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Uniform density static fluid sphere in higher dimensions and its universality
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In Newtonian theory, gravity inside a constant density static sphere is independent of spacetime
dimension. Interestingly this general result is also carried over to Einsteinian as well as higher
order Lovelock gravity notwithstanding their nonlinear character. We establish the universality of
Schwarzschild interior solution describing a uniform density sphere for all n ≥ 4.
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I. INTRODUCTION

In Newtonian gravity, the gravitational potential at
any point inside a fluid sphere is given by −M(r)/rn−3

for n ≥ 4 dimensional spacetime. Now M(r) =
∫

ρrn−2dr which for constant density will go as ρrn−1

and then the potential will go as ρrn−1/rn−3 = ρr2 and
is therefore independent of the dimension. This is an in-
teresting general result: for uniform density sphere, grav-
ity has the universal character that it is independent of
the dimension of spacetime. It is then a natural question
to ask does this result carry over to Einsteinian grav-
ity? In general relativistic language it is equivalent to
ask: does Schwarzschild interior solution which describes
uniform density sphere in 4 dimension remain good for
all n ≥ 4? The main purpose of this paper is to show
that it is indeed the case not only for Einstein gravity
but also for higher order Lovelock gravity. It is remark-
able that this general feature holds true notwithstanding
highly nonlinear character of the theory.

In static spherically symmetric spacetime, we have two
equations to handle, one for density which easily inte-
grates to give grr and the other is pressure isotropy equa-
tion determining gtt. So long as density remains constant
the former equation will always integrate to give grr in
all dimensions with constant density redefined. Then we
just need to make the latter equation free of dimension
n so that constant density Schwarzschild interior solu-
tion becomes universally true for all n. In particular it
turns out for Einstein theory that the condition required
to make the latter equation independent of n does in fact
determine grr. That is, it is indeed equivalent to integra-
tion of the former equation for constant density. Thus we
have Schwarzschild interior solution valid for all n ≥ 4.

Higher dimension is a natural playground for string
theory and string inspired investigations (see a compre-
hensive review [1]). The most popular studies have been
of higher dimensional black holes [2] with a view to gain
greater and deeper insight into quantum phenomena,
black hole entropy and the well known AdS/CFT cor-
respondence [3]. There have also been studies of fluid

spheres in higher dimensions [4]. We shall however fo-
cus on universal character of constant density solution
in Einstein and Lovelock theory and its matching with
the corresponding exterior solution. The paper is or-
ganized as follows. In the next section, we establish
the universality of uniform density solution for Einstein
and Einstein-Gauss-Bonnet theories and demonstrate the
matching with exterior solution for the 5-dimensional
Gauss-Bonnet black hole. We conclude with a discus-
sion.

II. UNIFORM DENSITY SPHERE

A. Einstein case

We begin with the general static spherically symmetric
metric given by

ds2 = eνdt2 − eλdr2 − r2dΩ2

n−2 (1)

where dΩ2
n−2

is the metric on a unit (n− 2)-sphere. For
the Einstein equation in the natural units (8πG = c = 1),

GAB = RAB −
1

2
RgAB = −TAB (2)

and for perfect fluid, TB
A = diag(ρ,−p,−p, ...,−p), we

write

e−λ(
λ′

r
−
n− 3

r2
) +

n− 3

r2
=

2

n− 2
ρ (3)

e−λ(
ν′

r
+
n− 3

r2
)−

n− 3

r2
=

2

n− 2
p (4)

e−λ(2ν′′ + ν′
2

− λ′ν′ − 2
ν′

r
)

−2(n− 3)(
e−λλ′

r
+ 2

e−λ

r2
−

2

r2
) = 0. (5)
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Let us rewrite the last equation as

e−λ(2ν′′ + ν′
2

− λ′ν′ − 2
ν′ + λ′

r
−

4

r2
) +

4

r2

−2(n− 4)((n− 1)(
e−λ

r2
−

1

r2
) +

2ρ

n− 2
) = 0. (6)

We now set the coefficient of (n − 4) to zero so that
the equation remains the same for all n ≥ 4. This then
straightway determines e−λ without integration and it is
given by

e−λ = 1−
2

(n− 1)(n− 2)
ρr2. (7)

Note that integration of Eqn (3) for constant density will
also give the same expression plus k/r where k is an in-
tegration constant. Then we have to choose k = 0 to
avoid singularity at the center. On the other hand the
requirement of dimension independence determines e−λ

straightaway with regularity at the center and this also
implies constancy of density. An alternative identifica-
tion of constant density is that the gravitational field
inside a fluid sphere is independent of spacetime dimen-
sion ≥ 4. This universal property is therefore true if and
only if density is constant.
As is well known, Eqn (6) on substituting Eqn (7) ad-

mits the general solution as given by

eν/2 = A+Be−λ/2 (8)

where A and B are constants of integration to be de-
termined by matching to the exterior solution. This is
the Schwarzschild interior solution for constant density
sphere which is independent of the dimension except for
redefinition of constant density as ρ/(n− 1)(n− 2). This
proves universality of Schwarzschild interior solution for
all n ≥ 4.
The Newtonian result that gravity inside a uniform

density sphere is independent of the spacetime dimension
is thus carried over to general relativity as well despite
nonlinearity of the equations. That is Schwarzschild in-
terior solution is valid for all n ≥ 4. Since there exist
more general actions like Lovelock polynomial and f(R)
than the linear Einstein-Hilbert, it would be interesting
to see whether this result would carry through there as
well. That is what we take up next.

B. Gauss-Bonnet case

There is a natural generalization of Einstein action to
Lovelock action which is a homogeneous polynomial in
Riemann curvature with Einstein being the linear order.
It has the remarkable property that on variation it still
gives the second order quasi-linear equation which is its
distinguishing feature. The higher order terms make non-
zero contribution in the equation only for dimension ≥ 5.

The quadratic term in the polynomial is known as Gauss-
Bonnet and for that we write the action as

S =

∫

dnx
√
−g
[

1

2
(R− 2Λ + αLGB)

]

+ Smatter, (9)

where α is the GB coupling constant and all other sym-
bols having their usual meaning. The GB Lagrangian is
the specific combination of Ricci scalar, Ricci and Rie-
mann curvatures and it is given by

LGB = R2 − 4RABR
AB +RABCDR

ABCD. (10)

This form of action is known also to follow from low-
energy limit of heterotic superstring theory [5]. In that
case, α is identified with the inverse string tension and
is positive definite which is also required for stability of
Minkowski spacetime.
The gravitational equation following from the action

(9) is given by

GA
B + αHA

B = −TA
B , (11)

where

HAB ≡ 2
[

RRAB − 2RACR
C
B − 2RCDRACBD

+R CDE
A RBCDE

]

−
1

2
gABLGB. (12)

After some manipulations the density equation could be
cast in the form

(α̃rn−5f2 + rn−3f)′ =
2

n− 2
ρrn−2 (13)

where f = 1 − e−λ, α̃ = (n − 3)(n − 4)α and a prime
denotes derivative w.r.t r. Defining 2ρ = (n − 1)(n −
2)/r2

0
, we write on integration

α̃rn−5f2 + rn−3f =
rn−1

r2
0

+ k (14)

where k is a constant of integration which should be set to
zero for regularity of the solution at the center. Solving
for f , we get

e−λ = 1− f = 1− r2/R2

0 (15)

where

1

R2
0

=

√

1 + 4α̃/r2
0
− 1

2α̃
. (16)

The appropriate choice of sign is made so as to admit the
limit α → 0 yielding the Einstein solution. The pressure
isotropy condition, (T 1

1
= T 2

2
), gives after substitution

for e−λ,

(2ν′′ + ν′
2
)(1 −

r2

R2
0

)−
2ν′

r
= 0. (17)
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This readily integrates to give

eν/2 = A+Be−λ/2 (18)

which is the same as the solution given in Eqn. (8).
This shows the universality of Schwarzschild interior

solution for Einstein-Gauss-Bonnet gravity as it is valid
for all n ≥ 4 . It is only the constant density gets rede-
fined in terms of r0 and R0. As the result carries through
the linear (Einstein) as well as quadratic (Gauss-Bonnet)
order and hence it would hold good for any order in Love-
lock polynomial, only density would be redefined by a
new R0. We have thus established the general result that
gravity inside a uniform density sphere is universal for all
dimensions as well as for the entire Lovelock polynomial
action.

C. Matching with the exterior

Now we would like to demonstrate matching of the
interior with the corresponding exterior 5-dimensional
Gauss-Bonnet black hole solution [6]. In the interior pres-
sure is given by

p =
3(r0 −

√

r2
0
+ 8α)

4αr0

(

1−
√

r2
0
+ 8α

r0


1 +
2A

√
r0α

B
√

r2(r0 −
√

r2
0
+ 8α) + 4αr0





−1





. (19)

At the boundary, r = rΣ, pressure vanishes which is
equivalent to the continuity of g′tt and that is what we
shall employ. Besides this, the metric should be contin-
uous across rΣ. The 5-dimensional Gauss-Bonnet black
hole is given by the metric [6],

ds2 = F (r)dt2−
dr2

F (r)
−r2(dθ2+sin2(θ)(dϕ2+sin2(ψ)dψ2))

where

F (r) = 1 +
r2

4α
(1−

√

1 + 8Mα/r4).

Now matching grr means [grr]Σ = 0 which after appro-
priate substitutions determines the mass enclosed inside
the radius rΣ,

M =
1

6
ρr4Σ. (20)

Further [gtt]Σ = 0 and [g′tt]Σ = 0 determine the con-
stants,

A = (1−B)
√

1− r2
Σ
/R2

0
(21)

and

B = −(1 +
8αM

r4
Σ

)−1/2. (22)

This completes the matching of the interior and exterior
solutions.

III. DISCUSSION

We have established that gravitational field inside a
constant density fluid sphere has universal character for
spacetime dimensions ≥ 4. This is true not only for
Einstein-Hilbert action but also for the more general
Lovelock action which is a homogeneous polynomial in
Riemann curvature. We have explicitly shown this for
the linear Einstein and the quadratic Gauss-Bonnet cases
and similarly it could be shown to hold good for any order
in Lovelock polynomial. That is, Schwarzschild interior
solution describing gravitational field of constant density
sphere is true for all spacetime dimensions ≥ 4 as well
as for the higher order Lovelock polynomial gravity. It
turns out that the necessary and sufficient condition for
universality of fluid sphere is that its density must be
constant.

This result is obvious but perhaps not so known in
Newtonian gravity as argued in the opening of the paper.
It is however not so for Einstein-Lovelock gravity because
of its highly nonlinear character. Yet it is carried through
because the equation of motion still remains second order
quasi-linear. It is this feature which carries the general
character of the solution into higher order gravity. Then
it would not in general be carried along for f(R) gravity
which in general does not have the quasi-linear character.
Apart from Lovelock’s original derivation of the action
[7], there are two other characterizations of Lovelock ac-
tion [8, 9]. It is interesting to note that this could be yet
another identifying property of Lovelock gravity.
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