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Evolution of near-extremal-spin black holes using the moving puncture technique
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We propose a new radial coordinate to write the Kerr metric in puncture form. Unlike the quasi-
radial coordinate introduced previously, the horizon radius remains finite in our radial coordinate in
the extreme Kerr limit a/M → 1. This significantly improves the accuracy of the evolution of black
holes with spins close to the extreme Kerr limit. We are able to evolve accurately both stationary
and boosted black holes with spins as high as a/M = 0.99 using initial data constructed in these
new puncture coordinates. Initial data of compact binaries with rapidly spinning black holes can
be constructed using our proposed new puncture metric for the background conformal metric. Our
simulations for single black holes suggest that such initial data can be evolved successfully by the
moving puncture technique.

I. INTRODUCTION

Binary black holes (BHBHs) are among the most
promising sources of gravitational waves detectable
by gravitation-wave detectors such as LIGO [1, 2],
VIRGO [3, 4], GEO [5], and TAMA [6, 7], as well as
by the proposed space-based interferometers LISA [8],
BBO [9] and DECIGO [10]. Supermassive black holes
are likely formed during hierarchical mergers of halos and
galaxies in the early universe. Binary black hole coales-
cence triggered by these mergers, followed by gas accre-
tion onto the remnant hole, may give rise to a population
of black holes with very rapid spin [11, 12]. Standard
thin-disk accretion alone spins up black holes (BHs) to a
maximum value of a/M = 0.998 [13], where a is the spe-
cific angular momentum and M is the mass of the BH.
However, accretion in thick, magnetized disks tends to
drive the BH spin to a/M ≈ 0.94 [14]. There is obser-
vational evidence suggesting that rapidly spinning BHs
might exist in quasars [15] and binary X-ray sources [16–
18].

There is great interest in studying rapidly spinning
BHs in a compact binary system. The coalesence of
rapidly spinning BHs could result in a gravitational-wave
induced recoil velocity of a few thousand kilometers per
second in some systems [19–23]. Such recoil may have
significant influence on the hierarchical evolution of su-
permassive BHs in galaxies [24–26] and have observable
signatures in quasars and active galactic nuclei [27, 28].
Black hole-neutron star binaries with a rapidly spinning
BH may produce a substantial disk about the BH after
merger [29–31], which may be crucial to the formation of
a short-hard gamma-ray burst.

Currently, the most common method of evolving com-
pact binary systems in numerical relativity is the moving
puncture technique [32, 33]. This technique requires ini-
tial data everywhere on the computational grid, including
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the BH interior. Most simulations adopt conformally-
flat, puncture initial data. However, this type of ini-
tial data can only produce BHs with spins as high
as ≈ 0.93 [22, 34–36], the extremal-Bowen-York limit.
Moreover, conformally-flat initial data contain spurious
gravitational waves even for isolated spinning BHs and
thus cannot represent exact stationary Kerr BH space-
times. BHBHs with BH spins close to this limit have been
evolved using the moving puncture technique [22, 36, 37].
Initial data with BH spins higher than 0.93 have been
constructed using a (non-conformally flat) Kerr-Schild
background metric [35], which for isolated BHs does not
contain spurious radiation. These initial data have been
evolved successfully using the generalized harmonic for-
malism with excision, even for BHs with spins higher
than the extremal-Bowen-York limit [35]. One might
wonder if these initial data can also be evolved by the
moving puncture technique. Since these data are excised
at the horizon, it is first necessary to fill in data every-
where inside the horizon in order to evolve the spacetime
by the standard moving puncture technique.

We have investigated the possibility of integrat-
ing Kerr-Schild initial data for a single, stationary,
rotating BH using the moving puncture technique.
We removed the physical ring singularity inside the
horizon by filling the BH interior with constraint-
violating “junk” initial data. It has been demonstrated
that the BSSN (Baumgarte-Shapiro-Shibata-Nakamura)
scheme [38, 39], coupled with moving puncture gauge
conditions, guarantees that the “junk” data will not
propagate out of the horizon [40–42]. We have tried vari-
ous methods of filling in the “junk” data, and are able to
evolve the Kerr-Schild metric for a single BH with spins
as high as a/M = 0.96. However, when the BH spin
exceeds 0.96, our code either crashes or the evolution be-
comes inaccurate (e.g. the BH’s mass and spin deviate
from their initial values significantly) after ∼ 10M .

We next considered (nonconformally flat) puncture ini-
tial data that allow the BH spin to approach the Kerr
limit. Brandt and Seidel have constructed such initial
data [43, 44], which provide an exact description of Kerr
spacetime with no spurious gravitational waves. Their
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metric generalizes the Schwarzschild metric in isotropic
coordinates to rotating BHs. We are able to evolve this
metric successfully using the moving puncture technique.
However, when the BH spin approaches the extreme Kerr
limit, the radius of the BH horizon shrinks to zero in
their quasi-isotropic radial coordinate. We find that this
shrinkage causes numerical inaccuracy during the early
evolution, which results in a slow decrease in the BH spin
at late times (see Sec. III). In this paper, we introduce
a new radial coordinate such that the horizon coordinate
radius remains nonzero in the extreme Kerr limit. We are
able to evolve accurately the puncture data in this new
coordinate, both for stationary and boosted BHs with
spins as high as a/M = 0.99. Initial data for compact bi-
naries with rapidly spinning BHs may be constructed by
using a conformal background metric consisting of the su-
perposition of two Kerr puncture metrics [45–48] in our
proposed coordinates. The simulations reported below
suggest that such initial data can be evolved successfully
by the moving puncture technique.

This paper is organized as follows: In Sec. II, we in-
troduce our new puncture initial data, and briefly de-
scribe our numerical method to evolve the spacetime. We
present results of our simulations in Sec. III. We conclude
in Sec. IV with a brief discussion of future applications
of our technique.

II. FORMULATION

A. Initial data

We start from the Kerr metric in Boyer-Lindquist co-
ordinates (rBL, θ, φ). We introduce the radial coordinate
η as in [43, 44]:

rBL = r+ cosh2(η/2)− r− sinh2(η/2) , (1)

where M is the BH’s mass, a is the specific angular
momentum, and r± = M ±

√
M2 − a2 are the Boyer-

Lindquist radii of the outer (+) and inner (−) horizons
of the BH. Both regions η ∈ [0,∞) and η ∈ (−∞, 0] map
to rBL ∈ [r+,∞). The BH event horizon rBL = r+ is
mapped to η = 0. Equation (1) is invariant under the
inversion η → −η. The spatial metric in this coordinate
system is given by

γijdx
idxj = Ψ4

0

[

e−2q0(dη2 + dθ2) + sin2 θdφ2
]

, (2)

where Ψ4
0 = A/Σ, e−2q0 = Σ2/A, Σ = r2BL + a2 cos2 θ,

∆ = r2BL−2MrBL+a
2, and A = (r2BL+a

2)2−∆a2 sin2 θ.
The spatial metric is invariant under the inversion η →
−η, and is asymptotically flat at η → ±∞. The BH ex-
terior is mapped twice in this metric and the two pieces
are joined smoothly at the throat η = 0. The metric
describes an Einstein-Rosen bridge. The nonzero com-

ponents of the extrinsic curvature are

Kij = Ψ−2
0 K̂ij (3)

K̂ηφ = K̂φη =
Ma sin2 θ

Σ2
×

[2r2BL(r
2
BL + a2) + Σ(r2BL − a2)] (4)

K̂θφ = K̂φθ = −2Ma3rBL

√
∆cos θ sin3 θ/Σ2 . (5)

The lapse and shift that give rise to a stationary space-
time are

α =

√

∆Σ

A
(6)

βφ = −2MarBL

A
, βη = βθ = 0 . (7)

Brandt and Seidel introduce a quasi-isotropic radial
coordinate [43, 44]:

r̄ =

√
M2 − a2

2
eη . (8)

It follows from Eq. (1) that

rBL = r̄

(

1 +
M + a

2r̄

)(

1 +
M − a

2r̄

)

. (9)

In the Schwarzschild limit a = 0, the spatial metric
reduces to the Schwarzschild metric in isotropic coor-
dinates. This quasi-isotropic radial coordinate has an
undesirable property that the BH horizon at η = 0 cor-
responds to r̄ =

√
M2 − a2/2, which shrinks to zero in

the extreme Kerr limit. To reduce this numerical incon-
venience, we generalize Eq. (8) by considering a radial
coordinate of the form

r =

√
M2 − a2

2
λ(a, η)eη , (10)

where λ(a, η) is an arbitrary function of a and η. One
seeks to choose λ such that (1) η = 0 corresponds to a
nonzero value of r for any value of |a| ≤ M , (2) λ = 1
when a = 0 and (3) λ → 1 as η → ±∞. Property (2)
ensures that the usual isotropic radial coordinate is re-
covered in the Schwarzschild limit. Property (3) ensures
that r → rBL at spatial infinity. One simple choice of r
that satisfies all three properties is given by

rBL = r
(

1 +
r+
4r

)2

, (11)

which corresponds to setting λ according to

λ =
e−η

√
M2 − a2

[

rBL − r+
2

+
√

rBL(r+ − r−) sinh(η/2)
]

.

(12)
The regions η ∈ (−∞, 0] and η ∈ [0,∞) are mapped
to r ∈ (0, r+/4] and r ∈ [r+/4,∞), respectively. The
horizon is located at r = r+/4. In the extreme Kerr limit,
the horizon radius is r = M/4 > 0. The spatial metric
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and extrinsic curvature in this new coordinate system are
given by

(3)ds2 =
Σ
(

r + r+
4

)2

r3(rBL − r−)
dr2 +Σdθ2 +

A sin2 θ

Σ
dφ2 (13)

Krφ = Kφr =
Ma sin2 θ

Σ
√
AΣ

[3r4BL + 2a2r2BL − a4

−a2(r2BL − a2) sin2 θ]
(

1 +
r+
4r

)

×

1
√

r(rBL − r−)
, (14)

Kθφ = Kφθ = −2a3MrBL cos θ sin3 θ

Σ
√
AΣ

(

r − r+
4

)

×
√

rBL − r−
r

. (15)

In our numerical evolution, we use Cartesian coordi-
nates (x, y, z), which are related to the (r, θ, φ) coor-
dinates by the usual transformation: x = r sin θ cosφ,
y = r sin θ sinφ and z = r cos θ. Cartesian components
of the spatial metric γij and extrinsic curvature Kij are
computed by the usual transformation formula of tensor
components. The initial data of a rotating BH moving
with a constant velocity as measured by a distant ob-
server are constructed by boosting the spacetime metric
derived from Eq. (13) and the lapse and shift in Eqs. (6)
and (7).

B. Numerical evolution scheme

The formulation and numerical scheme for our simu-
lations are basically the same as those already reported
in [30, 49], to which the reader may refer for details. We
adopt the BSSN formalism coupled to the standard mov-
ing puncture gauge conditions to evolve the spatial met-
ric and extrinsic curvature. The evolution equations are
given by Eqs. (9)–(13) in [49]. The gauge conditions are
given by Eqs. (2)–(4) in [30], with the gauge parameter
η set to 1/M . During the evolution, we adopt Eqs. (29),
(30) in [49] and Eq. (11) in [50] to help enforce/control
additional constraints in the BSSN variables.
We evolve the BSSN equations with sixth-order ac-

curate, centered finite-differencing stencils, except on
shift advection terms, where we use sixth-order accurate
upwind stencils. We apply Sommerfeld outgoing wave
boundary conditions to all BSSN fields. Our code is em-
bedded in the Cactus parallelization framework [51], and
our fourth-order Runge-Kutta timestepping is managed
by the MoL (Method of Lines) thorn, with a Courant-
Friedrichs-Lewy (CFL) factor set to 0.25 in all simula-
tions. We find that we get better results if we add a
seventh-order Kreiss-Oliger dissipation of the form

(ǫ/256)(∆x7∂7x +∆y7∂7y +∆z7∂7z )f (16)

to the lapse and shift variables f , with the parame-
ter ǫ set to 0.9. We use the Carpet [52] infrastruc-

FIG. 1: Fractional error of the BH mass ∆M/M (left graph)
and spin parameter ∆ã/ã (right graph) vs time for a sta-
tionary BH with spin parameter ã ≡ a/M = 0.99. Dash (red)
lines show the results for the quasi-isotropic radial coordinate,
and solid (black) lines show the results for our new radial co-
ordinate. The resolution in the innermost refinement level is
M/50 for both cases.

FIG. 2: Evolution of the average coordinate radius of the
BH’s horizon evolved with our radial coordinate (black solid
line) and the quasi-isotropic coordinate (red dashed line).

ture to implement moving-box adaptive mesh refinement.
The apparent horizon of the BH is computed with the
AHFinderDirect Cactus thorn [53]. The BH’s mass and
angular momentum are computed using the isolated hori-
zon formalism [54], with the axial Killing vector com-
puted using the numerical technique described in [55].
For the initial lapse and shift, we have implemented

the lapse and shift obtained from the analytic spacetime
metric (6), (7) and (13) (boosted in the case of a moving
BH), as well as the standard choice setting α = ψ−2 and

βi = 0 [where ψ = (detγij)
1/3

]. We find that these two
different sets of initial lapse and shift data yield similar
evolution results for stationary BHs. The first set of lapse
and shift yields a slightly better result for boosted BHs.
We show the results for the second set of initial lapse and
shift for stationary BHs and the first set for boost BHs
in the next section.

III. RESULTS

We perform simulations on rapidly rotating BHs with
spin parameter ã ≡ a/M = 0.99 for cases where the BH is
stationary and boosted to give a momentum P = 0.5M ,
relative to observers at spatial infinity. We use seven re-
finement levels for all these simulations. The resolution
in the innermost refinement level is M/50 for a typical
run. We also try resolutions M/40, M/60 and M/80 for
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FIG. 3: Fractional error of the BH mass ∆M/M (black solid
line) and spin parameter ∆ã/ã (blue dash line) vs time for a
BH with spin parameter ã ≡ a/M = 0.99 and moving with a
momentum P = 0.5M relative to observers at spatial infinity.
The resolution in the innermost refinement level is M/50.

the stationary BH case and confirm that the code con-
verges at approximately fourth order, as expected. The
outer boundary is a rectangular box with a length of
512M × 512M × 256M in the (x, y, z) directions. We
impose reflection symmetry about the equatorial (z = 0)
plane.

Figure 1 shows the fractional error in the mass and spin
parameter of the BH as a function of time for a stationary
BH, evolved with both the quasi-isotropic radial coordi-
nate and our proposed new radial coordinate. The grid
structure, resolution and gauge conditions are identical
for these two runs. We see that the BH’s spin slowly de-
creases with time when evolved with the quasi-isotropic
radial coordinate. Such a secular shift of the BH’s spin is
also observed in the evolution of a near-extremal-Bowen-
York-spin BH, and can be reduced by using higher resolu-
tion [37]. By contrast, we see no such drift when evolved
with our proposed radial coordinate using the same reso-
lution. The BH’s spin is conserved to within 10−4 during
the entire evolution of 180M . We attribute this result
to the fact that the BH interior is better resolved with
our radial coordinate during the early simulation. At
t = 0, the coordinate radius of the horizon is 0.07M in
the quasi-isotropic coordinate and 0.285M in our radial
coordinate. Hence the initial BH’s diameter is covered
by 7 grid points in the quasi-isotropic coordinate and 28
grid points in our radial coordinate. Figure 2 shows the
average coordinate radius of the BH as a function of time,
evolved with our radial coordinate (black solid line) and
the quasi-isotropic coordinate (red dashed line). We find
that the average coordinate radius approaches a constant
value after t >∼ 50M when evolved with our radial coor-
dinate, and the metric approaches a “trumpet” geome-
try [56, 57] in which the conformal factor ψ ∝ r−1/2 near
the puncture. By contrast, we find the radius increases
slowly at late time when evolved with the quasi-isotropic
coordinates, which correlates with the slow decrease in
the BH spin due to accumulated numerical inaccuracy
during the early evolution.

We have tried to evolve a BH with spin parameter
a/M = 0.999. We find that although the initial horizon
radius is 0.261M , the puncture evolution quickly drives

the horizon radius to below 0.1M after ∼ 5M . The BH
spin slowly decreases with time due to insufficient res-
olution. It has been reported that the horizon radius
increases when the parameter η in the shift equation in-
creases [58]. We have observed this behavior for lower
spin BHs. However, we find that the evolution of the
horizon size is insensitive to the values of η for the high-
spin BHs. For example, for a BH with a/M = 0.99, the
horizon sizes evolved with different values of η change
by less than 5%. Our numerical experiments seem to
suggest that the puncture evolution will eventually drive
the coordinate size of the horizon to a constant value
tending towards zero as the BH spin approaches the ex-
treme Kerr limit. However, for a given BH spin a close
to the extreme Kerr limit, the final size of the horizon
is still larger than the initial horizon radius in the quasi-
isotropic coordinate. Hence our proposed radial coordi-
nate is better suited for evolving high-spin BHs than the
quasi-isotropic coordinate.
Finally, Fig. 3 shows the boosted case in which the BH

moves with a momentum P = 0.5M . We see that the
errors are less than 1.2% throughout the entire evolu-
tion lasting about 150M , during which the BH has trav-
eled a coordinate distance of about 60M . This demon-
strates that stable evolution of rapidly rotating BHs can
be achieved using the moving puncture technique for the
puncture initial data in our radial coordinate.

IV. CONCLUSION

We construct a new radial coordinate to write the Kerr
metric in puncture form. This new radial coordinate has
the advantage that the BH horizon radius remains finite
in the extreme Kerr limit, which is useful for numerical
simulations. By contrast, the horizon radius approaches
zero in the quasi-isotropic coordinate originally adopted
for this metric. We have demonstrated that higher accu-
racy is achieved by using our coordinate rather than the
quasi-isotropic coordinate when evolving a high-spin BH.
With our new coordinate, we are able to evolve, using the
moving puncture technique, rapidly rotating BHs, both
stationary and boosted, with spin parameters as high as
0.99.
Binary black hole initial data with rapidly spinning

BHs may be constructed using a conformal background
metric consisting of the superposition of two Kerr-like
conformal metrics in puncture form. This type of ini-
tial data for binary black hole head-on collision has been
constructed in quasi-isotropic coordinates [45–48]. It will
be useful to generalize this technique to construct quasi-
circular, rapidly spinning binary black hole initial data
using superposed puncture Kerr metrics in our proposed
radial coordinate for the background metric. Our numer-
ical results presented in this paper suggest that such ini-
tial data can be evolved reliably using the moving punc-
ture technique. This type of initial data has the addi-
tional advantages that the BH spins can be higher and
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the amount of spurious gravitational radiation will be
significantly less than the conformally flat initial data, as
demonstrated in [47] for the head-on collision case.
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Mon. Not. R. Astro. Soc. 373, 1004 (2006).
[17] J. M. Miller, C. S. Reynolds, A. C. Fabian, G. Miniutti,

and L. C. Gallo, Astrophys. J. 697, 900 (2009).
[18] L. Gou, J. E. McClintock, J. Liu, R. Narayan, J. F.

Steiner, R. A. Remillard, J. A. Orosz, S. W. Davis,
K. Ebisawa, and E. M. Schlegel, Astrophys. J. 701, 1076
(2009).

[19] M. Campanelli, C. Lousto, Y. Zlochower, and D. Merritt,
Astrophys. J. Lett. 659, L5 (2007).

[20] M. Campanelli, C. O. Lousto, Y. Zlochower, and D. Mer-
ritt, Physical Review Letters 98, 231102 (2007).
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Murchadha, Phys. Rev. D 78, 064020 (2008).
[58] B. Brügmann, J. A. González, M. Hannam, S. Husa,
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