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Wormholes respecting energy conditions and solitonic shells in DGP gravity
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We build spherically symmetric wormholes within the DGP theory. We calculate the energy
localized on the shell, and we find that for certain values of the parameters wormholes could be
supported by matter not violating the energy conditions. We also show that it could exist solitonic
shells charaterized by zero pressure and zero energy; thereafter we make some observations regarding
their dynamic on the phase plane.
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I. INTRODUCTION

Traversable Lorentzian wormholes [1, 2] are topolog-
ically non trivial solutions of the equations of gravity
which would imply a connection between two regions of
the same universe, or of two universes, by a traversable
throat. In the case that such geometries actually exist
they could show some interesting peculiarities as, for ex-
ample, the possibility of using them for time travel [3, 4].
A basic difficulty with wormholes is that the flare-out
condition [5] to be satisfied at the throat requires the
presence of matter which violates the energy conditions
(“exotic matter”) [1, 2, 5, 6]. It was recently shown [7],
however, that the amount of exotic matter necessary for
supporting a wormhole geometry can be made infinites-
imally small. Thus, in subsequent works special atten-
tion has been devoted to quantifying the amount of ex-
otic matter [8, 9], and this measure of the exoticity has
been pointed as an indicator of the physical viability of
a traversable wormhole [10].

A central aspect of any solution of the equations of
gravitation is its mechanical stability. The stability of
wormholes has been thoroughly studied for the case of
small perturbations preserving the original symmetry of
the configurations. In particular, Poisson and Visser [11]
developed a straightforward approach for analyzing this
aspect for thin-shell wormholes, that is, those which are
mathematically constructed by cutting and pasting two
manifolds to obtain a new manifold [12]. In these worm-
holes the associated supporting matter is located on a
shell placed at the joining surface; so the theoretical tools
for treating them is the Darmois–Israel formalism, which
leads to the Lanczos equations [13, 14]. The solution of
the Lanczos equations gives the dynamical evolution of
the wormhole once an equation of state for the matter
on the shell is provided. Such a procedure has been sub-
sequently followed to study the stability of more general
spherically symmetric configurations (see, for example,
Refs. [15]).

aElectronic address: martin@df.uba.ar

Wormholes in theories beyond Einstein framework
have gained a lot of interest in the last years because they
seem to possess some curious properties regarding the
kind of matter which could support them. A few exam-
ples of these alternatives theories are the Einstein–Gauss-
Bonnet picture [16–18], scalar-tensor theories [19, 20],
F (R)-theory or massive gravity [21]. In particular, for
the Einstein–Gauss–Bonnet theory, it was shown that
static thin-shell wormholes could be supported by ordi-
nary matter respecting the energy conditions[16]. Mo-
roever, C2-type womholes with the latter property can
also exist once the nonlinear Gauss-Bonnet term is in-
cluded in the field equations [17]. Of course, this feature
is not only exclusive of the Gauss-Bonnet paradigms; be-
ing the Brans-Dicke gravity another set up where the
thin-shell wormholes fulfil weak and null energy condi-
tions [19].
In addition, a new type of gravitational model was

widely studied in the context of cosmology as well as
particle physics, the so called Dvali, Gabadadze and Por-
rati (DGP) theory. It predicts deviations from the stan-
dard 4D gravity over large distances. The transition be-
tween four and higher-dimensional gravitational poten-
tials in the DGP model arises because of the presence of
both the brane and bulk Hilbert–Einstein (H–E) terms in
the action [22]. Cosmological considerations of the DGP
model were first discussed in [23, 24] where it was shown
that in a Minkowski bulk spacetime we can obtain self-
accelerating solutions. In the original DGP model it is
known that 4D general relativity is not recovered at lin-
earized level. However, some authors have shown that at
short distances we can recover the 4D general relativity
in a spherically symmetric configuration (see for example
[25]).
It is worth mentioning that an interesting feature of

the original DGP model is the existence of ghost-like
excitations [26, 28]. Further, the viability of the self-
accelerating cosmological solution in the DGP gravity
was carefully studied in [27]. For a comprehensive re-
view of the existence of 4D ghosts on the self-accelerating
branch of solutions in DGP models see [29].
A common feature amongs alternative theories is that

the junction conditions for the thin-shell wormholes are
modified considerably, adding new types of geometrical
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objects besides the usual extrinsic curvature. The con-
tributions form the curvature tensors, theoretically, seem
to allow the existence of wormholes supported by ordi-
nary matter. For all these reasons, we consider that the
construction of wormholes within DGP gravity deserves
to be examined in detail to conclude whether or not they
could fulfill the energy conditions.
In this work we explore thin-shell wormholes within

the DGP gravity theory. Our research is focus on config-
urations supporting by non-exotic matter which satisfy
the energy conditions. Then, we show the existence of
solitonic vacuum shells and make some comment about
their dynamic.

II. FIVE-DIMENSIONAL BULK SOLUTION

We start from the action for the DGP theory in five-
dimensional manifoldM5 with four-dimensional bound-
ary ∂M5 = Σ (cf. [28]),

S = 2M3
5

∫

M5

d5x
√−gR(gµν) +

∫

Σ

d4x
√−γ2M2

4R(γab)

+

∫

Σ

d4x
√−γ

(

− 4M3
5K(γab) + Lm

)

,

where gµν is the five-dimensional metric, γab is the four-
dimensional induced metric on the boundary Σ, and K
is the trace of extrinsic curvature. The extra term in the
boundary introduces a mass scale mc = 2M3

5/M
2
4 = r−1

c ,
that is, the model has one adjustable parameter, namely
mc which determines a scale that separates two different
regimes of the theory. For distances much smaller than
m−1

c one would expect the solutions to be well approxi-
mated by General Relativity and the modifications to ap-
pear at larger distances. This is indeed the case for distri-
butions of matter and radiation which are homogeneous
and isotropic at scales >∼ rc. Tipically, mc ∼ 10.42GeV,
so it sets the distance/time scale rc = m−1

c at which the
Newtonian potential significantly deviates from the con-
ventional one [33].
It is a well known fact that the DGP scheme is a five-

dimensional model where gravity propagates throughout
an infinite bulk, and matter fields in Lm are confined
to a 4-dimensional boundary. The action for gravity at
lowest order in the derivate expansion is a bulk Einstein-
Hilbert term and a boundary one, generically with two
different planck masses M5, M4, plus a suitable Gibbons-
Hawking term. In the bulk the DGP equations are the

Einstein ones in vacuum: G
(5)
µν = 0. Then in this case,

the Birkhoff’s theorem forces the bulk metric to be static,
and of the Schwarzschild form:

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ2

3, (1)

f(r) = 1− µ

r2
(2)

where the parameter µ is related to the five dimen-
sional Arnowitt–Deser–Misner (ADM) mass, M

ADM
=

3π2µM3
5 . The above spacetime has only one horizon

placed at r+ =
√
µ with µ > 0. Besides, when µ < 0

the manifold only presents a naked singularity at the ori-
gin r = 0.

III. WORMHOLES IN DGP

A. Thin-shell construction

Employing the metric Eqs.(1-2) we build a spherically
thin-shell wormhole in DGP theory. we take two copies
of the spacetime amd remove from each manifold the five-
dimensional regions described by

M± = {x/r± ≤ a, a > rh} . (3)

The resulting manifolds have boundaries given by the
timelike hypersurfaces

Σ± = {x/r± = a, a > rh} . (4)

Then we identify these two timelike hypersurfaces to ob-
tain a geodesically complete new manifold M = M+ ∪
M−. We take values of a large enough to avoid the pres-
ence of singularities and horizons in the case that the ge-
ometry (2) has any of them. The manifoldM repesents
a wormhole with a throat placed at the surface r = a,
where the matter supporting the configuration is located.
This manifold is constituted by two regions which are
asymptotically flat (see Fig. 1). The wormholes throat
Σ is a synchronous timelike hypersurface, where we de-
fine locally a chart with coordinates ξa = (τ, , χ, θ, φ),
with τ the proper time on the shell. Though we shall
first focus in static configurations, in the susbsequent we
could allow the radius of the throat be a function of the
proper time for studying the dynamics evolution of the
wormholes, then in general we have that the boundary
hypersurface reads:

Σ : H(r, τ) = r − a(τ) = 0. (5)

It is important to remark that the geometry remains
static outside the throat, regardless the radius a(τ) can
vary with time, so no gravitational waves are present.This
is naturally guaranteed because the Birkhoff theorem
holds for the original manifold.
Our starting point is to list the main geometric ob-

jects which shall appear in the junction condition asso-
ciated with the field equation for Σ. The extrinsic cur-
vature,namely Kab, associated with the two sides of the
shell are defined as follows:

K±

ab = −n±
κ

(

∂2Xκ

∂ξa∂ξb
+ Γκ

µν

∂Xµ

∂ξa
∂Xν

∂ξb

)

r=a

, (6)
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FIG. 1: We show the wormhole geometry obtained after per-
forming the cut and paste procedure. The shell on Σ is located
at the throat radius r = a.

where n±
κ are the unit normals (nκn

κ = 1) to the surface
Σ inM:

n±
κ = ±

∣

∣

∣

∣

gµν
∂H
∂Xµ

∂H
∂Xν

∣

∣

∣

∣

∂H
∂Xκ

(7)

The field equations projected on the shell Σ are the
generalized junction (or Darmois–Israel) conditions [28,
29]

rc

(

Rab −
1

2
γabR

)

− 2
(

〈Kab −Kγab〉
)

=
Sab
8M3

5

, (8)

where the bracket 〈.〉 stands for the jump of a given quan-
tity across the hypersurface Σ and γab is the induced met-
ric on Σ. Notice that the first term in (8) is not enclosed
with the brackets because this contribution comes from
the four dimensional E-H term in the DGP action (1)
which already lives in the boundary so it does not need
to be projected on Σ. By taking the limit rc → 0 we
recover the standard Darmois–Israel junction condition
found in [13].
Now, let us calculate some quantities that we shall need

later. The mixed components of the four-dimensional
Einstein tensor are given by

G00 = −3
( ȧ2

a2
+

1

a2

)

, (9)

Gij = −
( 1

a2
+

ȧ2

a2
+ 2

ä

a

)

δij (10)

where dot means derivate with respect to the proper time
on Σ. The extrinsic curvature components read

〈

K0
0

〉

=
2ä+ f ′(a)
√

f(a) + ȧ2
, (11)

〈

Ki
j

〉

=
2

a

√

f(a) + ȧ2 δij (12)

where the prime inidcates the derivates with respect to
a. The most general form of the stress energy tensor on
shell compatible with the simetries is

Sab = diag (−σ, p δij) (13)

where σ is the energy density and p is the pressure. Re-
placing Eqs(10-13) into the DGP junction condition(8)
we obtain that the energy density and the pressure can
be recast as

σ

8M3
5

= 3rc

( ȧ2

a2
+

1

a2

)

− 12

a

√

f(a) + ȧ2, (14)

p

8M3
5

= −rc
( ȧ2

a2
+

1

a2
+

2ä

a

)

+
8

a

√

f(a) + ȧ2 (15)

+ 2
2ä+ f ′

√

f(a) + ȧ2
. (16)

where the DGP contributions are encoded in the rc fac-
tor of the above equations. If we take rc → 0 in both
equations (14) and (15) we recover the expression for the
energy density σ and the pressure p found in [16]; ignor-
ing the Gauss-Bonnet contribution.
In order to carry on let us comment that we still have

the usual energy conservation,∇aSab = 0 by virtue of
∇a(Kab − γabK) = 0, comig from the momentum con-
straint implicit in the five-dimensional Einstein equa-
tions. Further it is easy to see from σ and p that the
energy conservation equation is fulfilled:

d(a3σ)

dτ
+ p

da3

dτ
= 0, (17)

the first term in Eq. (17) represents the internal energy
change of the shell and the second the work by inter-
nal forces of the shell. The dynamical evolution of the
wormhole throat is governed by the generalized Lanczos
equations and to close the system we must supply an
equation of state p = p(σ) that relates p and σ. Notice
that the reason why one obtains exact conservation, i.e,
no energy flow to the bulk, is that the normal-tangential
components of the stress tensor in the bulk is the same
on both side of the junction hypersurface.

IV. MATTER SUPPORTING THE
WORMHOLES

Recently, classical solutions within the DGP model
were found when the stress-energy tensor on the brane
satisfies the dominant energy condtion, yet the brane has
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negative energy from the bulk point of view (see [28]).
Within this frame, the study of superluminal propaga-
tion indicates that superlumnosity occurs whenever the
stress tensor on the shell is a pure cosmological constant,
irrespective of the value of the shell density (cf.[28]). All
these elements are good reasons to consider a careful dis-
cussion about the nature of matter supporting worm-
holes in the DGP model. Moreover, motivated by the
results within Einstein-GaussBonnet gravity (i.e. with
R2-like terms) in [19], here we evaluate the amount of
exotic matter and the energy conditions, following the
approach presented above where the four-dimensional H–
E term generalizes the standard junction, adding a few
geometrical terms, which indeed represents the Einstein
tensor projected on the shell. Consequently, coming the
DGP contribution from the curvature tensor, the next
approach is clearly the most suitable to give a precise
meaning to the characterization of matter supporting the
wormhole.

The weak energy condition (WEC) states that for any
timelike vector U ξ it must be TξηU

ξUη ≥ 0; the WEC
also implies, by continuity, the null energy condition

(NEC), which means that for any null vector kξ it must
be Tξηk

ξkη ≥ 0 [3]. In an orthonormal basis the WEC
reads ρ ≥ 0, ρ+ pl ≥ 0 ∀ l while the NEC takes the form
ρ+pl ≥ 0 ∀ l. Besides, the strong energy condition states
that ρ+ pl ≥ 0 ∀ l, and ρ+ 3pl ≥ 0 ∀ l.

In the case of thin-shell wormholes the radial pressure
pr is zero, within Einstein gravity, the surface energy
density must fulfill σ < 0, so that both energy conditions
would be violated. The sign of σ + pt where pt is the
transverse pressure is not fixed, but it depends on the
values of the parameters of the system. In what follows
we restrict to static configurations. The surface energy
density σ0 and the transverse pressure p0 for a static
configuration (a = a0, ȧ = 0, ä = 0) are given by

σ0

8M3
5

=
3rc
a20
− 12

a0

√

f(a0), (18)

p0
8M3

5

= − rc
a20

+
8

a0

√

f(a0) + 2
f ′(a0)
√

f(a0)
. (19)

Now the sign of the surface energy density as well as
the pressure is, in principle, not fixed. The most usual
choice for quantifying the amount of exotic matter in a
Lorentzian wormhole is the integral [9]:

Ω =

∫

(ρ+ pr)
√−g5 d4x. (20)

We can introduce a new radial coordinate R = ±(r− a0)
with ± corresponding to each side of the shell. Then,
because in our construction the energy density is located
on the surface, we can also write ρ = δ(R)σ0, and be-
cause the shell does not exert radial pressure the amount

of exotic matter reads

Ω =

2π
∫

0

π
∫

0

π
∫

0

+∞
∫

−∞

δ(R)σ0

√−g5 dR dξ dθ dφ = 2π2a30σ0.

(21)
Replacing the explicit form of σ0 and g5, we obtain the
exotic matter amount as a function of the parameters
that characterize the configurations:

Ω = 16M3
5π

2
(

3rc a0 − 12a20
√

f(a0)
)

. (22)

where f is given by the bulk solution. For rc → 0 we
obtain the exotic amount for Schwarzschild geometries
as if it was calculated with the standard junction con-
ditions. Far away from the General Relativity limit we
now find that there exist positive contributions to σ0;
these come from the different signs in the expression (22)
for the surface energy density, because is proportional
to σ0. We stress that this would not be possible if the
standard Darmois-Israel formalism was applied, treating
the DGP contribution as an effective energy-momentum
tensor, because this leads to σ0 ∝ −

√

f(a0)/a0. Now,
once the explicit form of the function f(a0) is introduced
in Eq.(22), we focus on what are the conditions that lead
to wormholes with σ0 > 0 or Ω > 0. Then, it can be
proved that wormholes with a non-negative surface den-
sity located at the shell are allowable when the following
inequalities are simultaneously satisfy:

rc
a20
− 4

a0

(

1− µ

a20

)1/2

> 0, (23)

a20 − µ > 0 , (24)

so it is always possible to choose a0 such that the exis-
tence of thin-shell wormholes is compatible with positive
surface energy desnsity (see Fig2.), more precisely its ra-
dius must belong to the interval given below:

√
µ < a0 ≤

(

µ+
r2c
16

)
1

2 (25)

Notice that rc-term is essential to have positive energy
density; as one would expect, in the limit rc −→ 0, this
possibility completly vanishes. Besides, from Eq.(18) and
Eq.(19) we have that the sum of the pressure and energy
density takes the form

σ0 + p0 = 8M3
5

(

2rc
a20

+
2a0f

′(a0)− 4f(a0)

a0
√

f(a0)

)

(26)

because the first term in (26) is positive the sign of σ0+p0
depends on the second term, implying that the sum is
positive for

√
µ < a0 ≤

√
2µ. Therefore, the remarkable

result is that we have a region with σ0 ≥ 0 and besides
σ0 + p0 ≥ 0 , so the WEC and the NEC are satisfied (see
Fig.3 and Fig.4). Additionally, it is easy to corroborate

that σ0 + 3p0 = 12× 8M3
5 /(a0

√

f(a0)), then SEC holds
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FIG. 2: We plot the zones in the plane rc − a0 where the
condition σ0 > 0 for several values of µ.

in the interval a0 ∈ (
√
µ,
√
2µ] (see Fig.3 and Fig.4).

Thus, by treating the DGP contribution as a geometric
object, the generalized junction conditions (8) provide
a clear meaning to the matter in the shell leading to a
central finding that in the DGP gravity the violation of
the energy conditions could be avoided and wormholes
could be supported by ordinary matter.
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FIG. 3: We show σ0, σ0+p0 and σ0+3p0 versus the wormhole
radius a0 for several values of (µ, rc).

However, note that one could choose another route
beacuse Eq.(8) can be formally recast as follows

− 16M3
5 〈Kab −Kγab〉 = Seffab , (27)
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FIG. 4: We show σ0, σ0+p0 and σ0+3p0 versus the wormhole
radius a0 for different values of (µ, rc).

Sab − 8M3
5 rc

(

Rab −
1

2
γabR

)

= Seffab (28)

although this identification is also possible; physically we
would be treating curvature objects as an effective source
for the junction condition. Moreover, based on effective
energy-momentum tensor approach we inevitably would
obtain that the energy density is negative definite be-
cause the flare-out condition is fulfilled. For a review of
junction conditions within the DGP theory see [30] and
references therein.

V. SOLITONIC WORMHOLES/SHELL

In general to obtain the dynamic picture of the worm-
holes within the DGP gravity is a very complicated task.
As it can see from the Eqs. (14-15) nonlinear character of
these expressions make the standard procedure exposed
in [32] very hard to implement. So, we are going to focus
in a particular type of wormholes/shell. To be precise
we desire to eximane if it is possible to have dynamical
solitonic wormholes/shells characterized by a zero pres-
sure (p = 0) and zero energy density (σ = 0). Unlike
the standard Darmois–Israel junction condition, nontriv-
ial solutions may be possible even when Sab = 0. That
is, the extrinsic curvature can be discontinuos across the
throat with no matter on the shell to serve a source;
turning the discontinuity a self-supported gravitational
system. Of course, these configurations are impossible
in the Einstein gravity but not in the Einstein-Gauss-
Bonnet gravity (cf. [18]).
For ȧ 6= 0 the Eq.(17) shows that if σ = 0 then p = 0;

so we are going to work with the most useful expression
which in this case is given by σ. Following the procedure
mentioned in [29] we shall plot trayectories in the phase
space spanned by (ȧ, a). Because of the energy constraint
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(σ = 0) is invariant under the symmetry ȧ ←→ −ȧ we
can work on a two-dimensional plane which is defined as
a non-compact domain, namely B = (0,+∞)×(r+,+∞).
The curves which represent the dynamics of solitonic
wormholes are obtained by imposing the following con-
ditions:

rc
(

ȧ2 + 1
)

− 4
(

a2 − µ+ a2ȧ2
)

1

2

= 0, (29)

a2 − µ > 0 (30)

such that the first inequality guarantees zero energy
whereas the second one ensures that the wormholes ra-
dius is larger than event horizon. According to Fig. 5, the
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FIG. 5: We show the trayectories of vacuum shells in the fase
plane for µ ∈ [0.01, 100] and different values of DGP scale rc.

phase diagrams shows that for small or large µ and with a
DGP scale covering the interval [0.5, 50], the shell veloc-
ity is a monotone increasing function for ȧ ∈ (0,+∞) (or
decreasing one when ȧ ∈ (−∞, 0)). Notice that the same
conclusion is obtained when the parameter rc takes larger
values. In order to see if these types of shells speed up
or decelerate we use the zero pressure condition to get a
functional relation ä = N [a, ȧ] which determines the sign
of ä:

N =
−8af(a)− 8aȧ2 − 2a2f ′(a) + rc(1 + ȧ2)

√

f(a) + ȧ2

2a
(

2a− rc
√

f(a) + ȧ2
)

(31)

For all µ and rc considered in this section we obtain that
the kinematic of the shell has four possible types of dy-
namical evolution. More precisely, the solitonic solution
could suffer an accelerated (ä > 0) or decelerated (ä < 0)
expansion (ȧ > 0) as well as an accelerated or decelerated
contraction (ȧ < 0) regimes.

Unlike the Einstein–Gauss-Bonnet case studied in [18]
it turns that the existence of solitonic shells in DGP grav-
ity does not require the presence of a cosmological con-
stant term in the bulk spacetime.

VI. SUMMARY

The generalization of Einstein gravity in the way pro-
posed by Dvali, Gabadadze and Porrati (DGP) intro-
duces a new parameter, which allows for more freedom
in the framework of determining the most viable worm-
hole configurations. If wormholes could actually exist,
one would be interested in those which are require as lit-
tle amount of exotic matter as possible. Of course, the
case could be that a given change of the theory leads to
a worse situation, i. e. that configurations require more
matter violating the energy conditions as the departure
from the standard theory becomes relevant. However, for
suitable wormhole radius, this seems not to be the case
with DGP gravity : Here we have examined the “exotic”
matter content of thin-shell wormholes using the gener-
alized junction condition, and we have found that for
large values of the DGP parameter, corresponding to a
situation far away from the General Relativity limit, the
amount of exotic matter is reduced in relation with the
standard case beause it can be positive definite. More-
over, the remarkable result is that we have a region with
σ0 ≥ 0 and besides σ0 + p0 ≥ 0 , so the WEC and the
NEC are satisfied. Further the SEC condition holds also.
Thus if the requirement of exotic matter is considered
as the hardest objection against wormholes, our results
suggest that in a physical scenario with small crossover
scale (rc ∼ O(1)) or far away from the General Relativity
limit where the DGP becomes dominant (rc >∼ 102) these
types of wormholes could be possible. Finally, we showed
the existence of gravitational solitonic wormholes/shell
characterized by σ = p = 0 within the DGP model. Un-
like the case of Einstein–Gauss-Bonnet theory we found
that the existence of solitonic shells in DGP gravity does
not require the presence of a cosmological constant term
in the bulk solution.
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