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Abstract

The model is built in which the main global properties of classical
and quasi-classical black holes become local. These are the event hori-
zon, ”no-hair”, temperature and entropy. Our construction is based
on the features of a quantum collapse, discovered while studying some
quantum black hole models. But it is purely classical, and this allows
to use the Einstein equations and classical (local) thermodynamics
and explain in this way the ”log 3” - puzzle.

Classical definition of the black hole is based on the existence of the event
horizon [1]. The notion of the latter is global and requires the knowledge of
the whole history, both past and future. Classical ”black hole has no hair”
[2] and is described by only few parameters. The process of becoming bald is
also global, its duration, formally, is infinite. At late times the frequencies of
the decaying modes are complex with equidistantly growing imaginary parts,
they are called quasi-normal frequencies. Their real parts approaches the
finite limit. The appearance of damping oscillations of this type points to the
existence of some resonance frequency inherent in a black hole. Investigation
of the processes near the event horizon showed that they can be reversible
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and irreversible [3, 4], like in thermodynamics, and the black hole area cannot
decrease.

These features were generalized by suggestion [5] that the Schwarzschild
black hole, indeed, can be considered as some thermal equilibrium state hav-
ing both the temperature and entropy, the latter being a reflection of the ”no
hair” property, i.e., the black hole with given parameters could be formed
by enormously many different ways. The suggested proportionality of the
black hole entropy to the horizon area was then confirmed by extending the
four laws of thermodynamics to the general type of black holes, possessing
mass electric charge and angular momentum [6]. Finally, calculations made
by S.Hawking [7] showed that the temperature is real, black holes should
evaporate, and the entropy is one fourth of the horizon area.

Numerous attempts to quantize black holes taught us that their mass
spectrum is discrete, and the temperature and entropy are the properties
of the quasi-classical stage. The detailed description and understanding of
such a quasi-classical regime is very important, but at the same time is very
difficult because of the global character of the main features of the classical
black holes. In this paper we construct the so-called classical analogs of
quantum black holes for which global properties of classical and semiclassical
black holes become local, what makes their description and understanding
much more easy.

Our starting point is a quantum mechanical model for a spherically sym-
metric self-gravitating thin dust shell. Such a shell is a simplest generalization
of a point particle with the advantage that it has the dynamical degree of
freedom - the shell radius, and the corresponding classical problem has the
exact solution with the full account for back reaction of the matter source on
the space-time metric. Due to the spherical symmetry the shell’s radius is the
only dynamical variable of the whole system: space-time plus a gravitating
source, and the quantum functional Wheeler-DeWitt equation is reduced to
the following stationary Schroedinger equation in finite differences [8, 9]:

Ψ(m,min, S+iζ)+Ψ(m,min, S−iζ) =
Fin + Fout − M2

4m2S√
Fin

√
Fout

Ψ(m,min, S), (1)

wherem = mout = mtot - the total mass of the system, min - the Schwarzschild
mass inside, M is the bare mass of the shell, S = R2

4G2m2 (R - radius, G -

gravitational constant), F = 1 − 2Gm
R

, ζ =
m2

Pl

2m2 (mP l =
√

~c
G

is the Planck-

ian mass and we use units with ~ = c = k = 1, ~ - Planck constant, c -
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speed of light, k - Bolzmann constant). By investigation of wave functions
in the vicinity of singular points (infinities and singularities) and around the
branching points (apparent horizons) the following discrete mass spectrum
for bound states was found (∆m = mout −min) [9]:

2(∆m)2 −M2

√

M2 − (∆m)2
=

2m2
P l

∆m+min
n ,

M2 − (∆m)2 = 2(1 + 2p)m2
P l , (2)

where n and p ≥ 0 are integers. The appearance of two quantum numbers
instead of one in conventional quantum mechanics is due to the nontrivial
causal structure of the complete Schwarzschild manifold which contains the
so-called Einstein-Rosen bridge and, correspondingly, two isometric regions
with spatial infinities. Unlike the classical shell motion confined to only one
of these regions, the wave function of the quantum shell ”feels” both infini-
ties. The principal quantum number n comes from the boundary condition
at ”our” infinity, while the new, second, quantum number p - from the other
one. The above spectrum is not universal in the sense that the correspond-
ing wave functions form a two-parameter family Ψn,p. But for the quantum
Schwarzschild black hole we expect a one-parameter family of solutions, be-
cause quantum black holes should not have ”no hairs”, otherwise there will
be no smooth classical limit. This means that our spectrum is not a quan-
tum black hole spectrum, and corresponding quantum shells do not collapse
(like an electron in hydrogen atom). Physically, it is quite understandable,
because the radiation was not included into consideration. Therefore, quan-
tum gravitational collapse (even spherically symmetric) is accompanied with
radiation. This is true also for the unbound motion because, though a princi-
pal quantum number n disappears in this case, the second quantum number
p still exists and the collapsing shell is eventually settled into some bound
state. The appearance of two quantum numbers instead of one leads to yet
another consequence: the quantum gravitational collapse proceeds via pro-
duction new shells, increasing the inner mass min inside the primary shell.
Such a process can go in many different ways, so, the quantum collapse is
accompanied with the loss of information, thus converting an initially pure
quantum state into some thermal mixed one. But how could quantum col-
lapse be stopped? The natural limit is the transition from a black hole-like
shell to a wormhole-like shell by crossing an Einstein-Rosen bridge, since
such a transition requires (at least in a quasi-classical regime) insertion of
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infinitely large volume, which probability is, of course, zero. Computer sim-
ulations show that the process of quantum gravitational process stops when
the principal quantum number becomes zero, n = 0. The point n = 0 in our
spectrum is very special. In this state the shell does not ”feel” not only the
outer region (what is natural for the spherically symmetric configuration),
but it does not know anything about what is going on inside. It ”feels” only
itself. Such a situation reminds the ”no hair” property of a classical black
hole. Finally, when all the shells (both the primary one and newly produced)
are in the corresponding states ni = 0, the whole system does not ”remem-
ber” its own history. And it is this ”no- memory” state that can be called
”the quantum black hole”. Note, that the total masses of all the shells obey
the relation

∆mi =
1
√
2
Mi. (3)

The subsequent quantum Hawking’s evaporation can proceed via some col-
lective excitations.

The final state of quantum gravitational collapse, the quantum black
hole, can be viewed as some stationary matter distribution. Therefore, we
may hope that for massive enough quantum black hole such a distribution is
described approximately by a classical static spherically symmetric perfect
fluid with energy density ε and pressure p obeying classical Einstein equa-
tions. This is what we call a classical analog of a quantum black hole. Of
course, in such a case the corresponding classical distribution has to be very
specific. To study its main features let us consider the situation in more
details.

Any static spherically symmetric metric can be written in the form

ds2 = eνdt2 − eλdr2 − r2(dϑ2 + sin2 ϑdϕ2). (4)

Here r is the radius of a sphere with the area A = 4πr2, ν = ν(r), λ = λ(r).
The Einstein equations are (prime denotes differentiation in r):

− e−λ

(

1

r2
−

λ′

r

)

+
1

r2
= 8πGε ,

−e−λ

(

1

r2
+

ν ′

r

)

+
1

r2
= −8πGp ,

−
1

2

(

ν ′′ +
ν ′2

2
+

ν ′ − λ′

r
−

ν ′λ′

2

)

= −8πGp . (5)
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We see that there are three equations for four unknown functions of one
variable, namely, ν(r), λ(r), ε(r) and p(r). But, even we would know an
equation of state for our perfect fluid, p = p(ε), the closed (formally) system
of equations would have too many solutions. We need, therefore, some selec-
tion rules in order to single out the classical analog of quantum black hole.
Surely, the ”no hair” feature should be the main criterium. Thus, we have
to adjust our previous definition of the ”no-memory” state to the case of a
continuum matter distribution. For this, let us integrate the first of Eqns.(5):

e−λ = 1−
2Gm(r)

r
, (6)

where

m(r) = 4π

r
∫

0

εr̃2dr̃ (7)

is the mass function that must be identified withmin. Now, the ”no memory”
principle is readily formulated as the requirement, that m(r) = ar, i.e.,

e−λ = 1− 2Ga = const ,

ε =
a

4πG r2
. (8)

Note, that in static case, the inverse metric coefficient e−λ is an invariant
which in the general spherically symmetric space-time reads as ∆ = −e−λ =
gikR,iR,k and is nothing more but a squared normal vector to the surface of
constant radius R(xi) = R(t, q) = const. We can also introduce a bare mass
function M(r) (the mass of the system inside a sphere of radius r without
the gravitational mass defect).

M(r) =

∫

εdV = 4π

r
∫

0

ε(r̃)e
λ

2 (r̃)r̃2dr̃ =
ar

√
1− 2Ga

. (9)

The remaining two equations (5) can now be solved for p(r) and eν(r). The
general solution is rather complex, but the correct non-relativistic limit for
the pressure p(r) (we are to reproduce the famous equation for hydrostatic
equilibrium) has only the following one-parameter family:

p(r) =
b

4πr2
, (10)
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where

b =
1

G

(

1− 3Ga−
√
1− 2Ga

√
1− 4Ga

)

. (11)

We see that the solution exists only for a ≤ 1
4G

, then b ≤ a. The physical
meaning of these inequalities is that the speed of sound cannot exceed the
speed of light, v2sound = b

a
≤ 1 = c2, the equality being reached just for

a = b = 1
4G

. Finally, for the temporal metric coefficient g00 = eν we get:

eν = C0r
4b

a+b = C0r
2G a+b

1−2Ga . (12)

Thus, demanding the ”no-memory” feature and existence of the correct non-
relativistic limit, we obtained the two-parameter family of static solutions.
But we need a one-parameter family, so we have to continue our search.

Calculation of the Riemann curvature tensor Rµ
νλσ shows that it is diver-

gent at r = 0 for b < a. But, if a = b = 1
4G

we are witnessing a miracle, the
(before) divergent components become zero, and the remaining nonzero ones
equal

R0
202 = −(1− 2Ga) = −

1

2
,

(

R2
020 =

1

2
C2

0

)

;

R0
303 = −(1− 2Ga) = −

1

2
,

(

R0
030 =

1

2
C2

0

)

;

R2
323 = 2Ga sin2 θ =

1

2
sin2 θ ,

(

R3
232 =

1

2

)

, (13)

and the only nonzero component of the Ricci tensor Rµν(= Rα
µαν) equals to

R00 = C2
0 . (14)

Thus, demanding, in addition to the previous two very natural requirements,
the third one (also natural), namely, the absence of the real singularity at r =
0, we arrive at the following one-parameter family solutions to the Einstein
equations (5):

g00 = eν = C2
0r

2,

g11 = −eλ = −
√
2,

ε = p =
1

16πGr2
. (15)
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So, the equation of state of our perfect fluid is the stiffest possible one.
The constant of integration C0 can be determined by matching the interior
and exterior metrics at some boundary radius r = r0. Let us suppose that
for r > r0 the space-time is empty, so, the interior should be matched to
the Schwarzschild metric, labeled by the mass parameter m. Of course, to
compensate the jump in the pressure ∆p (= p(r0) = p0) we must include in
our model some surface tension Σ, so, actually, we are dealing with a some
sort of liquid. It is easy to check, that

C2
0 =

1

2r20
; ∆p =

2Σ
√
2r0

;

eν =
1

2

(

r

r0

)2

; p0 = ε0 =
1

16πGr20
;

m = m0 =
r0

4G
. (16)

Note, that the bare mass M =
√
2m, the relation is exactly the same as for

the shell ”no memory” state (3), and r0 = 4Gm0, so, the size of our analog of
quantum black hole is twice as that of classical black hole. But how about the
special point in our solution, r = 0? It is not a trivial coordinate singularity,
like in a three-dimensional spherically symmetric case, because

ds2(r = 0) = 0. (17)

This looks rather like an event horizon. Indeed, it can be easily shown
that the two-dimensional (t − r)-part of our metric describes a locally flat
manifold. Since the static observers at r = const are, in fact, accelerated,
this is a Rindler space-time with the event horizon at r = 0. By definition,
the surface r = 0 can not be crossed and it is in this sense that the generally
global event horizon becomes local. The corresponding Rindler parameter
which in more general case is called the ”surface gravity κ”, equals

κ =
1

2

∣

∣

∣

∣

dν

dr

∣

∣

∣

∣

e
ν−λ

2 =
C0√
2
=

1

2r0
. (18)

It is well known that uniformly accelerated Rindler observers register par-
ticles with Planckian spectrum. The corresponding temperature was cal-
culated by W.G.Unruh by investigating a quantum field theory on two-
dimensional manifolds with an event horizon [10]. The Unruh temperature
equals

TU =
a

2π
. (19)
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The same value can be obtained by considering an Euclidean version of the
Rindler space-time, demanding the absence of conical singularity that re-
places there the event horizon, and then equating the inverse period of the
imaginary time to the temperature. Calculated in this way, it can be called
the ”topological temperature”, Ttop. The absence of the conical singular-
ity means that the unfolded cone has no angle deficit, and the period of
the corresponding azimuth angle equals 2π. One must remember that the
temperature is not an invariant (scalar) but the temporal component of the
heat flow four-vector, so, its value depends on the choice of clocks (= time
coordinate). The Unruh temperature TU is the temperature measured by
the observer who is using the proper time, i.e., with g00 = 1. When the
same observer is using some local time, then he must deal with the local
temperature

Tloc =
TU√
g00

. (20)

Up to now the model is the same as was elaborated by the author in 2003
[11]. But at this point we encounter a dilemma. The problem is that writing
the Unruh temperature in terms of the total mass m we get

TU =
1

4πr0
=

1

16πGm
, (21)

what is two times less than the Hawking temperature [7]

TH =
1

8πGm
. (22)

This is the Unruh temperature measured by the observer sitting at rest just
at the event horizon and, at the same time, by the distant inertial observer at
spatial infinity where g00 = 1. Adopting the ”natural” boundary condition
that the temperature inside is equal to that of outside we get in the Euclidean
section a discontinuity (the period of the azimuthal angle corresponding to
the imaginary time equals π inside and 2π outside). In addition, as one
can easily check, we have a jump in the local temperatures measured by
the Rindler observers just inside and outside the boundary r = r0. Such
a jump is only partly compensated by the surface tension Σ and can be
considered as caused the start of the irreversible process of converting the
energy (mass) of the inner region into the radiation. Besides, it is difficult
to explain why local observers just inside and outside the boundary r =
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r0 who know nothing about what is going on elsewhere (especially in the
Euclidean section) should give different interpretations to the intensities of
particle creation in heir detectors. On the other hand, if we make the second
choice, i.e., that the temperature inside is just the Unruh temperature for
the corresponding Rindler space-time, TU = 1

4π r0
, then everything is smooth

in the Euclidean region and there is no problem with local observations,
but now we should somehow explain the origin of the Hawking temperature
TH = 1

8π Gm
because the latter is obviously measured at infinity by detecting

the heat flux.
Before coming to the thermodynamics we should describe two interesting

and very important features of quasi-classical black holes. The first of them
is the quantization of entropy. In 1973 J.Bekenstein made the remarkable
observation [5] that the horizon area of a non-extremal black hole behaves
as a classical adiabatic invariant. In the spirit of the Ehrenfest principle he
conjectured that the horizon area and, therefore, the quantum black hole
entropy, should have a discrete spectrum of the form

S = γ n, n = 1, 2, 3, ... (23)

Applying statistical physics arguments, J.Bekenstein and V.Mukhanov showed
[12, 13] that the spacing coefficient must be equal to γ = log k , k = 2, 3, ....
Such a value does not contradict the log 2-prediction coming from the in-
formation theory which connects the entropy production to the information
loss, and the very famous claim by J.A.Wheeler ”It from Bit”. The second
feature is the existence of the proper frequency, inherent in the black hole
with given parameters. This frequency was discovered when studying the
behavior of various types of perturbations (scalar, vector, tensor) around a
black hole (see, e.g., [14]) in the attempts to understand how the process
of gravitational collapse proceeds resulting eventually in the black hole bald-
ness. The evolution of a small perturbation is governed by a one-dimensional
Schroedinger-like wave equation, first derived by T.Regge and J.A.Wheeler
[15] in the case of Schwarzschild black hole. For scalar massless (long range)
perturbations it reads as follows, assuming the time dependence of the form
e−iωt :

d2Ψ

dr⋆2
+
[

w2 − V (r)
]

Ψ = 0 , (24)

where the tortoise radial coordinate r⋆ is related to the radius r by dr⋆ =
dr

1− 2Gm

r

, m is the Schwarzschild black hole mass, and the effective potential is
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given by (l is the multipole moment)

V (r) =

(

1−
2Gm

r

)(

l(l + 1)

r2
+

2

r3

)

. (25)

It appeared that, at late times, all perturbations are radiated away in a man-
ner reminiscent of the last pure dying tones of a ringing bell. To describe
these free oscillations of the black hole the notion of quasi-normal modes
was introduced [16]. The quasi-normal frequencies (ringing frequencies) are
characteristic of the black hole itself, they correspond to solutions of the
above wave equation with the physical boundary conditions of purely out-
going waves at spatial infinity (r⋆ → ∞) and purely ingoing wave crossing
the event horizon (r⋆ → −∞). There are infinite number (for a given har-
monic index) of complex frequencies with decreasing relaxation times, i.e.,
increasing imaginary parts. Their real parts, on the other hand, approaches
an asymptotic constant value. For the Schwarzschild black hole of mass m

the quasi-normal frequencies equal (n ≫ 1) [17]

Gmwn = 0.0437123−
i

4

(

n+
1

2

)

+O[(n+ 1)−1/2]. (26)

In 1998 S.Hod recognized [18] that the real part is actually equal to log 3
8π

and,
using the famous Bohr’s corresponding principle: ”transitions frequencies at
large quantum numbers should equal classical oscillation frequencies” and
the relations dm = Rewn, A = 4πr2g = 16πG2m2 = 4GS, deduced that
γ = log 3. This value is also in agreement with the general result obtained
by J.Bekenstein and V.Mukhanov, but contradicts the value log 2 advocated
by the ”It from Bit” claim.

Note, that both the entropy quantization and the quantum nature of ra-
diation suggest the discrete nature of the quantum (and, correspondingly,
quasi-classical) black hole constituents. We can imagine some number of
quasi-particles, black hole phonons, interference between which results in
equidistant spectrum of excitations, and transition from different energy
states to their neighbors produces quanta of quasi-normal frequencies.

Let us proceed with the thermodynamics. We begin with the first choice
for the temperature and, following the line of reasoning presented in [11],
have a look at the result. In what follows we distinguish between two types
of thermodynamic relations, the local ones as seen and measured by the local
static observer, and the global for the distant inertial observer at infinity. The
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local observer deals with the bare mass M defined as the following integral
over some volume V :

M =

∫

T 0λξλdV =

∫

T 0
0 ξ

0dV =

∫

εdV , (27)

where T λ
ν is the energy-momentum tensor, ξµ - the Killing vector normalized

as ξ0 = 1. Thus, this observer is using the local time and measures the local
temperature Tloc =

TU√
g00

= 1√
2πr

. The first law of thermodynamics now reads

as follows
dM = εdV = TlocdS − pdV + µdN . (28)

Here µ is the chemical potential related to the number of black hole phonons
(this is how the integer number enters our model), it ought to be included
because in our model all the distributions are universal and the only param-
eter that changes is the boundary value of radius r0, and this means the
automatical changing of all the integrated extensive variables, M,S, V and
N . Dividing the above expression by the volume element dV we get the first
law in its local form

ε(r) = Tloc(r)s(r)− p(r) + µ(r)n(r) , (29)

where s and n are the entropy and particle densities, respectively. In our
model ε = p, but what about s? The local observer can ask his global
counterpart who is educated enough and knows that the total entropy of the

black hole of mass m is S = 4πGm2 =
πr2

0

4G
. Having this information, our

local observer can deduce that

s(r) =
1

8
√
2Gr

(30)

and

s(r)T (r) =
1

16πGr2
. (31)

Remembering now that ε = 1
16πGr2

we obtain

ε(r) = p(r) = s(r)T (R) = µ(r)n(r) . (32)

Our system is in thermal equilibrium because the Unruh temperature is
constant everywhere in the inner region, and for the local temperature we
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have the well known relation Tloc
√
g00 = const. But in the thermal equi-

librium also µ
√
g00 = const, hence Tloc(r)

µ(r)
= const and, consequently, s(r)

n(r)
=

const. From this we obtain the equidistant quantization for the entropy
(γ = const, N − integer)

S = γN , N = 1, 2, 3... . (33)

The spacing coefficient γ is universal (does not depend on the value of r0)
and can be calculated by noticing that the free energy density f(r) is exactly
zero

f(r) = ε(r)− Tloc(r)s(r) = 0 . (34)

To do this, let us construct the partition function Z1 for a small part of our
system corresponding to one black hole phonon:

Z1 = Σne
− εn

T . (35)

Here εn are the excitation energy levels and, since εn
T

is invariant under
the change of time variable (clocks), we will use the proper time of local
observers, so the temperature is just the Unruh temperature, T = TU =
const. What concerns the energy spectrum εn, we already mentioned that
the existence of the intrinsic frequency ω for Schwarzschild black holes and
the equidistant imaginary parts of the quasi-normal frequencies suggests the
following relation (the phonon spectrum)

εn = ωn , n = 1, 2, 3... . (36)

After substituting this into the exponent in Eqn.(35) the summation can be
easily performed:

Z1 =
e−

ω

T

1− e−
ω

T

. (37)

The transition from the n′th energy state to the (n+1)′th (or the other way
around) gives dM , hence ω

T
= dSmin = γ. From zero value for the free energy

we have Z1 = 1, and
ω

T
= γ = log 2 . (38)

Let us summarize what we have got with the first choice for the temper-
ature, TU = TH .

The good features are the equidistant quantization of the entropy and
the value log 2 for its spacing. And, of course, the very appearance of the
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temperature itself, but this is common for given distributions ε(r) and p(r)
irrespective of the choice of the temperature TU . From that fact that the
inner distribution is in thermal equilibrium there comes out one more desir-
able property which can be called ”indifference”. If we remove (radiate away)
some outer layer, the inner part would remain unperturbed. The ”indiffer-
ence” reflects the universality of our classical analog of quantum black holes
which, in turn, is the ”analytical continuation” of the classical black holes.
Indeed, the energy density distribution is universal, the speed of sound equals
the speed of light, the ratio of the resonance frequency to the Unruh tem-
perature is the universal constant, thus explaining the rather unusual inverse
proportionality of the black hole temperature to its mass. On the other hand,
the inverse proportionality of the resonance frequency to the mass becomes
quite understandable, because it is translated into inverse proportionality
to the boundary radius, in direct analogy with the music instruments - the
smaller the size, the higher the dominant tone, i.e., the resonance frequency.

The bad features (or, better, ”not good”) are the following. The total
free energy of the Schwarzschild black hole equals F − THS = m

2
, and it is

impossible to explain why the inner part of our model has zero free energy.
Also, it is impossible to imagine how to obtain the log 3 in the real part of
the quasi-normal frequencies.

The crucial test for the validity of our model, i.e., for the choice of the
temperature, is the possibility of its generalization to a physically acceptable
classical analog of the quantum Reissner-Nordstrom black hole. We con-
structed two of them [19]. The first model has continuous distributions both
of mass and electric charge, while in the second the charge is concentrated
in the thin massive shell at the boundary surface, the inner mass distribu-
tion being the same as in the Schwarzschild case. Let us describe briefly
the first model. There are two parameters characterizing it completely, the
boundary radius r0 and the charge/mass ratio e2

Gm2 . The radius r0 is again
a free parameter, and everything else: the energy density ε, radial and tan-
gential pressures pr and pt, electric charge distribution e(r) and the surface
tension Σ, depends solely on the charge/mass ratio. The temperature match-
ing condition TU = TH results in some strange features of these parametric
dependencies. The most awful is the change of sign in the radial pressure
pr (though energy dominance conditions are not violated) and, consequently,
the change of sign in the surface tension Σ, the latter points to the instability
- a potential wall (barrier) is substituted by a potential well. Moreover, the
lack of the ”indifference” means that the radiation of a single quantum with
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the charge/mass ration different from that of the given distribution would
cause a complete ”reloading” of the whole system, what is unacceptable and
nonphysical for large semiclassical black holes. In the second model with
shell-like distribution of the electric charge such an unpleasant thing is, of
course, absent. But, unfortunately, this model has no smooth limit to the
Schwarzschild uncharged case. Namely, the mare mass of the shell (and,
thus, its total mass) does not vanishes when the charged becomes zero.

Thus, we are forced to make the second choice for the temperature,

TU =
1

2
TH , (39)

i.e., the Unruh temperature of the inner region is only one half of the Hawk-
ing temperature measured at infinity. This jump is exactly compensated
by the surface tension. Classically, the radiation is now absent because the
heat in the inner region is thermodynamically locked by this surface tension
which provides the equilibrium temperature gradient from the inner to outer
Rindler observers. In this sense the model is self-consistent since no more
back reaction corrections are needed. In quantum theory the radiation will
be caused by the tunneling process. But let us proceed with the thermo-
dynamical relations, and write down the first law of thermodynamics in the
local form,

ε(r) = Tloc(r)s(r)− p(r) + µ(r)n(r) . (40)

Again, ε(r) = p(r) = 1
16πGr2

, but now Tloc(r) =
1

2
√
2πr

, and we have

Tloc(r)s(r) =
1

2
ε , µ(r)n(r) =

3

2
ε . (41)

From this it follows that the free energy is no more zero, but

f(r) = Tloc(r)s(r) =
1

2
ε(r) ,

F (r) =
1

2
M = 2Tloc(r0)S (42)

as measured by local observers, Tloc(r0) = 1
2
√
2πr0

, S is the total entropy of

the system, M is its bare mass. The distant observer at infinity measures the
total mass m = 1√

2
M and the Hawking temperature TH = 2TU = 2√

2
Tloc(r0),

hence, for him our free energy becomes

F∞ = m− THS =
1

2
m, (43)
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and this guaranties the usual Schwarzschild black hole thermodynamical re-
lation dm = THdS.

Surely, we again have the equidistant entropy quantization S = γN , but
with, perhaps, different spacing γ. To evaluate this spacing we need to know
the partition function. Of course, it is the same as before, i.e., for the one-
phonon patch we have

Z1 =
e−

ω

T

1− e−
ω

T

, (44)

where, as was explained earlier, ω is an intrinsic black hole proper (resonance)
frequency, and T = TU . The total partition function equals Ztot = (Z1)

N .
The partition function is an invariant. For any small part of our system
we should have the usual relation between densities of its free energy and
partition function, fdV = −Tloc logZsmall. Integration over the volume gives
us

∫

f

Tloc
dV = −Σ logZsmalldV = − logZtot . (45)

The left hand side equals

∫

f

Tloc

dV =
1

2

∫

ε

Tloc

dV = 2
√
2π

∫ r0

0

ε

Tloc

r2dr =
πr20
4G

=
πr2g

G
= S . (46)

Here rg is the Schwarzschild radius, and S is the total black hole entropy.
Eventually, we obtain the the important relation

e−S = Ztot = (Z1)
N

, (47)

from which it follows that

e−
ω

T

1− e−
ω

T

= e−
S

N = e−γ ,

eγ = e
ω

T − 1 . (48)

To go further, let us consider the irreversible process of converting the mass
(energy) of the system into radiation from a thermodynamical point of view.
In our model such a process takes place just at the boundary r = r0, and the
thin shell with zero surface energy density and surface tension Σ serves as a
convertor supplying the radiation with extra energy and extra entropy, and
this resembles the ”brick wall” model [20]. One can imagine that the near-
boundary layer of thickness ∆r0 is converting into radiation, thus decreasing

15



the boundary of the inner region to (r0−∆r0). Its energy equals ∆M = ǫ∆V

plus the energy released from the work done by the surface tension due to its
shift, which is equal exactly to Σd(4πr20) = p∆V = ε∆V = ∆M . Therefore,
both the energy and its temperature becomes two times higher that that for
any inner layer of the same thickness. And this double energy is gained by
the radiating quanta. Clearly, they have the double frequency and exhibit
double temperature, so

Rew

TH

=
ω

TU

= log 3 . (49)

Substituting this into Eqn.(48) we obtain

e− log 3

1− e− log 3
=

1
3

1− 1
3

=
1

2
= e−γ (50)

and
γ = log 2 . (51)

(Note, that substituting in Eqn.(48) the general value γ = log k, k = 2, 3...,
we obtain ω

T
= log (k + 1)). Since the radiated energy is thermalized, its

energy density decreases during expansion due to the work done by the pres-
sure and, thus, the interpretation of dm as equal to Rew is an improper
procedure. This resolves the ”log 3-paradox”.

The author would like to thank Alexey Smirnov for numerous helpful
discussions. I am greatly indebted to my wife Anastasia Kouprianova and to
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