Tr. J. of Mathematics 20 (1996) , 353-368. © TÜBİTAK

CERTAIN CLASSES OF ANALYTIC AND MULTIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

M.K. Aouf, A. Shamandy & A.A. Attıyıa

Abstract

We introduce a subclass $K_{n+p-1}^*(A,B)$ of analytic and p-valent functions with negative coefficients. Coefficient estimates, some properties, distortion theorems and closure theorems of functions belonging to the class $K_{n+p-1}^*(A,B)$ are determined. Also we obtain radii of close-to-convexity, starlikeness and convexity for the class $K_{n+p-1}^*(A,B)$. We also obtain class preserving integral operator of the form

$$F(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt, c > -p$$

for the class $K_{n+p-1}^*(A, B)$ Conversely when $F(z) \in K_{n+p-1}^*(A, B)$ radius of p-valence of f(z) defined by the above equation is obtained.

1. Introduction

Let S(p) denote the class of functions of the form

$$f(z) = z^{P} + \sum_{k=1}^{\infty} a_{p+k} z^{p+k} (p \in \mathbb{N} = \{1, 2, \dots\}), \tag{1.1}$$

which are analytic and p-valent in the unit disc $U = \{z : |z| < 1\}$. Let f(z) be in S(p) and g(z) be in S(p). Then we denote by $f \star g(z)$ the Hadamard product of f(z) and g(z), that is, if f(z) is given by (1.1) and g(z) is given by

$$g(z) = z^{p} + \sum_{k=1}^{\infty} b_{p+k} z^{p+k} (p \in \mathbb{N}), \tag{1.2}$$

1991 Mathematics Subject Classification. 30C45. KEY WORDS - Analytic, p-valent, Ruscheweyh derivative, modified Hadamard products.

then

$$f * g(z) = z^{p} + \sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k}.$$
 (1.3)

The (n+p-1)-th order Ruscheweyh derivative $D^{n+p-1}f(z)$ of a function f(z) of S(p)is defined by

$$D^{n+p-1}f(z) = \frac{z^p(z^{n-1}f(z))^{n+p-1}}{(n+p-1)!}$$
(1.4)

where n is any integer such that n > -p. It is easy to see that

$$D^{n+p-1}f(z) = \frac{z^p}{(1-z)^{n+p}} * f(z)$$
 (1.5)

$$= z^{p} + \sum_{k=1}^{\infty} \delta(n,k) a_{p+k} z^{p+k}, \qquad (1.6)$$

where

$$\delta(n,k) = \binom{n+p+k-1}{n+p-1}.$$
(1.7)

Particularly, the symbol $D^n f(z)$ was named the n-th order Ruscheweyh derivative of $f(z) \in S(1)$ by Al-Amiri [1].

Let T(p) denote the subclass of S(p) consisting of functions of the form

$$f(z) = z^p - \sum_{k=1}^{\infty} a_{p+k} z^{p+k} (a_{p+k} \ge 0; p \in \mathbb{N}).$$
 (1.8)

Also let $K_{n+p-1}^*(A,B)$ denote the class of functions $f(z) \in T(p)$ such that

$$\left| \frac{2\left(\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)} - 1\right)}{2B\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)} - (A+B)} \right| < 1, (z \in U), \tag{1.9}$$

where $-1 \le A < B \le 1, 0 < B \le 1, \text{ and } n > -p$.

We note that:

- $\begin{array}{l} \text{(i)} \ \ K_{n+p-1}^*(-1,1) = K_{n+p-1}^* \ \ \text{(Owa [3])}; \\ \text{(ii)} \ \ K_0^*((4\gamma-3)\beta,\beta) = T^*(\gamma,\beta) \\ (0 \leq \gamma < 1, 0 < \beta \leq 1) \ \ \text{(Gupta and Jain [2])}; \\ \end{array}$
- (iii) $K_0^*(4\gamma 3, 1) = T^*(\gamma)(0 \le \gamma < 1)$ (Silverman [4]).

2. Coefficient Estimates

Theorem 1. Let the function f(z) be defined by (1.8). Then f(z) is in the class $K_{n+p-1}^*(A,B)$ if and only if

$$\sum_{k=1}^{\infty} D_k \delta(n, K) a_{p+k} \le (B - A)(n+p), \tag{2.1}$$

where

$$D_k = [2k(B+1) + (B-A)(n+p)]. (2.2)$$

The result is sharp.

Proof. Assume that the inequality (2.1) holds and let |z| = 1. Then we get

$$\begin{split} & \left| 2(D^{n+p}f(z) - D^{n+p-1}f(z)) \right| - \left| 2BD^{n+p}f(z) - (A+B)D^{n+p-1}f(z) \right| \\ & = \left| -2\sum_{k=1}^{\infty} \left(\frac{k}{n+p} \right) \delta(n,k) a_{p+k} z^{p+k} \right| - \left| (B-A)z^P - \sum_{k=1}^{\infty} \left[2B\left(\frac{k}{n+p} \right) + (B-A) \right] \delta(n,k) a_{p+k} z^{p+k} \right| \\ & \leq \sum_{k=1}^{\infty} 2\left(\frac{k}{n+p} \right) \delta(n,k) a_{p+k} - (B-A) + \sum_{k=1}^{\infty} \left[2B\left(\frac{k}{n+p} \right) + (B-A) \right] \delta(n,k) a_{p+k} \\ & = \sum_{k=1}^{\infty} \left[\frac{2k}{(n+p)} (B+1) + (B-A) \right] \delta(n,k) a_{p+k} - (B-A) \\ & \leq 0, \text{ by hypotheses.} \end{split}$$

Hence by the maximum modulus theorem $f(z) \in K_{n+p-1}^*(A, B)$. Conversely, suppose that

$$\left| \frac{2\left(\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)} - 1\right)}{2B\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)} - (A+B)} \right|
= \left| \frac{-2\sum_{k=1}^{\infty} \left(\frac{k}{n+p}\right) \delta(n,k) a_{p+k} z^{k}}{(B-A) - \sum_{k=1}^{\infty} \left[2B\left(\frac{k}{n+p}\right) + (B-A)\right] \delta(n,k) a_{p+k} z^{k}} \right| \le 1, z \in U.$$
(2.3)

Since $|Re(z)| \leq |z|$ for all z, we have

$$Re \left\{ \frac{-2\sum_{k=1}^{\infty} \left(\frac{k}{n+p}\right) \delta(n,k) a_{p+k} z^{k}}{(B-A) - \sum_{k=1}^{\infty} \left[2B\left(\frac{k}{n+p}\right) + (B-A)\right] \delta(n,k) a_{p+k} z^{k}} \right\} < 1.$$
 (2.4)

Choose values of z on the real axis so that $\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)}$ is real. Upon clearing the denominator in (2.4) and letting $z \to 1^-$ through real values, we obtain

$$2\sum_{k=1}^{\infty} \left(\frac{k}{n+p}\right) \delta(n,k) a_{p+k} \le (B-A)$$
$$-\sum_{k=1}^{\infty} \left[2B\left(\frac{k}{n+p}\right) + (B-A) \right] \delta(n,k) a_{p+k}.$$

This gives the required condition.

Finally, the function

$$f(z) = z^{P} - \frac{(B-A)(n+p)}{D_{k}\delta(n,k)} z^{p+k} \qquad (k \ge 1)$$
 (2.5)

is an extremal function for the theorem.

Corollary 1. Let the function f(z) defined by (1.8) be in the class $K_{n+p-1}^*(A,B)$. Then

$$a_{p+k} \le \frac{(B-A)(n+p)}{D_k \delta(n,k)} \qquad (k \ge 1). \tag{2.6}$$

The result is sharp for the function f(z) given by (2.5).

3. Some Properties of the Class $K_{n+p-1}^*(A,B)$

Theorem 2. $K_{n+p}^*(A,B) \subset K_{n+p-1}^*(A,B)$ for $p \in \mathbb{N}, n > -p, -1 \le A < B \le 1$, and $0 < B \le 1$.

Proof. Let the function f(z) defined by (1.8) be in the class $K_{n+p}^*(A,B)$. Then, by Theorem 1, we have

$$\sum_{k=1}^{\infty} \left(\frac{2k(B+1)}{(n+p+1)} + (B-A) \right) \delta(n+1,k) a_{p+k} \le (B-A)$$
 (3.1)

and since

$$\left(\frac{2k(B+1)}{(n+p)} + (B-A)\right)\delta(n,k) \le \left(\frac{2k(B+1)}{(n+p+1)} + (B-A)\right)\delta(n+1,k)$$
for $k \ge 1$, (3.2)

we have

$$\sum_{k=1}^{\infty} \left(\frac{2k(B+1)}{(n+p)} + (B-A) \right) \delta(n,k) a_{p+k}$$

$$\leq \sum_{k=1}^{\infty} \left(\frac{2k(B+1)}{(n+p+1)} + (B-A) \right) \delta(n+1,k) a_{p+k} \leq (B-A). \tag{3.3}$$

The result follows from Theorem 1.

Theorem 3. Let $-1 \le A_1 \le A_2 < B_1 \le B_2 \le 1$ and $0 < B_1 \le B_2 \le 1$. Then we have

$$K_{n+p-1}^*(A_1, B_2) \supseteq K_{n+p-1}^*(A_2, B_1).$$

Proof. Theorem 3 is an immediate consequence of the definitin of the class $K_{n+p-1}^*(A,B)$.

4. Distortion Theorems

Theorem 4. Let the function f(z) defined by (1.8) be in the class $K_{n+p-1}^*(A,B)$. Then we have

$$|z|^{p} - \frac{(B-A)}{D_{1}}|z|^{p+1} \le |f(z)| \le |z|^{P} + \frac{(B-A)}{D_{1}}|z|^{p+1}$$
(4.1)

for $z \in U$. The result is sharp.

Proof. Since $f(z) \in K_{n+p-1}^*(A, B)$, in view of Theorem 1, we obtain

$$D_{1}\delta(n,1)\sum_{k=1}^{\infty}a_{p+k} \leq \sum_{k=1}^{\infty}D_{k}\delta(n,K)a_{p+k} < (B-A)(n+p),$$
(4.2)

which implies that

$$\sum_{k=1}^{\infty} a_{p+k} \le \frac{(B-A)}{D_1}. (4.3)$$

Therefore we can show that

$$|f(z)| \ge |z|^p - |z|^{p+1} \sum_{k=1}^{\infty} a_{p+k}$$

$$\ge |z|^p - \frac{(B-A)}{D_1} |z|^{p+1}$$
(4.4)

and

$$|f(z)| \le |z|^p + |z|^{p+1} \sum_{k=1}^{\infty} a_{p+k}$$

$$\le |z|^p + \frac{(B-A)}{D_1} |z|^{p+1}$$
(4.5)

for $z \in U$. This completes the proof of Theorem 4. Finally, by taking the function

$$f(z) = z^{P} - \frac{(B-A)}{D_{1}} z^{p+1}, \tag{4.6}$$

we can show that the result of Theorem 4 is sharp.

Corollary 2. Let the function f(z) defined by (1.8) be in the class $K_{n+p-1}^*(A,B)$. Then f(z) is included in a disc with its center at the origin and radius r_1 given by

$$r_1 = \frac{D_1 + (B - A)}{D_1}. (4.7)$$

Theorem 5. Let the function f(z) defined by (1.8) be in the class $K_{n+p-1}^*(A,B)$. Then we have

$$p|z|^{p-1} - \frac{(B-A)(p+1)}{D_1}|z|^P \le |f'(z)| \le p|z|^{p-1} + \frac{(B-A)(p+1)}{D_1}|z|^P \tag{4.8}$$

for $z \in U$. The result is sharp.

Proof. In view of Theorem 1, we have

$$\frac{D_1 \delta(n,1)}{(p+1)} \sum_{k=1}^{\infty} (p+k) a_{p+k} \le \sum_{k=1}^{\infty} D_k \delta(n,K) a_{p+k} \\
\le (B-A)(n+p) \tag{4.9}$$

which implies that

$$\sum_{k=1}^{\infty} (p+k)a_{p+k} \le \frac{(B-A)(p+1)}{D_1}.$$
(4.10)

Hence, with the aid of (4.10), we have

$$|f'(z)| \ge p|z|^{p-1} - |z|^p \sum_{k=1}^{\infty} (p+k)a_{p+k}$$

$$\ge p|z|^{p-1} - \frac{(B-A)(p+1)}{D_1}|z|^p$$
(4.11)

and

$$|f'(z)| \le p|z|^{p-1} + |z|^p \sum_{k=1}^{\infty} (p+k)a_{p+k}$$

$$\le p|z|^{p-1} + \frac{(B-A)(p+1)}{D_1}|z|^p$$
(4.12)

for $z \in U$. Further the results of Theorem 5 are sharp for the function f(z) given by (4.6).

Corollary 3. Let the function f(z) defined by (1.8) be in the class $K_{n+p-1}^*(A,B)$. Then f'(z) is included in a disc with its center at the origin and radius r_2 given by

$$r_2 = \frac{PD_1 + (B - A)(p + 1)}{D_1} \tag{4.13}$$

5. Closure Theorems

Let the functions $f_i(z)$ be defined, for $i = 1, 2, \dots, m$, by

$$f_i(z) = z^P - \sum_{k=1}^{\infty} a_{p+k,i} z^{p+k} (a_{p+k,i} \ge 0)$$
 (5.1)

for $z \in U$.

We shall prove the following results for the closure of functions in the class $K_{n+p-1}^*(A,B)$.

Theorem 6. Let the functions $f_i(z)$ defined by (5.1) be in the class $K_{n+p-1}^*(A,B)$ for every $i = 1, 2, \dots, m$. Then the function h(z) defined by

$$h(z) = \sum_{i=1}^{m} c_i f_i(z) \qquad (c_i \ge 0)$$
 (5.2)

is also in the same class $K_{n+p-1}^*(A,B)$, where

$$\sum_{i=1}^{m} c_i = 1. (5.3)$$

Proof. By means of the definition of h(z), we obtain

$$h(z) = z^{P} - \sum_{k=1}^{\infty} \left(\sum_{i=1}^{m} c_{i} a_{p+k,i} \right) z^{p+k}.$$
 (5.4)

Further, since $f_i(z)$ are in $K_{n+p-1}^*(A,B)$ for every $i=1,2,\cdots,m$, we get

$$\sum_{k=1}^{\infty} D_k \delta(n,k) a_{p+k,i} \le (B-A)(n+p) \tag{5.5}$$

for every $i=1,2,\cdots,m$. Hence we can see that

$$\sum_{k=1}^{\infty} D_k \delta(n,k) \left(\sum_{i=1}^{m} c_i a_{p+k,i} \right)$$

$$= \sum_{i=1}^{m} c_i \left(\sum_{k=1}^{\infty} D_k \delta(n,k) a_{p+k,i} \right)$$

$$\leq \left(\sum_{i=1}^{m} c_i \right) (B-A)(n+p) = (B-A)(n+p)$$
(5.6)

with the aid of (5.5). This proves that the function h(z) is in the class $K_{n+p-1}^*(A,B)$ by means of Theorem 1. Thus we have the theorem.

Theorem 7. Let $f_p(z) = z^P$ and

$$f_{p+k}(z) = z^{P} - \frac{(B-A)(n+p)}{D_k \delta(n,k)} z^{p+k} \qquad (k \ge 1)$$
 (5.7)

for $p \in \mathbb{N}, n > -p, -1 \leq A < B \leq 1$ and $0 < B \leq 1$. Then f(z) is in the class $K_{n+p-1}^*(A,B)$ if and only if it can be expressed in the form

$$f(z) = \sum_{k=0}^{\infty} \lambda_{p+k} f_{p+k}(z), \tag{5.8}$$

where $\lambda_{p+k} \geq 0 (k \geq 0)$ and $\sum_{k=0}^{\infty} \lambda_{p+k} = 1$.

Proof. Suppose that

$$f(z) = \sum_{k=0}^{\infty} \lambda_{p+k} f_{p+k}(z)$$

= $z^{P} - \sum_{k=1}^{\infty} \frac{(B-A)(n+p)}{D_{k} \delta(n,k)} \lambda_{p+k} z^{p+k}$. (5.9)

Then it follows that

$$\sum_{k=1}^{\infty} D_k \delta(n,k) \frac{(B-A)(n+p)}{D_k \delta(n,k)} \lambda_{p+k}$$

$$= (B-A)(n+p) \sum_{k=1}^{\infty} \lambda_{p+k}$$

$$= (B-A)(n+p)(1-\lambda_p) \le (B-A)(n+p). \tag{5.10}$$

So by Theorem 1, $f(z) \in K_{n+p-1}^*(A, B)$.

Conversely, assume that the function f(z) defined by (1.8) belongs to the class $K_{n+p-1}^*(A,B)$. Then

$$a_{p+k} \le \frac{(B-A)(n+p)}{D_k \delta(n,k)} \qquad (k \ge 1).$$
 (5.11)

Setting

$$\lambda_{p+k} = \frac{D_k \delta(n,k)}{(B-A)(n+p)} a_{p+k} \tag{5.12}$$

and

$$\lambda_p = 1 - \sum_{k=1}^{\infty} \lambda_{p+k}. \tag{5.13}$$

We can see that f(z) can be expressed in the form (5.8). This completes the proof of Theorem 7.

Corollary 4. The extreme points of the class $K_{n+p-1}^*(A,B)$ are the functions $f_{p+k}(z)(k \ge 0)$ given by Theorem 7.

6. Integral Operators

Theorem 8. Let the function f(z) defined by (1.8) in the class $K_{n+p-1}^*(A,B)$, and let c be a real number such that c > -p. Then the function F(z) defined by

$$F(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt$$
 (6.1)

also belongs to the class $K_{n+p-1}^*(A,B)$.

Proof. From the representation of F(z), it follows that

$$F(z) = z^{P} - \sum_{k=1}^{\infty} b_{p+k},$$

where

$$b_{p+k} = \left(\frac{c+p}{c+p+k}\right) a_{p+k}.$$

Therefore,

$$\sum_{k=1}^{\infty} D_k \delta(n,k) b_{p+k} = \sum_{k=1}^{\infty} D_k \delta(n,k) \left(\frac{c+p}{c+p+k} \right) a_{p+k}$$

$$\leq \sum_{k=1}^{\infty} D_k \delta(n,k) a_{p+k} \leq (B-A)(n+p),$$

since $f(z) \in K_{n+p-1}^*(A,B)$. Hence, by Theorem 1, $F(z) \in K_{n+p-1}^*(A,B)$. Putting c = 1 - p in Theorem 8, we get the following.

Corollary 5. Let the function f(z) defined by (1.8) be in the class $K_{n+p-1}^*(A,B)$ and let F(z) be defined by

$$F(z) = \frac{1}{z^{1-p}} \int_0^z \frac{f(t)}{t^P} dt.$$
 (6.2)

Then $F(z) \in K_{n+p-1}^*(A, B)$.

Theorem 9. Let c be a real number such that c > -p. If $F(z) \in K_{n+p-1}^*(A, B)$, then the function f(z) defined by (6.1) is p-valent in $|z| < R_p^*$, where

$$R_p^* = \inf_k \left\{ \frac{p(c+p)D_k \delta(n,k)}{(p+k)(c+p+k)(B-A)(n+p)} \right\}^{\frac{1}{k}} (k \ge 1).$$
 (6.3)

The result is sharp.

Proof. Let $F(z) = z^p - \sum_{k=1}^{\infty} a_{p+k} z^{p+k} (a_{p+k} \ge 0)$. It follows from (6.1) that

$$f(z) = \frac{z^{1-c}(z^{c}F(z))'}{(c+p)} a_{p+k} z^{p+k}, (c > -p)$$
$$= z^{p} - \sum_{k=1}^{\infty} \left(\frac{c+p+k}{c+p}\right) a_{p+k} z^{p+k}.$$

To prove the result, it suffices to show that

$$\left| \frac{f'(z)}{z^{p-1}} - p \right| \le p \text{ for } |z| < R_p^{\star}.$$

Now

$$\left| \frac{f'(z)}{z^{p-1}} - p \right| = \left| -\sum_{k=1}^{\infty} (p+k) \left(\frac{c+p+k}{c+p} \right) a_{p+k} z^k \right|$$

$$\leq \sum_{k=1}^{\infty} (p+k) \left(\frac{c+p+k}{c+p} \right) a_{p+k} |z|^k.$$

Thus $\left| \frac{f'(z)}{z^{p-1}} - p \right| \le p$ if

$$\sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \left(\frac{c+p+k}{c+p}\right) a_{p+k} |z|^k \le 1.$$

$$(6.4)$$

But Theorem 1 confirms that

$$\sum_{k=1}^{\infty} \frac{D_k \delta(n,k)}{(B-A)(n+p)} a_{p+k} \le 1.$$
 (6.5)

Thus (6.4) will be satisfied if

$$\left(\frac{p+k}{p}\right)\left(\frac{c+p+k}{c+p}\right)|z|^k \le \frac{D_k\delta(n,k)}{(B-A)(n+p)} \qquad (k \ge 1),$$

or if

$$|z| \le \left\{ \frac{p(c+p)D_k\delta(n,k)}{(p+k)(c+p+k)(B-A)(n+p)} \right\}^{\frac{1}{k}} (k \ge 1).$$
 (6.6)

The required result follows now from (6.6). The result is sharp for the function

$$f(z) = z^{p} - \frac{D_{k}\delta(n,k)(c+p+k)}{(B-A)(n+p)(c+p)}z^{p+k} \qquad (k \ge 1).$$
(6.7)

7. Radii of Close-to-Convexity, Starlikeness and Convexity

Theorem 10. Let the function f(z) defined by (1.8) be in the class $K_{n+p-1}^*(A,B)$, then f(z) is p-valently close-to-convex of order $\alpha(0 \le \alpha < p)$ in $|z| < r_1(A,B,n,p,\alpha)$ where

$$r_1(A, B, n, p, \alpha) = \inf_k \left[\frac{(p - \alpha)D_k \delta(n, k)}{(p + k)(B - A)(n + p)} \right]^{\frac{1}{k}} (k \ge 1).$$
 (7.1)

The result is sharp with the extremal function f(z) given by (2.5).

Proof. We must show that $\left| \frac{f'(z)}{z^{p-1}} - p \right| \le p - \alpha$ for $|z| < r_1(A, B, n, p, \alpha)$. We have

$$\left| \frac{f'(z)}{z^{p-1}} - p \right| \le \sum_{k=1}^{\infty} (p+k) a_{p+k} |z|^k.$$

Thus
$$\left| \frac{f'(z)}{z^{p-1}} - p \right| \le p - \alpha$$
 if

$$\sum_{k=1}^{\infty} \frac{(p+k)}{(p-\alpha)} a_{p+k} |z|^k \le 1.$$
 (7.2)

Hence, by Theorem 1, (7.2) will be true if

$$\frac{(p+k)}{(p-\alpha)}|z|^k \le \frac{D_k \delta(n,k)}{(B-A)(n+p)}$$

or if

$$|z| \le \left[\frac{(p-\alpha)D_k\delta(n,k)}{(p+k)(B-A)(n+p)} \right]^{\frac{1}{k}}, (k \ge 1).$$
 (7.3)

The theorem follows easily from (7.3).

Theorem 11. Let the function f(z) defined by (1.8) be in the class $K_{n+p-1}^*(A,B)$, then f(z) is p-valently starlike of order α $(0 \le \alpha < p)$ in $|z| < r_2(A,B,n,p,\alpha)$ where

$$r_2(A, B, n, p, \alpha) = \inf_{k} \left[\frac{(p - \alpha)D_k \delta(n, k)}{(p + k - \alpha)(B - A)(n + p)} \right]^{\frac{1}{k}} (k \ge 1).$$
 (7.4)

The result is sharp with the extremal function f(z) given by (2.5).

Proof. It is sufficient to show that $\left|\frac{zf'(z)}{f(z)} - p\right| \leq p - \alpha$ for $|z| < r_2(A, B, n, p, \alpha)$. We have

$$\left| \frac{zf'(z)}{f(z)} - p \right| \le \frac{\sum_{k=1}^{\infty} k a_{p+k} |z|^k}{1 - \sum_{k=1}^{\infty} a_{p+k} |z|^k}.$$

Thus $\left| \frac{zf'(z)}{f(z)} - p \right| \le p - \alpha$ if

$$\sum_{k=1}^{\infty} \frac{(p+k-\alpha)a_{p+k}|z|^k}{(p-\alpha)} \le 1.$$
 (7.5)

Hence, by Theorem 1, (7.5) will be true if

$$\frac{(p+k-\alpha)|z|^k}{(p-\alpha)} \le \frac{D_k \delta(n,k)}{(B-A)(n+p)}$$

or if

$$|z| \le \left[\frac{(p-\alpha)D_k \delta(n,k)}{(p+k-\alpha)(B-A)(n+p)} \right]^{\frac{1}{k}} (k \ge 1).$$
 (7.6)

The theorem follows easily from (7.6).

Corollary 6. Let the function f(z) defined by (1.8) be in the class $K_{n+p-1}^*(A,B)$, then f(z) is p-valently convex of order $\alpha(0 \le \alpha < p)$ in $|z| < r_3(A,B,n,p,\alpha)$ where

$$r_3(A, B, n, p, \alpha) = \inf_{k} \left[\frac{p(p - \alpha)D_k \delta(n, k)}{(p + k)(p + k - \alpha)(B - A)(n + p)} \right]^{\frac{1}{k}} (k \ge 1).$$
 (7.7)

The result is sharp with the extremal function f(z) given by (2.5).

8. Modified Hadamard Product

Let the functions $f_i(z)(i=1,2)$ be defined by (5.1). The modified Hadamard product of $f_1(z)$ and $f_2(z)$ is defined by

$$f_1 * f_2(z) = z^p - \sum_{k=1}^{\infty} a_{p+k,1} a_{p+k,2} z^{p+k}.$$
 (8.1)

Theorem 12. Let the function $f_1(z)$ defined by (5.1) be in the class $K_{n+p-1}^*(A,B)$ and the function $f_2(z)$ defined by (5.1) be in the class $K_{n+p-1}^*(C,E)(-1 \le C \le E \le 1,0 < E \le 1)$. Then the modified Hadamard product $f_1 * f_2(z)$ belongs to the class

$$K_{n+p-1}^* \left(1 - \frac{4(n+p)(B-A)(E-C)}{\delta(n,1)D_1G_1 - (n+p)^2(B-A)(E-C)}, 1\right)$$
(8.2)

where $D_k(k \geq 1)$ is defined by (2.2) and $G_k(k \geq 1)$ is given by

$$G_k = [2k(E+1) + (E-C)(n+p)]. (8.3)$$

The result is sharp.

Proof. From Theorem 1, we have

$$\sum_{k=1}^{\infty} \frac{D_k \delta(n,k)}{(B-A)(n+p)} a_{p+k} \le 1$$
 (8.4)

and

$$\sum_{k=1}^{\infty} \frac{G_k \delta(n,k)}{(E-C)(n+p)} a_{p+k} \le 1.$$
 (8.5)

We want to find the largest $\beta = \beta(n, p, A, B, C, E)$ such that

$$\sum_{k=1}^{\infty} \frac{[4k + (1-\beta)(n+p)]\delta(n,k)}{(1-\beta)(n+p)} a_{p+k,1} a_{p+k,2} \le 1.$$
(8.6)

From (8.4) and (8.5) by means of Cauchy-Schawarz inequality we obtain

$$\sum_{k=1}^{\infty} \sqrt{\frac{D_k G_k}{(B-A)(E-C)}} \frac{\delta(n,k)}{(n+p)} \sqrt{a_{p+k,1} a_{p+k,2}} \le 1.$$
 (8.7)

Hence (8.6) will be satisfied if

$$\sqrt{a_{p+k,1}a_{p+k,2}} \le \frac{(1-\beta)}{[4k+(1-\beta)(n+p)]} \sqrt{\frac{D_k G_k}{(B-A)(E-C)}} (k \ge 1). \tag{8.8}$$

From (8.7) it follows that

$$\sqrt{a_{p+k,1}a_{p+k,2}} \le \frac{(n+p)}{\delta(n,k)} \sqrt{\frac{(B-A)(E-C)}{D_k G_k}} (k \ge 1).$$
 (8.9)

Therefore (8.6) will be satisfied if

$$\frac{(n+p)}{\delta(n,k)} \sqrt{\frac{(B-A)(E-C)}{D_k G_k}} \le \frac{(1-\beta)}{[4k+(1-\beta)(n+p)]} \sqrt{\frac{D_k G_k}{(B-A)(E-C)}} (k \ge 1). \quad (8.10)$$

that is, that

$$\beta \le 1 - \frac{4k(n+p)(B-A)(E-C)}{\delta(n,k)D_kG_k - (n+p)^2(B-A)(E-C)}.$$
(8.11)

The right-hand side of (8.11) is an increasing function of k ($k \ge 1$). Therefore, setting k = 1 in (8.11) we get

$$\beta \le 1 - \frac{4(n+p)(B-A)(E-C)}{\delta(n,1)D_1G_1 - (n+p)^2(B-A)(E-C)}.$$

The result is sharp, with equality when

$$f_1(z) = z^P - \frac{(B-A)}{D_1} z^{p+1}$$

and

$$f_2(z) = z^P - \frac{(E-C)}{G_1} z^{p+1}.$$

References

- [1] H.S. Al-Amiri, On Ruscheweyh derivatives, Ann. Polon. Math. 38(1980), 87-94.
- [2] V.P. Gupta and P. K. Jain, Certain classes of univalent functions with negative coefficients, Bull. Austral Math. Soc. 14(1076), 409-416.
- [3] S. Owa, On Certain classes of p-valent functions, SEA Bull. Math. 2(1984), 48-75.
- [4] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109-116.

NEGATİV KATSAYILI BAZI ANALİTİK VE ÇOK KATLI FONKSİYON SINIFLARI

$\ddot{\mathbf{O}}\mathbf{zet}$

Analitik, p-katlı ve negativ katsayılı fonsiyonların bir $K_{n+p-1}^{\star}(A,B)$ altsınıfı tanımlanıp, bu sınıf için katsayı kestirmeleri bozulma teoremleri, kapanış teoremleri kanıtlanmıştır. Ayrıca bu sınıfın özellikleri incelenmiş ve elemanlarının yıldızlık, konvekslik, yaklaşık konvekslik çapları hesaplanmıştır.

M.K. AOUF, A. SHAMANDY & A.A. ATTIYIA Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, EGYPT Received 25.1.1995