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Abstract.

In this paper we prove large deviations principles for the Nadaraya-Watson estimator of the regression of a

real-valued variable with a functional covariate. Under suitable conditions, we show pointwise and uniform

large deviations theorems with good rate functions.
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1 Introduction

Let {(Yi, Xi), i ≥ 1} be a sequence of independent and identically distributed random vectors. The random

variablesYi are real, withE|Y | < ∞, and theXi are random vectors with values in a semi-metric space

(X , d(·, ·)).

Consider now the functional regression model,

Yi := E(Y |Xi) + εi = r(Xi) + εi i = 1, . . . , n, (1)

wherer is the regression operator mappingX onto R, and theεi are real variables such that, for alli,

E(εi|Xi) = 0 andE(ε2
i |Xi) = σ2

ε(Xi) < ∞. Note that in practiceX is a normed space which can be of

infinite dimension (e.g., Hilbert or Banach space) with norm‖ · ‖ so thatd(x, x′) = ‖x−x′‖, which is the case

in this paper.

Ferraty and Vieu (2004) provided a consistent estimate for the nonlinear regression operatorr, based on the

usual finite-dimensional smoothing ideas, that is

r̂n(x) :=

∑n

i=1 YiK

(
‖x−Xi‖

hn

)

∑n

i=1 K

(
‖Xi−x‖

hn

) , (2)

whereK(·) is a real-valued kernel andhn the bandwidth, is a sequence of positive real numbers converging

to 0 asn −→ ∞. Note that the bandwidthhn depends onn, but we drop this index for simplicity. In what

follows Kh(u) stands forK

(
u

h

)
. The estimator defined in (2) is a generalization to the functional framework

of the classical Nadaraya-Watson regression estimator. The asymptotic properties of this estimate have been

studied extensively by several authors, we cite among others Ferratyet al. (2007), for a complete survey see

the monograph by Ferraty and Vieu (2006).

The large deviations behavior of the Nadaraya-Watson estimate of the regression function, have been studied

at first by Louani (1999), sharp results have been obtained byJoutard (2006) in the univariate framework. In

the multidimensional case Mokkademet al. (2008) obtained pointwise large and moderate deviations results

for the Nadaraya-Watson and recursive kernel estimators ofthe regression.
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In this work, we are interested in the problem of establishing large deviations principles of the regression

operator estimatêrn(·). The results stated in the paper deal with pointwise and uniform large deviations

probabilities of̂rn(·) from r(·). The organization of the paper is as follows, in Section 2 we will state pointwise

and uniform large deviations results. The proofs are given in section 3.

2 Results

Let Fx(h) = P [‖Xi − x‖ ≤ h], be the cumulative distribution of the real variableWi = ‖Xi − x‖. As in

Ferratyet al. (2007), letϕ be the real valued function defined by

ϕ(u) = E
{
r(X) − r(x)

∣∣‖X − x‖ = u
}
. (3)

Before stating our results, we will consider the following conditions.

(C.1) The kernelK is positive, with compact support[0, 1] of classC1 on [0, 1), K(1) > 0 and its derivative

K ′ exists on[0, 1) andK ′(u) < 0.

(C.2) K is Lipschitz.

(C.3) The operatorr verifies the following Lipschitz property:

∀(u, v) ∈ X 2, ∃C, |r(u) − r(v)| ≤ C‖u − v‖β (4)

(C.4) There exist three functionsℓ(·), φ(·) (supposed increasing and strictly positive and tending to zero ash

goes to zero) andζ0(·) such that

(i) Fx(h) = ℓ(x)φ(h) + o(φ(h)),

(ii) for all u ∈ [0, 1], limh→0
φ(uh)
φ(h) =: limh→0 ζh(u) = ζ0(u).

C.5 ϕ′(0) exists.

There exist many examples fulfilling the decomposition mentioned in condition (C.4), see for instance Propo-

sition 1 in Ferratyet al. (2007). The conditions stated above are classical in nonparametric estimation for

functional data, see for instance Ferratyet al. (2007) and references cited therein.

Let now introduce the following functions,

I(t) = exp{−tλK(1)} − 1 + tλ

∫ 1

0

K ′(u) exp{−tλK(u)}ζ0(u) du; (5)

Γ+
x (λ) = inf

t>0
{ℓ(x)I(t)}; Γ−

x (λ) = inf
t>0

{ℓ(x)I(−t)} andΓx(λ) = max{Γ+
x (λ); Γ−

x (λ)}.

Let x be a an element of the functional spaceX andλ > 0. Our first theorem deals with pointwise large

deviations probabilities.

Theorem 1 Assume that the conditions(C.1)–(C.5)are satisfied. Ifnφ(h) −→ ∞, then for anyλ > 0 and

anyx ∈ X , we have

(a)

lim
n→∞

1

nφ(h)
log P

(
r̂n(x) − r(x) > λ

)
= Γ+

x (λ) (6)

(b)

lim
n→∞

1

nφ(h)
log P

(
r̂n(x) − r(x) < −λ

)
= Γ−

x (λ) (7)

(c)

lim
n→∞

1

nφ(h)
log P

(
|r̂n(x) − r(x)| > λ

)
= Γx(λ) (8)
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To establish uniform large deviations principles for the regression estimator we need the following assumptions.

Let C be some compact subset ofX andB(zk, ξ) a ball centered atzk ∈ X with radiusξ, such that for any

ξ > 0,

C ⊂

τ⋃

k=1

B(zk, ξ), (9a)

∃α > 0, ∃C > 0, τξα = C. (9b)

The above conditions on the covering of the compact setC by a finite number of balls, the geometric link

between the number of ballsτ and the radiusξ are necessary to prove uniform convergence in the context

of functional non-parametric regression and many functional non-parametric settings, see the discussion in

Ferraty and Vieu (2008).

Before stating the Theorem about the uniform version of our result, we introduce the following function

g(λ) = sup
x∈C

Γx(λ). (10)

Theorem 2 Assume that the conditions(C.1)–(C.5)are satisfied. Ifnφ(h) −→ ∞, then for any compact set

C ⊂ X satisfying conditions (9) and for anyλ > 0,

lim
n→∞

1

nφ(h)
log P

(
sup
x∈C

|r̂n(x) − r(x)| > λ
)

= g(λ) (11)

3 Proofs

3.1 Proof of Theorem 1

We only prove the statement (6), (7) is derived in the same way.

(a) Write

Zn =

n∑

i=1

{
Yi − r(x) − λ

}
Kh(‖Xi − x‖)

DefineΦ
(n)
x (t) := E exp(tZn) to be the moment generating function ofZn. To prove the large deviations

principles, we seek the limit of
1

nφ(h)
log Φ(n)

x (t) asn −→ ∞.

Observe that

Φ(n)
x (t) =

{
1 + E

(
exp{t[r(X1) − r(x) − λ]Kh(‖X1 − x‖)} − 1

)}n

.

Using the definition of the functionϕ in (3), we can write

Φ(n)
x (t) =

{
1 + E

(
exp{t[ϕ(‖X1 − x‖) − λ]Kh(‖X1 − x‖)} − 1

)}n

,

=

{
1 +

∫ h

0

(
exp{t[ϕ(u) − λ]Kh(u)} − 1

)
dFx(u)

}n

.

=

{
1 +

∫ 1

0

(
exp{t[ϕ(hu) − λ]K(u)} − 1

)
dFx(hu)

}n

.

By (C.5), using a first order Taylor expansion ofϕ about zero, we obtain

Φ(n)
x (t) =

{
1 +

∫ 1

0

(
exp{t[huϕ′(0) − λ + o(1)]K(u)} − 1

)
dFx(hu)

}n

,

3



Integrating by parts and by (C.1), we have

Φ(n)
x (t) =

{
1 +

(
exp{t[hϕ′(0) − λ]K(1)} − 1

)
Fx(h)

−

∫ 1

0

t[hϕ′(0)K(u) + K ′(u)(uhϕ′(0) − λ)]

exp{t[huϕ′(0) − λ]K(u)}Fx(hu) du

}n

.

Therefore,

log Φ(n)
x (t) = n log

{
1 +

(
exp{t[hϕ′(0) − λ]K(1)} − 1

)
Fx(h)

−

∫ 1

0

t[hϕ′(0)K(u) + K ′(u)(uhϕ′(0) − λ)]

exp{t[huϕ′(0) − λ]K(u)}Fx(hu) du

}
.

Using Taylor expansion oflog(1 + v) aboutv = 0, we obtain

log Φ(n)
x (t) = n

{(
exp{t[hϕ′(0) − λ]K(1)} − 1

)
Fx(h)

−

∫ 1

0

t[hϕ′(0)K(u) + K ′(u)(uhϕ′(0) − λ)]

exp{t[huϕ′(0) − λ]K(u)}Fx(hu) du + O(h)

}
.

Hence, from Assumption (C.4) (ii) it follows that

lim
n→∞

1

nφ(h)
log Φ(n)

x (t) = ℓ(x)

{
exp{−tλK(1)} − 1 + tλ

∫ 1

0

K ′(u) exp{−tλK(u)}ζ0(u) du

}

= ℓ(x)I(t).

Using Theorem of Plachky and Steinebach (1975), the proof ofthe theorem can be completed as in Louani

(1998).

(c) Observe that for anyx ∈ X ,

max{P (r̂n(x) − r(x) > λ); P (r̂n(x) − r(x) < −λ)} ≤ P (|r̂n(x) − r(x)| > λ)

and

P (|r̂n(x) − r(x)| > λ) ≤ 2 max{P (r̂n(x) − r(x) > λ); P (r̂n(x) − r(x) < −λ)}.

Hence,

Γx(λ) ≤ lim
n→∞

1

nφ(h)
log P (|r̂n(x) − r(x)| > λ) ≤ max{Γ+

x (λ); Γ−
x (λ)} = Γx(λ),

which complete the proof.

3.2 Proof of Theorem 2

First for anyx0 ∈ C, by Theorem 1 we have

lim inf
n→∞

1

nφ(h)
log P

(
sup
x∈C

|r̂n(x) − r(x)| > λ
)

≥ lim inf
n→∞

1

nφ(h)
log P

(
|r̂n(x0) − r(x0)| > λ

)

≥ Γx0
(λ).
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Hence

lim inf
n→∞

1

nφ(h)
log P

(
sup
x∈C

|r̂n(x) − r(x)| > λ
)
≥ g(λ). (12)

To prove the reverse inequality, we note that by conditions (9) it follows

sup
x∈C

|r̂n(x) − r(x)| ≤ max
1≤k≤τ

sup
x∈B(zk,ξ)

|r̂n(x) − r(x)|. (13)

Hence,

sup
x∈B(zk,ξ)

|r̂n(x) − r(x)| ≤ sup
x∈B(zk,ξ)

|r̂n(x) − r̂n(zk)| + sup
x∈B(zk,ξ)

|r(zk) − r(x)| + |r̂n(zk) − r(zk)|. (14)

Using the fact thatK is Lipschitz by condition (C.2), there existsC > 0 so that

sup
x∈B(zk,ξ)

|r̂n(x) − r̂n(zk)| ≤
Cξ

nφ(h)h

n∑

i=1

|Yi|.

Forn sufficiently large, we chooseξ according to the preassignedǫ > 0, so that

sup
x∈B(zk,ξ)

|r̂n(x) − r̂n(zk)| ≤ ǫ. (15)

Moreover,r is Lipschitz, hence for a suitable choice ofξ

sup
x∈B(zk,ξ)

|r(zk) − r(x)| ≤ ǫ. (16)

Finally, (13)-(16) yield

sup
x∈C

|r̂n(x) − r(x)| ≤ max
1≤k≤τ

{
|r̂n(zk) − r(zk)| + 2ǫ

}
, (17)

which implies

P
(
sup
x∈C

|r̂n(x) − r(x)| > λ
)
≤

τ∑

k=1

P
(
|r̂n(zk) − r(zk)| > λ − 2ǫ

)
.

Thus,

P
(
sup
x∈C

|r̂n(x) − r(x)| > λ
)
≤ τ max

1≤k≤τ
P

(
|r̂n(zk) − r(zk)| > λ − 2ǫ

)
.

It follows, by Theorem 1, that

lim sup
n→∞

1

nφ(h)
log P

(
sup
x∈C

|r̂n(x) − r(x)| > λ
)
≤ inf

t>0
sup
x∈C

ℓ(x)Iǫ(t),

where

Iǫ(t) = exp{−(tλ − 2ǫ)K(1)} − 1 + t(λ − 2ǫ)

∫ 1

0

K ′(u) exp{−t(λ − 2ǫ)K(u)}ζ0(u) du.

By continuity arguments, and the fact that

inf
t>0

sup
x∈C

ℓ(x)I(t) = sup
x∈C

inf
t>0

ℓ(x)I(t),

we obtain

lim sup
n→∞

1

nφ(h)
log P

(
sup
x∈C

|r̂n(x) − r(x)| > λ
)
≤ g(λ). (18)

Combining (12) and (18), we see that the limit exists which isg(λ).
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