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Abstract

Conformal predictors, introduced by Vovk et al. [16], serve to build prediction intervals
by exploiting a notion of conformity of the new data point with previously observed data.
In the present paper, we propose a novel method for constructing prediction intervals for
the response variable in multivariate linear models. The main emphasis is on sparse linear
models, where only few of the covariates have significant influence on the response variable
even if their number is very large. Our approach is based on combining the principle of
conformal prediction with the ℓ1 penalized least squares estimator (LASSO). The resulting
confidence set depends on a parameter ε > 0 and has a coverage probability larger than
or equal to 1− ε. The numerical experiments reported in the paper show that the length
of the confidence set is small. Furthermore, as a by-product of the proposed approach, we
provide a data-driven procedure for choosing the LASSO penalty. The selection power of
the method is illustrated on simulated data.
Keywords: LASSO, LARS, Sparsity, Variable selection, Regularization path, Confidence
set.
AMS 2000 subject classifications: Primary 62J05, 62J07; Secondary 62F25, 62L12.

1 Introduction

Consider observations (xi, yi) ∈ R
p×R for i ≥ 1 from a linear regression model yi = x′

iβ + ξi,
where β ∈ R

p is the unknown parameter and the ξi’s are the noise variables. Suppose we have
already collected the dataset En = ((x1, y1), . . . , (xn−1, yn−1), xnew) where xnew ∈ R

p denotes
a new observation. Our goal is to predict the label ynew corresponding to xnew based on En and
then exploiting the information in xnew. This setup is known as the transduction problem [12].
Our estimation strategy is based on local arguments in order to produce a better estimation
for ynew [5]. More precisely, we will follow the approach of conformal prediction presented
by Vovk et al. [16] which relies on two key ideas: one is to provide a confidence prediction
(namely, a confidence set containing ynew with high probability) and the other is to account
for the similarity of the new data xnew compared to the previously observed xi’s. The notion
of conformal predictor was first described by Vovk et al. [15]. Moreover, in [16], the authors
illustrate this approach on the example of ridge regression. Along the paper, this predictor
will be referred to as Conformal Ridge Predictor1 (CoRP). In the present contribution, we

∗hebiri@math.jussieu.fr
1The Conformal Ridge Predictor was called the Ridge Regression Confidence Machine in Vovk et al. [16].
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propose to adapt conformal predictors to the sparse linear regression model, that is a model
where the regression vector β ∈ R

p contains only a few of nonzero components. We introduce
a novel conformal predictor called the Conformal Lasso Predictor (CoLP) which takes into
account the sparsity of the model. Its construction is based on the LASSO estimator [10]. The
LASSO estimator for linear regression corresponds to an ℓ1-penalized least square estimator
and it has been extensively studied over the last few years ([7, 8, 1, 19], among others) and
several modifications have been proposed ([20, 18, 21, 11, 6] among others). One attractive
aspect of the LASSO is that it aims both to provide accurate estimating while enjoying
variable selection when the model is sparse. In the approach considered in the present paper,
the resulting Conformal Lasso Predictor has a large coverage probability and are small in
term of its length in the same time. When we deal with regularized methods like the Ridge
or the LASSO estimators, the choice of the penalty is an important task. Contrary to the
Conformal Ridge Predictor for which no rule was established to pick the Ridge-penalty [16],
the construction of the Conformal Lasso Predictor provides a data-driven way for choosing
the LASSO-penalty. Moreover, it turn out that this choice is adapted to variable selection as
supported by the numerical experiments.

The paper is organized as follows. We concisely introduce conformal prediction and the
LASSO procedure in Section 2 and Section 3 respectively. In Section 4, we give the explicit
form of the Conformal Lasso Predictor. An algorithm producing the CoLP is presented in
Section 5. Then in Section 6 we discuss a generalization of the Conformal Lasso Predictor
to other selection-type procedures; we call these generalized procedures Sparse Conformal
Predictors. Finally, in Section 7, we illustrate the performance of Sparse Conformal Predictors
through some numerical experiments.

2 Conformal prediction

Let us briefly describe the approach based on conformal prediction developed in the book
by Vovk et al. [16] where they develop the idea of conformal prediction. In order to predict
the label ynew of a new observation xn = xnew, the similarity of pairs of the form (xnew, y),
where y ∈ R, to the former observations (xi, yi) for i = 1, . . . , n − 1 is exploited. This is
the purpose of introducing a nonconformity score α(y) = (α1(y), . . . , αn(y))′ which is based
on En. Each component αi describes the efficiency of explaining the observation (xi, yi) by
a procedure based on the augmented sample {(x1, y1), . . . , (xn−1, yn−1), (xnew, y)}. In order
to obtain a relative information between different nonconformity scores αi, we shall use the
notion of p-value, as introduced in [16], defined as:

p(y) =
1

n
| {i ∈ {1, . . . , n} : αi(y) ≥ αn(y)} | , (1)

where for any set A, we denote its cardinality by |A|. The above quantity lies between 1/n
and 1. Moreover, we note that the smaller this p-value is, the less likely the tested pair
(xnew, y) is (in other words, y is an outlier when associated to xnew). An explicit form of the
nonconformity score and the p-value will be given in Section 4 when we will adapt it to the
CoLP.

Remark 1. The notion of p-value introduced in the present paper differs from the classical
one. To make the connection with hypothesis testing in mathematical statistics [2], consider
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the following hypotheses:

{
H0 : the pair (xnew, y) is conformal,
H1 : the pair (xnew, y) is not conformal.

Assume the observation Y = y is given. The function p(y) permits to construct a statistical
test procedure with critical region Rε = {y : p(y) ≤ ε} and H0 is rejected if y ∈ Rε.

A nice feature of this nonconformity score is that it can be related to the confidence of
the prediction for ynew. We now recall the concept of conformal predictor introduced in [16].
Set ε ∈ (0, 1). Given the new observation xnew, we search for a subset Γε = Γε(En) of R, in
which the expected value of ynew lies with a probability of 1 − ε. The conformal predictor
Γε is defined as the set of labels y ∈ R such that p(y) > ε. In other words, Γε consists of
labels y which make the pair (xnew, y) more conformal than a proportion ε of the previous
pairs (xi, yi) for i = 1, . . . , n − 1. Note moreover that the smaller ε, the more confident the
predictor. That is to say, for any ε1, ε2 > 0:

Γε1 ⊂ Γε2 whenever ε1 ≥ ε2 .

In the present analysis, apart from prediction, we develop an approach for selecting rel-
evant variables. For this reason, we consider three criteria measuring the quality of our
procedure: validity, accuracy, and selection. The first two were introduced in [17]. The fact
that we consider the issue of sparsity leads us to include the selection power of the predictor.

Validity. This criterion accounts for the power of conformal prediction. The simplest ap-
proach is to count the number of times where yn does not belong to the set Γε. We take
the notation:

errε
n =

{
1 if yn /∈ Γε(En)

0 otherwise.

Note that in an on-line perspective, one focuses on the cumulative error ERRε
n =∑n

i=1 errεi . Asymptotic validity properties of this cumulative error have been stud-
ied in [13] and [16, chapters 2 and 8]. In the present work, we will be interested in
evaluating the error errεn for a fixed n, rather than the cumulative one.

Accuracy. The length of the confidence predictor provides a natural measure of the accu-
racy. We will see that such a measure is adapted to the variable selection purpose. Note
that other choices are possible. We shall discuss this point in Section 5.

Selection. Finally, in the case of sparse linear regression, it is important to include a measure
of the capacity of the estimator to select relevant variables, namely those for which the
regression parameter β has nonzero components.

3 The LASSO Procedure

The LASSO estimator [10] has originally been introduced in the linear regression model:

yi = x′
iβ

∗ + ξi, i = 1, . . . , n− 1 (2)
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where the design xi = (xi,1, . . . , xi,p)
′ ∈ R

p is deterministic, β∗ = (β∗
1 , . . . , β∗

p)′ ∈ R
p is the

unknown regression vector and the ξi’s are independent and identically distributed (i.i.d.)
centered Gaussian random variables with known variance σ2. Then the goal is to use the
observations to provide an approximation of the label ynew of a new observation xnew through
the estimation of the regression vector β∗. The LASSO estimator is defined as follows:

β̂λ = argmin
β∈Rp

n−1∑

i=1

(
yi − x′

iβ
)2

+ λ

p∑

j=1

|βj |, (3)

where λ ≥ 0 is a tuning parameter. Based on β̂λ, an estimation of the response ynew of the
new observation xn = xnew is produced by µ̂λ = x′

newβ̂λ. For a large enough λ, the LASSO
estimator is sparse. That is many components of β̂λ equal zero. Therefore we can naturally
define a sparsity (or active) set as Aλ = {j ∈ {1, . . . , p} : β̂λ 6= 0}. A LASSO modification
of the LARS algorithm [3] can iteratively provide approximations of the LASSO estimator
for a few values of the tuning parameters λ = λ0, . . . , λK such that ∞ = λ0 > . . . > λK = 0
(the indices refer to the algorithm steps and K denotes the last step). These points are the
so-called transition points.
From now on, let us write β̂k and Ak for the LASSO estimator β̂λ and the sparsity set Aλ

evaluated at the transition point λ = λk. Obviously, the estimator β̂k is an |Ak|-dimensional
vector where |Ak| is the cardinality of the set Ak. Furthermore, we denote by sk the |Ak|-
dimensional sign vector whose components are the signs of the components of the LASSO
estimator evaluated at the transition point λk (i.e., (sk)j = 1 if (β̂k)j > 0, (sk)j = −1 if

(β̂k)j < 0 where j ∈ Ak). Finally, let us denote by xk, the (n − 1) × |Ak| matrix whose
columns are the variables Xj , with indices j ∈ Ak. For each λk, we assume that the matrix
(x′

kxk)
−1 is invertible. Here are some characteristics of the LARS algorithm and we refer

to [2] for more details:

i) At each iteration of the algorithm (i.e., at each transition point), only one variable
Xj = (x1,j, . . . , xn−1,j)

′, j = 1, . . . , p is added (or deleted) to the construction of the
estimator according to its correlation with the current residual. The algorithm begins
with only one variable and ends up with the ordinary least square (OLS) estimator2.

ii) For each λ ∈ (λk+1, λk], the LASSO estimator can be expressed in the following form:

β̂λ(y,xk , sk) = (x′
kxk)

−1(x′
ky −

λ

2
sk), (4)

where y = (y1, . . . , yn−1)
′. Note that (4) is obtained by minimizing (3) over the set Ak.

Let us also mention that the set Ak and the sign vector sk remain unchanged when λ
varies in the interval (λk+1, λk].

iii) As highlighted by (4), the LASSO estimator is piecewise linear in λ and linear in y for
every fixed λ [9]. Using the LASSO modification of the LARS algorithm, this property

2When p > n, the LARS cannot select all p variables. It is limited by the sample size n. In such a case,
the last iteration does not correspond to the OLS.
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helps us to provide the regularization path of the LASSO estimator, which is defined
as {β̂λ : λ ∈ [0,∞)} (each point of the regularization path corresponds to the evalua-
tion of the regression vector estimator for a given value of λ). Indeed, the slope of the
LASSO regularization path changes at a finite number of points which coincide with
the transition points λ1, . . . , λK .

iv) Piecewise linearity is an important property of the LASSO modification of the LARS
algorithm. Indeed, let λ ∈ (λk+1, λk] where λk+1 and λk are two transition points. In
this interval, the LASSO estimator β̂λ uses the same variables (variables with indices
in Ak). By using (4), it is easy to see [22] that the linearity of the LASSO estimator
implies that, for any λ ∈ (λk+1, λk]:

n−1∑

i=1

(
yi − x′

iβ̂λ

)2
>

n−1∑

i=1

(
yi − x′

iβ̂λk+1

)2
.

This last observation indicates that the transition points are the most interesting points
in the regularization path.

All these nice properties encourage the use of the LASSO as a selection procedure. In the
sequel, we will consider the LASSO modification of the LARS algorithm which provides an
approximate solution to the LASSO.

Remark 2. Through the paper, one should keep in mind the analogy between each iteration k
of the modification of the LARS algorithm and its corresponding tuning parameter value λk.
Decrease of tuning parameter λ is reflected through the increase of the number of iterations
of the modification of the LARS algorithm.

4 Sparse predictor with conformal Lasso

For the reasons exposed above, we focus on the transition points λ1, . . . , λK and construct
conformal predictors for each of these λk. We then propose to select the best conformal
predictor among them according to its performance in terms of accuracy (cf. Section 2).

Now let us detail the construction of the CoLP for each λk. To this end, denote by
Xj = (x1,j , . . . , xn−1,j , xnew,j)

′, j = 1, . . . , p the augmented variable j. Define the augmented
matrix x̃ = (x1, . . . , xn−1, xnew)′ = (X1, . . . ,Xp) and the augmented response vector ỹ =
(y1, . . . , yn−1, y)′ where y is a candidate value for ynew. Using the notation introduced in
Section 3, for the fixed λk, we also define the LASSO estimator β̂k(ỹ, x̃k, sk) from expression
(4) with the augmented data. From now on, we denote this estimator by β̂k. Define µ̂k :=
x̃kβ̂k. Moreover, the matrix Hk will be the n × n projection matrix onto the subspace
generated by x̃k and I identity matrix of the same size. For each λk, we define a corresponding
nonconformity score αk =

(
αk

1 , . . . , α
k
n

)′
by:

αk(y) := |ỹ − µ̂k| = | (I−Hk) ỹ +
λk

2
x̃k

(
x̃′

kx̃k

)−1
sk|

= |Ak + Bk y|,

where | · | is meant here componentwise and
{

Ak = (ak
1 , . . . , a

k
n)′ := (I−Hk) (y1, . . . , yn−1, 0)

′ + λk

2 x̃k (x̃′
kx̃k)

−1 sk,
Bk = (bk

1 , . . . , b
k
n)′ := (I−Hk) (0, . . . , 0, 1)′,

(5)
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Note that each component αk
i (y) is piecewise linear with respect to y. Then the corresponding

p-value pk(y) as defined by (1) clearly can change only at points y where the sign of αk
i (y)−

αk
n(y) changes. Hence, we do not have to evaluate all the possible values of y. We only focus

on points y for which the i-th nonconformity measure αk
i (y) equals αk

n(y). For this purpose,
we define, for each observation i ∈ {1, . . . , n}

Sk
i =

{
y : αk

i (y) ≥ αk
n(y)

}
, (6)

which corresponds to the range of values y such that the new pair (xnew, y) has a better
conformity score than the i-th pair (xi, yi). Moreover, let lki and uk

i denote two real defined
respectively as

lki = min{−
ak

i − ak
n

bk
i − bk

n

;−
ak

i + ak
n

bk
i + bk

n

}, and uk
i = max{−

ak
i − ak

n

bk
i − bk

n

;−
ak

i + ak
n

bk
i + bk

n

}, (7)

where ak
i and bk

i are given by (5).

Proposition 1. Let us fix a k ∈ {1, . . . ,K} and an i ∈ {1, . . . , n − 1}. Assume that both bk
i

and bk
n are non-negative. Then

i) if bk
i 6= bk

n, we have either Sk
i = [lki ;uk

i ] or Sk
i = (−∞; lki ] ∪ [uk

i ;−∞), with lki and uk
i

given by (7).

ii) if bk
i = bk

n 6= 0, then lki = uk
i = −

ak
i +ak

n

2bk
n

and we have either Sk
i = (−∞; lki ] or

Sk
i = [lki ;−∞). Moreover if ak

i = ak
n, we have Sk

i = R.

iii) if bk
i = bk

n = 0, we have either Sk
i = R or Sk

i = ∅.

The assumption that all the bk
i are non-negative does not make loose any generality as

one can multiply ak
i , bk

i and ck
i by −1 if bk

i < 0. With this definition of Sk
i , we may rewrite

the definition of the conformal predictor as follows

Γε
k = {y :

n∑

i=1

I(αk
i (y) ≥ αk

n(y)) ≥ nε} = {y :

n∑

i=1

I(Sk
i )(y) ≥ nε}, (8)

where I(·) stands for the indicator function. This approach leads to a whole collection of
confidence intervals Γε

1, . . . ,Γ
ε
K . We propose below a strategy for choosing one one particular

Γε
k, the performance of which will be studied through numerical simulations.

It is worth mentioning that in view of [14, Theorem 1] (see also [16, Proposition 2.3
page 26]), each of predictor Γε

k would have a coverage probability at least equal to 1 − ε, if
the corresponding value λk of the tuning parameter were deterministic. In fact, the following
result holds.

Proposition 2. Fix the significance level ε ∈ (0, 1) and the tuning parameter λ > 0. Let
β̂λ,n(y) be the Lasso estimate for the augmented dataset (ỹ, x̃) and let us define αλ(y) =

|ỹ − x̃β̂λ,n(y)|. Then, the conformal predictor

Γε
λ =

{
y :

n∑

i=1

I(αλ
i (y) ≥ αλ

n(y)) ≥ nε
}

,
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satisfies
P(ynew ∈ Γε

k) ≥ 1− ε,

for any n ∈ N.

Actually, in the proof of Proposition 2 detailed in [14], one needs the exchangeability of the
pairs (x1, y1), . . . , (xn−1, yn−1), (xn, y) in the definition of the predictor. This property is not
fulfilled when the tuning parameter λ is chosen in the set {λ1, . . . , λK} of Lasso’s transition
points, since the elements of this set depend only on the first n − 1 observations and not on
(xn, y). We believe that under some additional assumptions a result similar to Proposition 2
can be obtained for the predictor Γε

k as well, for each k = 1, . . . ,K. This is the topic of an
ongoing work. In the present paper, we content ourselves by proposing a data-driven choice
of the conformal predictor from the collection of predictors {Γε

k; 1 ≤ k ≤ K} and by exploring
its empirical properties.

Remark 3. Of course, one can also apply the well-known sample splitting technique for
choosing the values λ1, . . . , λK based on a first sample, and then use the methodology described
below for selecting the data-driven predictor based on a second sample which is assumed to be
independent of the first sample. However, this technique is not attractive from the practical
standpoint, that is why we do not develop this approach.

As discussed above, we believe that all the predictors Γǫ
k share nearly the 1 − ε validity

property, which is supported by our empirical study. We suggest to select among them the
one which has the smallest Lebesgue measure. We denote this confidence set by Γǫ

opt, that is

Γε
opt = Γε

ν , ν = argmin
k

|Γε
k|. (9)

In general, since ν is a random variable, the 1− ε validity of all Γε
k would not imply the 1− ε

validity of Γk
opt, but only 1−Kε validity. However, 1−Kε is a worst case majorant obtained

by a simple application of the union bound, whereas numerical examples we considered (some
of them are reported below) suggest that the validity is much better than 1−Kε and could
even be equal to 1− ε when p ≤ n.

5 Implementation

We provide here a three-step algorithm which enables us to easily construct the CoLP. We
start in Step 1 by applying the LASSO modification of the LARS algorithm to the dataset
((x1, y1), . . . , (xn−1, yn−1)). This step provides all transition points λ1, . . . , λK , the corre-
sponding design matrices xk and sign vectors sk for k = 1, . . . ,K. Then, in Step 2, we
construct the conformal predictor Γε

k associated to each λk. Thanks to Proposition 1, for
each λk, we can construct the sets Sk

i for i = 1 . . . , n defined by (6). We use these sets in
order to construct the conformal predictor Γε

k. To do this, we take advantage from the fact
that the function y 7→

∑n
i=1 I(Sk

i (y)) is piecewise constant. Furthermore, the endpoints of
the intervals where this function is constant belong to the set of the all endpoints of intervals
forming the sets Sk

i . Thus, to determine Γε
k, we sort the set U consisting of the all endpoints

of the intervals described in Proposition 1 and include an interval having as endpoints two

7



successive elements of U in Γε
k if the center of this interval belongs to at least [nε] sets Sk

i .

Algorithme 1 : Lasso Conformal Predictor

Step 1: Run the LASSO modification of the LARS algorithm on the data set
((x1, y1), . . . , (xn−1, yn−1))
Step 2: Construct the Conformal Lasso Predictors for each λk ∈ {λ1, . . . , λK} begin

Step 2a: Initialization : Define Ak and Bk as in (5). Set Uk ←− ∅
Step 2b: Harmonization
for i = 1 to n do

if bk
i < 0 then
ak

i = −ak
i and bk

i = −bk
i

end

end

Step 2c: Actualize the set Uk

for i = 1 to n do
if bk

i 6= bk
n then

Add lki and uk
i (7) to Uk

end

if bk
i = bk

n 6= 0 and ak
i 6= ak

n then
Add lki = uk

i (7) to Uk

end

end

Step 2d: Sort Uk. Let m←− |Uk|. Then y(0) ←− −∞ and y(m+1) ←− +∞

Step 2e: Evaluate Nk
j for j = 1, . . . ,m. Initialize Nk

j ←− 0. Then actualize

for i = 1 to n do
for j = 1 to m do

if |ak
i + bk

i y| ≥ |ak
n + bk

n y| for y ∈ (y(j), y(j+1)) then

Increment Nk
j = Nk

j + 1

end

end

end
Step 2f: For a fixed threshold ε > 0, output the conformal predictor

Γε
k = ∪

j:
Nj

n
>ε

[y(j), y(j+1)]

end
Step 3: Output the Conformal Lasso Predictor Γε

opt as the smallest (w.r.t. their
Lebesgue measure) confidence set among the constructed conformal predictors

Finally, in a Step 3, we provide the CoLP, says Γε
opt, which is defined as the smallest con-

fidence set, according to its Lebesgue measure, among the constructed conformal predictors
Γε

k, k = 1, . . . ,K. According to Proposition 2, each Γε
k is valid. Moreover the criterion for

choosing the CoLP is adapted to variable selection as conformal predictors constructed here
for different values of λk, k = 1, . . . ,K bring into play different variables. This is illustrated
in Figure 5 (left) where we constructed the conformal predictors when n = 300. One can
observe that all the conformal predictors are valid since they contain the true value of the
label ynew. Hence our construction is suitable when the sample size is larger than the number

8
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Figure 1: Left: Conformal predictors Γε
k evolution through the iterations of the LASSO modifi-

cation of the LARS algorithm when n = 300 (the first iteration corresponds to λmax and the last
one corresponds to λmin). The CoLP is drawn in cyan and corresponds to the 34-th iteration. The
horizontal blue line corresponds to the value of ynew . Right: Validity analysis (errε

n) of the confor-
mal predictors Γε

k through the iterations of the LASSO modification of the LARS algorithm when
n = 50 (the first iteration corresponds to λmax and the last one corresponds to λmin). The CoLP
is marked by a black square and corresponds to the 57-th iteration. The vertical line represents a
separation between a stable and an unstable zone.

of variables (i.e., n > p) but may be not appropriated when p ≥ n. Figure 5 (right) shows
an example where almost all the constructed conformal predictors Γε

k, k = 1, . . . ,K, using
the above algorithm are valid. Only six are not. One of them is the selected CoLP (iteration
57 in Figure 5 (right)) which corresponds to the smallest predictor. In such cases (p ≥ n), a
correction can be made and other choices for the accuracy measure are possible. We discuss
this criterion in Section 7. Let us add that we only illustrated the validity of the conformal
predictors in Figure 5 (right) as the unstable zone (on the right side of the vertical line) makes
the representation hard to be analyzed. More details are given in Section 7.

Remark 4. In Step 1 of Algorithm 1, we use the LARS algorithm for its ability to generate
a small number of tuning parameter values of interest. It is an important aspect as it consid-
erably reduces the computational cost. On-line versions could be implemented by plugging in
an on-line version of the LASSO solution as in [4]. The analysis of such on-line versions is
the object of work under progress.

6 Extension to others procedures

In this section we generalize the construction of the confidence predictor to a family of estima-
tors which includes selection-type procedures as the Elastic-Net [21] and the Smooth-Lasso [6].
As for CoLP (Section 4), we are interested in two properties of estimators: the piecewise lin-
earity w.r.t. the response y (to easily compute the nonconformity scores αi, i = 1, . . . , n),
and the piecewise linearity w.r.t the tuning parameter λ [9] (to reduce computational effort
by using a modification of the LARS algorithm).
We use the same notation as in Section 3 for the LASSO estimator. Set β̂ to be an estimator
of the regression vector β based on x and y. Let also s be the sign vector of the estimator
β̂. On the other hand, using the notation in Section 4, we set µ̂ = x̃β̂ where this time β̂ is
based on the augmented dataset x̃ and ỹ.

9



Assumption 1. The estimator µ̂ can be written as:

µ̂ = u(x̃, s)ỹ + v(x̃, s), (10)

where u(·) and v(·) are piecewise constant functions w.r.t. ỹ.

As soon as Assumption 1 holds, we can construct a conformal predictor corresponding to
the estimator µ̂. Then many estimators can be considered. The CoLP and CoRP obviously
belong to this class of predictors and we introduce here the Conformal Elastic Net Predictor
(CENeP) which is a conformal predictor constructed based on the Elastic-Net modification
of the LARS instead of the LASSO one (Step1 in Algorithm 1). This predictor is defined by
u(x̃, s) = x̃k(x̃

′
kx̃k + µkIk)

−1x̃′
k and v(x̃, s) = −λkx̃k(x̃

′
kx̃k)

−1sk where λk and µk correspond
respectively to the LASSO and Ridge tuning parameters in the definition of the Elastic-Net
estimator and Ik is the |Ak| × |Ak| identity matrix [21]. In the same way, we can define the
Conformal Smooth Lasso Predictor (CoSmoLaP) based on a Smooth-Lasso modification of the
LARS algorithm [6]. Here u(x̃, s) = x̃k(x̃

′
kx̃k + µkJk)

−1x̃′
k and v(x̃, s) = −λkx̃k(x̃

′
kx̃k)

−1sk.
The difference between the CoSmoLaP definition the CENeP one is the identity matrix Ik

which is replaced by the |Ak| × |Ak| matrix Jk whose components are such that (Jk)i,i = 1
if i = 1 or i = |Ak| and (Jk)i,i = 2 otherwise. Moreover for (i, j) ∈ {1, . . . ,Ak}

2 with i 6= j,
we have (Jk)i,j = −1 if |i − j| = 1 and zero otherwise. Note that the definition of Jk makes
the CoSmoLaP more appropriated to model with successive correlation between successive
variables.

As for CoLP, we can define the nonconformity score of an expected label y associated to
the estimator µ̂ as follows:

(α1(y), . . . , αn(y))′ := |ỹ − µ̂|

= | (I− u(x̃, s)) ỹ − v(x̃, s)|

= |A + B y|,

with {
A = (a1, . . . , an)′ := (I− u(x̃, s)) (y1, . . . , yn−1, 0)

′ − v(x̃, s),
B = (b1, . . . , bn)′ := (I− u(x̃, s)) (0, . . . , 0, 1)′,

and I is the n× n identity matrix. The quantities A and B are the analogues of Ak and Bk

respectively, when we considered the CoLP at the transition point λk, k = 1, . . . ,K. Then
replacing Ak and Bk by respectively A and B in Step 2.a of Algorithm 1, we obtain the
conformal predictors associated to the estimator µ̂.

Note that the dependency in the tuning parameter, noted λ, can be included in u(x̃, s) (as
for CoRP) or v(x̃, s) or in both of them (as for the CoLP). For instance, in the construction
of the CoLP, this dependency is underlined in the matrix x̃k and the sign vector sk as they
were computed by the LARS algorithm for a specified value λk of the tuning parameter λ.

Computational cost of the construction of conformal predictors has also to be considered.
Three main points interfere. First, one run of the LARS algorithm requires the same cost
as the computation of the least square estimation. Then we have to consider the number of
conformal predictors we have to construct: each value of the tuning parameter λ provides
a conformal predictor Γλ using the algorithm described in Section 5. The final conformal
predictor Γopt is then the one with the minimal length. As for the CoRP, the main problem
is: how many λ’s do we have to test? One way is to use a grid of value for λ which lets open
the problem of the choice of the grid and the window of this grid.
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On the other hand, we saw how the LARS algorithm permits to reduce considerably the
number of tuning parameters to be considered. Indeed the grid of tuning parameters values
is directly described by the transition points λ1, . . . , λK obtained from the run of the LARS
algorithm. Finally, let us consider the construction of the conformal predictor itself: this
point has been treated in Vovk et al. [16, Chapter 2.3 and 4.1]. It turns out that sparse
conformal predictors and the CoLP requires computation time O(n2) and can be reduced to
O(n log(n)).

7 Experimental Results

In the section we present the experimental performances of the Sparse Conformal Predictors
(SCP) w.r.t. their validity, their accuracy and also their selection power. As benchmark,
we use the CoRP3 for its validity and accuracy and the original LASSO and Elastic-Net
estimators for their selection4 power.
We consider three SCPs: the Conformal Lasso Predictor (CoLP was introduced in Sections 4
and 5) and the Conformal Elastic Net Predictor (CENeP was described in Section 6). The
last SCP called Conformal Ridge Lasso Predictor (CoRLaP) is a mix of the CoRP and the
CoLP. To construct the CoRLaP, we use the variables selected by the LASSO modification
of the LARS algorithm (Step 1 in Algorithm 1 described in Section 5). Then we use these
variables to construct a CoRP. This conformal predictor can be seen as a restricted CoRP.
All conformal predictors are constructed with confidence level 1− ε = 90%.

7.1 Simulated Experiments

We consider four simulations from the linear regression model

y = X′β + σξ, ξ ∼ N (0, 1), X = (X1, . . . ,X50)
′ ∈ R

50,

with β ∈ R
50. Hence p = 50 through the simulations. Noise level σ and the sample size n are

let free. They will be specified during experiments.

Example (a) [n/σ]: Very Sparse and Correlated. Here only β1 is nonzero and equals 5.
Moreover, the design correlations matrix Σ is described by Σj,k = exp(−|j − k|) for
(j, k) ∈ {15, . . . , 35}2 and Σj,k = I(j = k) otherwise where I(·) is the indicator function.

Example (b) [n/σ]: Sparse and Correlated. The correlations are defined as in Example (a)
and the regression vector is given by βj = −5 + 0.2j for j = 1, . . . , 5; βj = 4 + 0.2j for
j = 10, . . . , 25 and zero otherwise.

Example (c) [n/σ]: Sparse and Highly correlated. We have βj = 5 for j ∈ {1, . . . , 15} and
zero otherwise. We construct three groups of correlated variables: Σj,k = 1 when (j, k)

3We construct the CoRP associated to same tuning parameters as the CoLP (i.e., the transition points λk

observed in Section 5). Note that the performance would not be inflected as conformal predictors according
to this method are almost embedded and changes sensitively while the tuning parameter varies. See [16, page
39] for more details.

4We use a BIC-type criterion to select the optimal tuning parameter. Such a criterion is adapted to variable
selection.

11



0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

Iteration

In
te

rv
al

s 
si

ze
s

Selected predictor

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5
x 10

4

Iteration

In
te

rv
al

s 
si

ze
s

Selected predictor
Failed predictor

Selected predictor
Failed predictor

0 50 100 150 200 250 300 350 400

Iteration

In
te

rv
al

s 
si

ze
s

 

 

Figure 2: Analysis of conformal predictors length (y-axis) through the LASSO modification of
the LARS algorithm iterations (x-axis: the first iteration corresponds to λmax and the last one
corresponds to λmin) in Example (c)[300/1] (top left) and in Example (c)[50/1] (top right). The
iteration associated to the CoLP is marked by a blue star. Predictors which are non valid are
marked by a black circle. The panel of bottom shows the lengths of intervals in a logarithmic scale.

belongs to {1, . . . , 5}2, {6, . . . , 10}2 and {11, . . . , 15}2; Σj,k = 1 for (j, k) ∈ {16, . . . , p}2

if j = k and zero otherwise.

Example (d) [n/σ]: Non Sparse and correlated. Here βj = 3+0.2j for j ∈ {1, . . . , p} and the
correlations are described by Σj,k = exp(−|j − k|) for (j, k) ∈ {1, . . . , p}2.

We consider separately the three points of interest: accuracy, validity and selection.

Accuracy. First of all, let us consider the length of the predictors Γε
k, k = 1, . . . ,K obtained

at the end of Step 2 in Algorithm 1 described in Section 5. We remind that each of these
predictors is associated to an iteration of a modification of the LARS algorithm, that
is the transition points λk, k = 1, . . . ,K. Figure 7.1 illustrates the predictors lengths
for the construction of the CoLP, when applied to Example (c)[n/1] with n = 300 and
n = 50. When n = 300, we note that the length of the Γε

ks sensitively changes from one
iteration to the following and that the larger predictor has a reasonable length compared
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Table 1: Validity frequencies [with precision ±95%] of the CoRP, CoLP, CoRLaP, CENeP,
the Early-Stopped CoLP and the 2-PN CoLP based on 1000 replications.

Example σ CoRP CoLP CoRLaP CENeP

(a)[300/σ] 1 0.897± 0.019 0.876± 0.020 0.854± 0.022 0.878± 0.020
7 0.894± 0.019 0.908± 0.018 0.894± 0.019 0.899± 0.019
15 0.893± 0.019 0.893 ± 0.019 0.879± 0.020 0.887± 0.020

(b)[300/σ] 1 0.901± 0.018 0.875± 0.020 0.869± 0.021 0.874± 0.021
(c)[300/σ] 1 0.900± 0.019 0.900± 0.019 0.891± 0.019 0.901± 0.018
(d)[300/σ] 1 0.892± 0.019 0.895± 0.019 0.895± 0.019 0.895± 0.019

(a)[50/σ] 3 0.887± 0.020 0.668± 0.029 0.414± 0.030 0.789± 0.025
(a)[20/σ] 3 0.865± 0.021 0.596± 0.030 0.304± 0.028 0.685± 0.029

Example σ CoRP CoLP Stopped-CoLP 2-PN-CoLP

(a)[50/σ] 7 0.853± 0.022 0.620± 0.030 0.815± 0.024 0.881± 0.020
(b)[50/σ] 1 0.875± 0.020 0.558± 0.031 0.814± 0.024 0.907 ± 0.018
(c)[20/σ] 15 0.875± 0.020 0.608± 0.030 0.769± 0.026 0.893± 0.019
(d)[20/σ] 1 0.900± 0.019 0.602± 0.030 0.793± 0.025 0.892± 0.019

to the smallest one (about 10 times larger). Then the construction is stable. We also
observe that in the neighborhood of the optimal iteration (that is iteration 20), the
conformal predictors have approximately the same size. Such an observation can also
be made when we take a look at Figure 5 (left) when applied to Example (b)[300/1]. On
the other hand, when n = 50, it appears that the predictors length grows drastically at
some iteration (around iteration 85). We even can not compare the lengths of the bigger
and smaller predictors (more than 104 times larger). In the same time, it seems that
the construction becomes unstable as violent variations often happen after this iteration
85. We will consider in the next point the validity of these predictors. However let us
mention that in Example (c)[50/1], the CoLP which is the smallest Γε

k and then the
selected predictor is not valid (in Figure 7.1 (right), the selected predictor at iteration 93
is not valid). This aspect can also be observed in Figure 5 (right) (the graph corresponds
to Example (b)[50/1]) where the selected CoLP at iteration 57 is not valid. Similar
violent variations of the corresponding predictors lengths would have been observed
after iteration 49 if we have provided a graph as Figure 7.1 (right).

Validity. Now, we consider the validity of the selected predictors (cf. Step 3 in Algorithm 1).
As shown in Table 1, we observe that variations on the noise level, the variables cor-
relations and the sparsity of the model do to not perturb the validity whereas the
sample size relatively to the dimension p does. When n = 300 > p, all the procedures
seem to be quite similar and produce good predictors. In the other cases, i.e., when
n = p = 50 and n = 20 < p, the selected confidence predictors have worst performance
than expected (validity with smaller proportion than 1− ε = 90%). Moreover, Sparse
Confidence Predictors perform worst than the CoRP as observed in Table 1. As pointed
in the accuracy part, one explication can be observed in Figure 7.1 as the selected pre-
dictor which also is not valid (iteration 93) corresponds to an iteration in the unstable
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Figure 3: Variable selection analysis for the CoLP, the CoRLaP and the CENeP in Exam-
ple (b)[300/1] (variables 1 to 5 and 10 to 25 are relevant; see variables in dark blue on the plot).
On the left, we consider the CoLP and the CoRLaP selected variables (x-axis) with respect to the
LASSO modification of the LARS algorithm iterations (y-axis: the first iteration corresponds to
λmax and the last one corresponds to λmin). On the right, we consider the CENeP selected variables
(x-axis) with respect to the Elastic-Net modification of the LARS algorithm iterations (y-axis: the
first iteration corresponds to λmax and the last one corresponds to λmin). The selected iteration is
marked by red diamonds for the CoLP, green squares for CoRLaP and black squares for the CENeP.

zone (that is, after iteration 85). Then in order to reduce the gap between SCP and
CoRP in the cases p ≥ n, we suggest to modify the selection criterion in Step 3 in two
ways. i) Early Stopping CoLP: do not consider (and do not construct) all the conformal
predictors Γε

k. Stop the construction of the predictors Γε
k as soon as the length of Γε

k

(predictor at iteration k) has a length at least 10 times larger than Γε
k−1; ii) N Previous

Neighbors CoLP: we can enforce the Early Stopping rule by considering as final pre-
dictor: Γε

opt =
⋃

j: 0≤k−j<N Γε
j, where k is the index of the (selected) smallest predictor

and N is the number of neighbors we consider. Note that this method does not alter
selection properties as Γε

k is usually constructed with more variables than Γε
j , j < k.

It further does not alter a lot the accuracy as the Early Stopping rule ensures that we
are in stable zone (cf. Figure 7.1 (right) and Figure 5 (right)). Table 1 sums up the
performances of the early-stopped CoLP and the 2-PN CoLP in term of validity. We
observe the good adaptation of both methods to the case p = n and we remark that
2-PN CoLP nicely produce valid predictor even in the case p > n. This improvement in
the term of validity can also be illustrated by Figure 5 (right) where we observe that in
Example (b)[50/1], the early-stopped CoLP is valid whereas the original CoLP is not.

Selection. The selection ability of Sparse Conformal Predictors is here in concern. First, note
that the selected variables in SCPs are directly linked to the selection ordering through
the iterations of the LASSO or Elastic-Net modification of the LARS algorithm. Then, if
the used modification of the LARS algorithm fails to recover the true model, we can not
hope to get a predictor which contains only the true variables. Figure 7.1 illustrates the
evolution of the variable selection of CoLP, CoRLaP and the LASSO on one hand and
the CENeP and the Elastic-Net on the other hand, in Example (b)[300/1]. It turns out
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that CoLP and CENeP select larger model that expected (that is, some noise variables
are selected), as the LASSO and the Elastic-Net do. Moreover CoRLaP uses to select
a smaller subset of variables than the CoLP. Then it often produces a better variable
selection performance than the other methods. It often provides closer model to the
true one. Compared to the LASSO, it seems that the CoLP and the CoRLaP perform
better in this example. However, we can not conclude the superiority of the CoLP on
the LASSO in term of variable selection. A similar conclusion can be given when we
compare the CENeP and the Elastic-Net. Nevertheless, the CENeP seems to select
little larger models than the Elastic-Net. Finally, analogously to the superiority of the
Elastic-Net compared to the LASSO, we can remark that the CENeP manages to have
better selection performances compared to the CoLP and the CoRLaP when a group
structure may exist between different variables (for instance in Example (d)[n/σ]). This
is due to the LASSO modification of the LARS algorithm which uses to select some noise
variables before relevant ones in such cases.

7.2 Real data

We applied SCPs on 150 randomly permutations of the House Boston dataset5, in which we
randomly choose one row to be the new pair (xnew, ynew). The original dataset consists of 506
observations with 13 variables. When we consider variable selection, we note that almost all
SCPs are constructed without the variable X7 = (x1,7, . . . , x505,7). This variable is selected
with frequencies lower than 3%. The CoRLaP also does not consider the variable X3 as
relevant with a frequence equal to 17%. Conforming to Section 7.1, we would better consider
X3 irrelevant as the CoRLaP uses to produce better performance when variable selection is
in concern. Then we conclude that the proportion of non-retail business acres per town and
the proportion of owner-occupied units built prior to 1940 do not interfere in the value of
owner-occupied homes. We also can notice that variable selection sligtly improved accuracy
of conformal predictors in all presented experiments. Here, we can for instance remark that
the median lengths of the CoLP, the CoRLaP and the CENeP are respectively 13.61, 13.50
and 13.58, whereas CoRP length is 14.45.

8 Conclusion

We presented Sparse Conformal Predictors, a family of l1 regularized conformal predictors.
We focused on LASSO and Elastic-Net versions of these Sparse Conformal Predictors. We
illustrated their performance in term of accuracy, validity and variable selection. We con-
cluded that such Sparse Conformal Predictors are valid and nicely exploit the sparsity of the
model when the sample size is larger than the the number of variables (i.e, when n > p). We
also provided a way to adopt these sparse predictors to the case p ≥ n through a pair of rules
we called Early Stopping and N Previous Neighbors rules.
Several extensions of this work can be explored such as the construction of SCP with Adaptive
LASSO [20] and they will be investigated in future work.

2
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5The data and their description are available at http://archive.ics.uci.edu/ml/datasets/Housing.
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