0.2. If the true value of θ is 0.1 or 0.5, then the above results show

that H1 or H2, respectively, will eventually dominate the other hypothesis. However, if θ = 0.2, then the

two hypotheses are tied with respect to sup l∞ and a closer examination is required. The following theorem

characterizes the asymptotic distribution of the GLR supLn(Θ1)/ supLn(Θ2) in terms of the limits of the

sets Ajn =
√

n(Θj − θ0), j = 1, 2. A sequence of sets An converges to a set A if A is the set of all limits

lim an of convergent sequences (an) with an ∈ An for every n and, moreover, the limit a = limk ank
of every

convergent sequence (ank
) with ank

∈ Ank
for every k is contained in A. Also define the distance between a

vector b and a set A in the same Euclidean space as ‖b − A‖ = infa∈A ‖b − a‖.

Theorem 3. Suppose the model {g(·; θ) : θ ∈ Θ} is differentialble in quadratic mean at θ0 in the sense of

van der Vaart (1998, Section 7.2) with non-singular Fisher information matrix Iθ0
. Suppose there exists a

measurable function h such that Eθ0
{h(Y )2} < ∞ and that, for every θ1 and θ2 in a neighborhood of θ0,

| log g(y; θ1) − log g(y; θ2)| ≤ h(y)‖θ1 − θ2‖.
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Let Θ1, Θ2 be subsets of Θ for which the restricted maximum likelihood estimators θ̂jn = argmaxΘj
Ln,

j = 1, 2, are consistent under θ0 and the sequence of sets Ajn (defined above) converges to some Aj, j = 1, 2.

Then, under θ0, we have

2{log supLn(Θ1) − log supLn(Θ2)} d−→ ‖I1/2
θ0

W − I
1/2
θ0

A2‖2 − ‖I1/2
θ0

W − I
1/2
θ0

A1‖2,

for W normally distributed with mean 0 and variance matrix I−1
θ0

.

This result parallels Theorem 16.7 of van der Vaart (1998) for likelihood ratio tests and can be proved

using similar arguments. Unlike Theorem 2, Theorem 3 does require correct specification of the model

g(·; θ). The differentiability condition for the model g(·; θ) is satisfied for most models used in practice. The

consistency of the restricted maximum likelihood estimators θ̂jn typically requires that θ0 ∈ (Θ1 ∩ Θ2). In

the more general case θ0 ∈ (Θ1 ∩ Θ2), one could replace each Θj with Θj when applying the theorem and

the conclusion would still hold for the original Θj as long as Ln is continuous. To understand the limiting

distribution given in Theorem 3, note that I
1/2
θ0

W is a standard normal vector of the same dimension as θ.

If θ0 is interior to Θj , then Aj is the entire Euclidean space and I
1/2
θ0

V − I
1/2
θ0

Aj ≡ 0. The situation is more

complicated if θ0 lies on the boundary of a parameter set. Consider, again, the first example in Section 3.

When θ0 = 0.2 in this example, A1 and A2 are the negative and positive halflines respectively, and the GLR

sup Ln(Θ1)/ supLn(Θ2) converges in distribution to exp[{I(Z < 0)− I(Z > 0)}Z2/2], where Z is a standard

normal variable and I(·) is the indicator function. Thus H1 and H2 are virtually symmetric in the limit even

though one is technically correct and the other is not. As a more extreme example, suppose θ0 is an interior

point of Θ and take Θ1 = {θ0} and Θ2 = Θc
1. Then A1 = {0} and A2 equals the entire Euclidean space,

so the limit in Theorem 3 is −χ2
dim(θ). This result adds to the discussion at the end of Section 2 with an

asymptotic approximation.

5 Discussion of previous concerns

Both Royall (1997) and Blume (2002) have emphasized that the LL is silent about composite hypotheses.

Neither author has expressed much optimism about expanding the likelihood paradigm to include composite

hypotheses, despite their practical relevance. The main concerns expressed in Royall (1997, Section 1.9) and

Blume (2002, Section 2.6) are outlined and addressed below.

5.1 Logical evidence versus statistical evidence

Royall (1997) points out the distinction between logical evidence and statistical evidence, and argues that

the former should not be substituted for the latter. This can be illustrated with the following example from

Royall (1997, Section 1.7.2). Suppose that Θ1 = {θ1} and Θ2 = {θ1, θ2} for distinct parameter values θ1

and θ2. Because Θ1 ⊂ Θ2, the hypothesis H2 : θ ∈ Θ2 certainly appears more plausible than H1 : θ ∈ Θ1.

However, if L(θ1) = L(θ2) then the LL says that H1 and H2 are equally well supported by the data. This is
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not surprising because the LL concerns the statistical evidence alone, irrespective of the logical relationship

between the two hypotheses.

On the other hand, it is reasonable to require that statistical evidence be interpreted in a logically

consistent manner. In the example of the above paragraph, it seems difficult to imagine a data configuration

that can be naturally interpreted as supporting H1 over H2, even if L(θ1) and L(θ2) are allowed to differ in

any possible way. A theory that allows such an illogical conclusion would be really troubling. This is the

rationale for imposing Axiom 2 in developing the GLL.

The GLL respects logical relationships among hypotheses without substituting logical evidence for sta-

tistical evidence. This can be illustrated with the same example discussed in the above two paragraphs.

Under the GLL, there can never be strict support for H1 over H2, eliminating logical inconsistencies. On

the other hand, the GLL does not confuse the logical relationship H1 ⇒ H2 with statistical evidence. It

never lends evidential support to H2 over H1 without a solid statistical basis, because the GLR of H2 to H1

cannot be greater than 1 unless L(θ2) > L(θ1). This can also be seen in another example from Royall (1997,

Section 1.9) with Θ1 = {θ1, θ3}, Θ2 = {θ2} and L(θ1) < L(θ2) < L(θ3). Based on the latter inequality,

H1 is supported over H2 under the GLL. This conclusion will not hold if the likelihood becomes such that

L(θ1) < L(θ2) = L(θ3) even though the logical relationship between H1 and H2 is unchanged. More gener-

ally, for any hypothesis H1 : θ ∈ Θ1 to be supported over another hypothesis H2 : θ ∈ Θ2, the GLL requires

the existence of θ1 ∈ Θ1 such that L(θ1) > sup L(Θ1), a crucial piece of statistical evidence that cannot be

replaced by any logical evidence.

5.2 The role of a prior distribution

If a prior distribution can be specified for θ, then the probabilities P (X = x|H1) and P (X = x|H2) can be

evaluated and the LL can be used to assess the evidence about H1 versus H2. As Royall (1997) and Blume

(2002) point out, this Bayesian approach reduces composite hypotheses into simple ones by modifying the

probability model. The choice of a prior distribution can be arbitrary, and an LR that involves a prior

distribution may not provide an objective representation of the observed evidence.

Given his insight into the Bayesian approach, it is interesting that Royall supports his reservation about

considering composite hypotheses in the likelihood paradigm with the following Bayesian observation. He

observes that the posterior probability ratio P (H1|X = x)/P (H2|X = x) can be larger or smaller than the

prior probability ratio P (H1)/P (H2), depending on the prior distribution, unless one hypothesis dominates

the other as in Axiom 1 (Royall, 1997, Section 1.9). If anything, this appears to highlight the subjectivity

inherent in the Bayesian approach. In no way does the above observation suggest that statistical evidence

about composite hypotheses cannot be interpreted objectively.
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5.3 The lack of a unique solution

Blume’s main concern about composite hypotheses appears to be that there is no unique way to deal

with them (Blume, 2002, Section 2.6). This, of course, is the case with many problems, including the

very problem the LL aims to address. (Statisticians and scientists who have not yet accepted the LL

wholeheartedly need not regard it as the unique approach to statistical evidence.) Within the likelihood

paradigm, there are different ways to obtain a likelihood function for the parameter of interest in the

presence of nuisance parameters (a special type of composite hypotheses). Among other possibilities, the

profile likelihood approach has been shown to have desirable statistical properties and appears to be a viable

general approach to dealing with nuisance parameters (Royall, 1997, 2000; Blume, 2002). The GLL provides

a natural extension of the profile likelihood approach to more general composite hypotheses.

It is actually desirable to have a set of possible solutions to choose from. Besides maximizing the likelihood

over each hypothesis as in this paper, Blume (2002) also mentions other possible approaches to composite

hypotheses (to illustrate the lack of a unique solution). One of the alternatives mentioned is to minimize

the likelihood over each hypothesis, which clearly makes no sense. Suppose, for example, that L(θ1) > 0 for

some θ1 and that inf L(Θ) = 0, which is not uncommon. The minimum likelihood rule would then indicate

(infinitely) strong evidence supporting H1 : θ = θ1 over H2 : θ ∈ Θ, even though the latter hypothesis is

trivially true. Blume also mentions the possibility of averaging the likelihood over a composite hypothesis

with a weight function, which is essentially the Bayesian approach. As noted earlier, the Bayesian approach

relies on external information and may not provide an objective representation of the observed evidence. In

contrast, The GLL provides an objective representation of evidence and avoids illogical and counterintuitive

conclusions.

6 Comparison with other procedures

6.1 Connection with likelihood ratio tests

As we have seen in the examples discussed so far, Θ1 and Θ2 need not be disjoint or exhaustive for the GLL

to apply. There are, however, many applications where it is customary to take Θ2 = Θc
1. These problems are

usually tackled with statistical tests, such as likelihood ratio tests (LRTs). To be specific, let H1 : θ ∈ Θ1 be

considered the null hypothesis and H2 : θ /∈ Θ1 the alternative; this suggests that evidence supporting H2

over H1 is of particular interest. The LRT is based on the statistic

sup L(Θ)

sup L(Θ1)
=

sup L(Θ1) ∨ sup L(Θ2)

sup L(Θ1)
=

sup L(Θ2)

sup L(Θ1)
∨ 1,

where ∨ denotes maximum. The null hypothesis will formally be rejected if the above test statistic is greater

than some critical value, which is typically greater than 1. Thus, for the purpose of seeking evidence for H2,

the LRT statistic is essentially equivalent to the GLR sup L(Θ2)/ sup L(Θ1) given by the GLL.
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However, the same GLR can be interpreted in different ways. In the likelihood paradigm, the GLR is

all that is needed to compare the two hypotheses. It determines both the nature and the strength of the

evidence, and can be placed on a universal scale together with GLRs from different problems. The strength

of statistical evidence is measured on a continuum and should be understood as such, even though descriptive

benchmarks are sometimes used to facilitate communication. In an LRT, the test statistic is to be compared

with a critical value before a dichotomous conclusion (whether to reject H1 in favor of H2) can be reached.

The critical value is derived from the (asymptotic) null distributions of the test statistic and usually depends

on the significance level and certain properties of Θ1 (van der Vaart, 1998, Chapter 16). The use of a p-value

provides some continuity and eliminates the dependence on the significance level, but a p-value still depends

on other features of the problem that are irrelevant from an evidential point of view. In general, Royall

(1997) argues that hypothesis tests are not appropriate tools for interpreting data as evidence.

6.2 Confidence sets versus support sets

Denote by cα(θ1) the LRT critical value for testing H1 : θ = θ1 against H2 : θ 6= θ1 at significance level α.

The associated 1 − α confidence set for θ is given by {θ ∈ Θ : L(θ) > sup L(Θ)/cα(θ)}. If cα(θ) ≡ cα, as

is often the case, then the confidence set is simply {θ : L(θ) > sup L(Θ)/cα}. This, interestingly, coincides

with a likelihood support set. Royall (1997) and Blume (2002) have discussed likelihood support sets in

one-dimensional situations, where the support sets are typically intervals. In general, the 1/k support set

for θ can be defined as

Sk = {θ : L(θ) > sup L(Θ)/k}, k > 1. (1)

Despite a similar appearance, a support set is to be interpreted differently than a confidence set. The usual

interpretation of confidence sets in terms of long-run coverage does not fit well into the likelihood paradigm,

where the emphasis is placed on understanding the observed data (as opposed to fictitious repetitions of

the same experiment). The LL leads to the following interpretation of support sets. The values in the 1/k

support set Sk are “consistent with the observations” in the sense that no other value can be better supported

by a factor greater than k (Royall, 1997, Section 1.12). An alternative, perhaps more straightforward

interpretation is made available by the GLL. Recall from Section 2 that evidence about a single hypothesis

could be evaluated using its complement as the default comparator. In this sense, Sk is simply the smallest

parameter set supported by a factor of k.

Theorem 4. If sup L(S)/ supL(Sc) ≥ k for some S ⊂ Θ, then Sk ⊂ S.

Proof. By assumption, supL(Sc) ≤ sup L(S)/k ≤ sup L(Θ)/k. It follows that

Sc ⊂ {θ : L(θ) ≤ sup L(Θ)/k} = Sc
k,

from which the result is immediate.
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6.3 Drawing support from support sets

Choi et al. (2008) propose to use profile likelihood support intervals to assess bioequivalence. As discussed

in Section 3, the parameter of interest in this context is usually a scalar parameter γ ∈ Γ that summarizes

the difference in bioavailability between a test drug or formulation and a reference. Suppose bioequivalence

is defined as γ ∈ (γL, γU ) = ΓBE for specified bounds γL and γU . Write θ = (γ, ω) for the entire parameter

vector that determines the distribution of the data, with ω ∈ Ω considered the nuisance parameter. Choi et

al. work with the profile likelihood L̃(γ) = supω L(γ, ω), from which support intervals for γ can be derived

as

S̃k = {γ ∈ Γ : L̃(γ) > sup L̃(Γ)/k}, k > 1.

Note that sup L̃(Γ) = supL(Θ) and that S̃k = {γ : (γ, ω) ∈ Sk for some ω} with Sk defined by (1). Choi et

al. suggest that if S̃k ⊂ ΓBE then there is evidence supporting the bioequivalence hypothesis; the larger k is,

the stronger the evidence. They also suggest what is essentially a sensitivity analysis using several support

intervals (say with k = 5, 8, 32). Implicit in the latter suggestion is an attempt to quantify the strength of

the evidence with the “largest” k for which the bioequivalence hypothesis is supported.

The GLL provides a general theoretical basis for the above suggestions. To see this, note first that

S̃k ⊂ ΓBE if and only if Sk ⊂ ΓBE × Ω =: ΘBE . Thus Choi et al.’s approach can be cast in terms of the

parameter θ and the associated support sets Sk. The following theorem justifies their usage of support sets

for an arbitrary hypothesis concerning θ.

Theorem 5. Let ΘA ⊂ Θ and write rA = supL(ΘA)/ supL(Θc
A). (a) If Sk ⊂ ΘA for some k > 1, then

rA ≥ k. (b) Denote k∗ = sup{k > 1 : Sk ⊂ ΘA}, which will be set to 1 if there is no qualifying k. Then

rA > 1 if and only if k∗ > 1, in which case rA = k∗.

Proof. If Sk ⊂ ΘA, then

rA =
sup L(ΘA)

sup L(Θc
A)

≥ sup L(Sk)

sup L(Sc
k)

≥ k,

proving statement (a). The “if” part of statement (b) follows directly from statement (a), which, by a

limiting argument, further implies that rA ≥ k∗. To prove the “only if” part, we can invoke Theorem 4

with S = ΘA and k = rA, which also shows that rA ≤ k∗. The proof is complete upon combining the two

arguments.

7 Hypothesis tests as reduced data

When reporting their research findings, scientists do not always provide the raw data and sometimes only

present the final results of statistical tests concerning their research hypotheses. Without access to the raw

data, an interested reader may not be able to produce the likelihood function for the parameter of interest

and is often forced to work with the results of hypothesis tests. Such difficulties do not necessarily force us
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out of the likelihood paradigm, as the GLL can still be used to interpret hypothesis tests as reduced data.

This will be illustrated below for both dichotomous test results and p-values.

7.1 Dichotomous test results

Suppose the null hypothesis H1 is to be tested against the alternative H2 at significance level α. Let T = 1

if H1 is rejected in favor of H2; 0 otherwise. The GLR of H2 to H1 based on the result T = t is given by

rT (t) = sup
H2

P (T = t)/ sup
H1

P (T = t), t = 0, 1.

In the case of simple hypotheses, this has been discussed by Royall (1997, pp. 48–49). For an arbitrary H1,

supH1
P (T = 1) is the size of the test, which must not exceed α for a level-α test. In fact, except in very

discrete cases, a reasonable test should have size close to α. On the other hand, supH2
P (T = 1) is the

maximum power of the test, which is generally greater than α and frequently equal to 1. Thus it seems

reasonable to expect rT (1) > 1, which justifies the usual interpretation of a rejection as evidence for the

alternative. The GLR based on a non-rejection appears less predictable, consistent with the conventional

wisdom that a failure to reject the null does not necessarily support the null. It should be noted that while

the GLL appears consistent with conventional interpretations of hypothesis tests, it does not justify the use

of such tests to reduce the data. The GLL should ideally be applied to the original data.

More can be said about the GLR rT for some typical hypotheses concerning a scalar θ ∈ (θ, θ). Consider

for instance the one-sided hypotheses H1 : θ ≤ θ∗ versus H2 : θ > θ∗. In terms of the power function

π(θ) = Pθ(T = 1), the GLR can now be written as

rT (t) =





{1 − infθ>θ∗ π(θ)}/{1 − infθ≤θ∗ π(θ)}, t = 0;

supθ>θ∗ π(θ)/ supθ≤θ∗ π(θ), t = 1.

In many examples, π(θ) is increasing in θ with π(θ+) = 0, π(θ∗) = α and π(θ−) = 1. If this is the case, then

rT (t) =





1 − α, t = 0;

1/α, t = 1.

Thus, if H1 is rejected, the resulting evidence supporting H2 over H1 is moderate (rT = 20) for α = 0.05 and

strong (rT = 40) for α = 0.025. If H1 is not rejected, then H1 is supported over H2 but the evidence is very

weak for common values of α. Sometimes the one-sided hypotheses are formulated as H ′
1 : θ = θ∗ versus

H2 : θ > θ∗. Such a reformulation does not usually require a different test. Assuming the same properties

of π as stated above, we then have

rT (t) =





{1 − infθ>θ∗ π(θ)}/{1 − π(θ∗)} = 1, t = 0;

supθ>θ∗ π(θ)/π(θ∗) = 1/α, t = 1.

The reformulated null hypothesis cannot be supported even if it is not rejected.
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Suppose the simple null H1 : θ = θ∗ is to be tested against the two-sided alternative H2 : θ 6= θ∗.

Assume the power function π(θ) equals α at θ = θ∗, increases as θ moves away from θ∗, and tends to 1 as θ

approaches θ or θ. Then

rT (t) =






1, t = 0;

1/α, t = 1.

Again, the simple null is never supported.

Now let us consider an equivalence testing problem with hypotheses H1 : |θ−θ∗| ≥ δ and H2 : |θ−θ∗| < δ

for some δ > 0. Here it may be reasonable to assume that π(θ) attains its maximum πmax at θ = θ∗, decreases

as θ moves away from θ∗, equals α at θ = θ∗ ± δ, and tends to 0 as θ approaches θ or θ. The maximum

power πmax is usually less than 1 but greater than α. In this case the GLR of H2 to H1 is given by

rT (t) =





1 − α, t = 0;

πmax/α, t = 1.

This provides a realistic example where the maximum power of the test is relevant even after rejecting the

null.

7.2 p-values

Let U denote a p-value for testing the null hypothesis H1 against the alternative H2. Depending on the nature

of X and the procedure, U may be discrete or continuous. In either case we write fU for the probability

density of U with respect to an appropriate measure. The GLR of H2 to H1 based on the result U = u is

rU (u) = sup
H2

fU (u)/ sup
H1

fU (u), 0 < u < 1.

In practice, U is often determined by a test statistic V through a smooth monotone function, such as 1 minus

a reference distribution function, in which case rU is equivalent to the analogous GLR based on V (denoted

by rV ).

For example, suppose X = (Y1, . . . , Yn) is a random sample from N(µ, σ2) with σ2 known, and consider

the hypotheses H1 : µ ≤ 0 versus H2 : µ > 0. In this situation it is common to use the p-value U = 1−Φ(V ),

where Φ is the standard normal distribution function and V = n−1/2
∑n

i=1 Yi/σ. The corresponding GLR

can be obtained as

rU (u) = rV (Φ−1(1 − u)) =
supµ>0 φ(Φ−1(1 − u) −√

nµ/σ)

supµ≤0 φ(Φ−1(1 − u) −√
nµ/σ)

=





exp({Φ−1(1 − u)}2/2), u ≤ 0.5;

exp(−{Φ−1(1 − u)}2/2), u > 0.5,

(2)

where φ denotes the standard normal density function. Note that H2 is supported over H1 if and only if

U < 0.5. In fact, since V is sufficient for µ in this example, the above GLR is the same as that based on the
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full data X . A less trivial example would be a two-sample problem with a random sample (Y11, . . . , Y1n1
)

from N(µ1, σ
2) and another sample (Y21, . . . , Y2n2

) from N(µ2, σ
2). Assume σ2 is known and consider the

hypotheses H1 : µ2 ≤ µ1 versus H2 : µ2 > µ1. Then the test statistic V = (n−1
1 + n−1

2 )−1/2(Y 2 − Y 1)/σ,

with Y j = n−1
j

∑nj

i=1 Yij (j = 1, 2), would not be sufficient. Nonetheless, the GLR of H2 to H1 based on the

p-value U = 1 − Φ(V ) continues to follow expression (2).

When interpreting a p-value, one might be tempted to invoke the characterization of U as the “lowest”

significance level at which H1 is rejected, that is, U = inf{α : Tα = 1}, where T is subscripted to emphasize

its dependence on α. The observation U = u implies that the use of any α > u would lead to a rejection

and hence a GLR rTα
(1), and it might seem natural to use the quantity r+(u) = supα>u rTα

(1) to represent

the evidence in the observed p-value. While this quantity may be easy to compute when a simple expression

for rTα
(1) is available as in Section 7.1, its interpretation can be problematic. First, a symmetric argument

based on the dual identity U = sup{α : Tα = 0} would lead to the dual quantity r−(u) = infα<u rTα
(0),

which is generally different and typically smaller than r+(u). It is not clear how to reconcile the difference.

More importantly, the GLRs rTα
(t) are defined in Section 7.1 for a fixed α. If α is allowed to depend on U ,

a random variable, then Tα will become a different statistic to which the discussion of Section 7.1 no longer

applies.
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Figure 1: Likelihood function for the success rate θ in the first example of Section 3, with the dashed line

separating the hypotheses H1 : θ ≤ 0.2 and H2 : θ > 0.2.
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Figure 2: Profile likelihood function for the difference in response rate (chemotherapy − radiation therapy)

in the second example of Section 3, with the dashed lines separating regions of inferiority, non-inferiority

and superiority.
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Figure 3: Profile likelihood function for the difference in mean log-AUC (test−reference) in the third example

of Section 3, with the dashed lines separating regions of bioequivalence (BE) and non-BE.
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Figure 4: Profile likelihood function for the ratio of log-AUC standard deviations (test/reference) in the

third example of Section 3, with the dashed lines separating regions of bioequivalence (BE) and non-BE.
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