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Abstract.

In this paper we prove large deviations principles for thelfaya-Watson estimator of the regression of a
real-valued variable with a functional covariate. Undetahle conditions, we show pointwise and uniform
large deviations theorems with good rate functions.
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1 Introduction

Let {(Y;, X;), i > 1} be a sequence of independent and identically distributediora vectors. The random
variablesY; are real, withE|Y| < oo, and theX; are random vectors with values in a semi-metric space
(Xv d/('a ))

Consider now the functional regression model,

Y, = E(Y|Xl)+EZZT(XZ)+El i1=1,...,n, Q)

wherer is the regression operator mappifig onto R, and thee; are real variables such that, for all
E(e;]X;) = 0 andE(£2|X;) = 02(X;) < oco. Note that in practicet is a normed space which can be of
infinite dimension (e.g., Hilbert or Banach space) with ngjr so thatd(z, 2') = || — 2’||, which is the case
in this paper.

Ferraty and Vieu | (2004) provided a consistent estimateHfemonlinear regression operatgrbased on the
usual finite-dimensional smoothing ideas, that is

n z—X;
Zi_lyz'K(” = ||)
Tn(x) = ,
n X;—x
ZHK<M T )

whereK (-) is a real-valued kernel and, the bandwidth, is a sequence of positive real numbers cgmger
to 0 asn — oo. Note that the bandwidth,, depends om, but we drop this index for simplicity. In what

)

follows K}, (u) stands fork (%) . The estimator defined ikl(2) is a generalization to the fonel framework

of the classical Nadaraya-Watson regression estimatae. aBigmptotic properties of this estimate have been
studied extensively by several authors, we cite among stherratyet al.| (2007), for a complete survey see
the monograph by Ferraty and Vieu (2006).

The large deviations behavior of the Nadaraya-Watson egtimf the regression function, have been studied
at first by Louani (1999), sharp results have been obtaineibbtard [(2006) in the univariate framework. In
the multidimensional case Mokkadeet al.| (2008) obtained pointwise large and moderate deviatiosigtie

for the Nadaraya-Watson and recursive kernel estimatdirseafegression.
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In this work, we are interested in the problem of establigh#@mnge deviations principles of the regression
operator estimaté, (-). The results stated in the paper deal with pointwise andoumiflarge deviations
probabilities ofr,, () from r(-). The organization of the paper is as follows, in Section 2 \liestate pointwise
and uniform large deviations results. The proofs are ginegection 3.

2 Results

Let F,(h) = P[||X; — z|| < h], be the cumulative distribution of the real variablg = || X; — z||. Asin
Ferratyet al.| (2007), lety be the real valued function defined by

p(u) = B{r(X) - r(@)||X - 2| = u}. ®3)

Before stating our results, we will consider the followiranditions.

(C.1) The kerneK is positive, with compact suppdft, 1] of classC! on[0,1), K (1) > 0 and its derivative
K’ exists on0,1) and K’ (u) < 0.

(C.2) K is Lipschitz.

(C.3) The operator verifies the following Lipschitz property:
V(u,v) € X%, 3C, |r(u) —r(v)| < Cllu— v’ (4)

(C.4) There exist three functior§ ), ¢(-) (supposed increasing and strictly positive and tendingto ash
goes to zero) angh(-) such that

(i) Fr(h) = L(x)p(h) + o(¢(h)),

(iiy forall u € [0,1], limp, o 4;5(;)) = limp_o Cu(u) = Co(u).

C.5 ¢/(0) exists.

There exist many examples fulfilling the decomposition nwer@d in condition (C.4), see for instance Propo-
sition 1 in/Ferratyet al.| (2007). The conditions stated above are classical in nanpetric estimation for
functional data, see for instarice Ferratyal. (2007) and references cited therein.

Let now introduce the following functions,

1
I(t) = exp{—tAK (1)} — 1 + A /0 K () exp{—tAK () }Go(u) du; (5)

D) = inf (€)1} T, (V) = inf {£(2)1(~)} andT, () = max{T () T; ()}

Let = be a an element of the functional spateand A > 0. Our first theorem deals with pointwise large
deviations probabilities.

Theorem 1 Assume that the conditiof€.1)—(C.5)are satisfied. lfn¢(h) — oo, then for any\ > 0 and
anyz € X, we have

a
© lim. #(h) log P(7(x) — r(z) > A) = TH(X) )
(b) .

lim 0] log P(7n(z) — r(z) < =X) =T, (\) (7)
() .

Jim o log P([7(z) — r(z)] > X) = Tx(}) (8)



To establish uniform large deviations principles for thgression estimator we need the following assumptions.
Let C be some compact subset&fand B(zx, &) a ball centered at;, € X with radiusg, such that for any
£>0,

cc | B9, (9a)
k=1
Ja >0, IC >0, 7&&*=C. (9b)

The above conditions on the covering of the compaciCsby a finite number of balls, the geometric link
between the number of ballsand the radiug are necessary to prove uniform convergence in the context
of functional non-parametric regression and many funéetioton-parametric settings, see the discussion in
Ferraty and Viel | (2008).

Before stating the Theorem about the uniform version of eault, we introduce the following function

g(A) = supT'z(A). (10)
zeC

Theorem 2 Assume that the conditiof€.1)—(C.5)are satisfied. lfw¢(h) — oo, then for any compact set
C C X satisfying conditiong{9) and for any> 0,

. 1 P _
lim ) logP(Ztérg Fo(z) = r(2)| > A) = g(N) (11)

3 Proofs

3.1 Proof of Theorem[1

We only prove the statememd (6)] (7) is derived in the same way
(a) Write

Zn = El {Yi —r(z) = \}Ku(| Xi — z|)

Define ®{") (t) := Eexp(tZ,) to be the moment generating function 8f. To prove the large deviations
principles, we seek the limit % log ®{™ (t) asn — oco.
Observe that N

#((0) = {1+ B( explrlr(x) = ) = (15— alp} - 1) |

Using the definition of the functiog in (3), we can write
o0 = {1+ B expltle(IX: —ol) = AKu(1%1 al)) 1) |

n

L [ (omtttow - k) 1) arw)

n

{1 + /01 (exp{t[go(hu) — NK(u)} - 1) dFm(hu)} .

By (C.5), using a first order Taylor expansiong@fbout zero, we obtain

n

() = {1 + /01 <exp{t[hu<p'(0) — A+ o(1)]K(u)} — 1) sz(hu)} ,



Integrating by parts and by (C.1), we have
a0() = {1 T (exp{tlhg!(0) — NK (1)) — 1) ()
- / ! (0)K (u) + K’ (u)(uhig! (0) — N)]

exp{t[huy’(0) — N\ K (u) } Fy (hu) du} .

Therefore,
log®™(t) = nlog{l—i— (exp{t[h¢'(0) — \|K (1)} — 1) Fy.(h)
1
- / g (0)K () + K (u) (uhge'(0) — )]

exp{t[huy’(0) — N K (u)} Fy (hu) du}.

Using Taylor expansion dbg(1 + v) aboutv = 0, we obtain
g0 = nf (explng'(0) - NK(W} - DE 1)
1
- [ O ) + K e (0) - )

exp{t[huy’(0) — N K (u)} Fy(hu) du + O(h)}.

Hence, from Assumption (C.4) (ii) it follows that

N (n) b
nh_)rrgo o) log @V (t) = Z(:v){ exp{—tAK (1)} -1+ t)\/o K'(u) exp{—t\K (u)}(o(u) du}
= U)I(t).

Using Theorem of Plachky and Steinebach (1975), the protietheorem can be completed as in Louani
(1998).
(c) Observe that for any € X,

max{P(rn(x) —r(x) > N); P(Tn(z) — r(z) < =N} < P(|rn(z) — r(x)] > N)

and
P(|rn(z) —r(z)] > A) < 2max{P(T,(z) — r(x) > \); P(Tn(z) —r(z) < =N}

Hence,

Pa() < lim. #h) log P(I7(2) — ()] > A) < max{TF (A); Ty (A} = T2 (M),

which complete the proof.

3.2 Proof of Theorem

First for anyzy € C, by Theoreni1l we have

V

1 1
liminf ———log P(sup |[Fn(x) —r(x)| > A) > liminf ———log P (|7 (zo) — r(xg)| > A
m inf s Tog P(sup [P (@) — r()] > ) minf - 1og (|7 (w0) = 7(wo)| > )

1—‘10 (A)'

V



Hence

lim inf L log P(sup |7 (z) — r(z)] > A) > g(A).
¢ h z€eC

nhoe ng(h)

To prove the reverse inequality, we note that by conditi®dt follows

sup|Fn(z) — r(z)| < max  sup [Fu(z) — r(2)]

zec LSKST g€ B(2y,€)

Hence,

sup  [rp(x) —r(@)] < sup [Tu(x) = Ta(zi)[ + sup r(ze) —r(@)] + [Fn(zk) — r(20)]

z€B(2k,§) r€B(zk,§) z€B(zk,§)

Using the fact thak is Lipschitz by condition (C.2), there exisfs > 0 so that

. . ct &
sup  |Tp(x) —a(2k)| < Y;|.
L [Fa@) =Tl mb(h)h; |

Forn sufficiently large, we choosgaccording to the preassigned- 0, so that

sup () — Ta(zk)| <e.
z€B(zk,§)

Moreover,r is Lipschitz, hence for a suitable choicefof

sup |r(zk) —r(x)] <e.
z€B(zk,§)

Finally, (I3)-[I8) yield

sup |7 (x) — r(x)] < max {|1?n(zk) —r(z)| + 26},

z€C 1<k<Tt

which implies

zeC

P(sup [ (z) — r(z)] > A) < ZP(Wn(zk) —r(zk)| > A — 2¢).
k=1

Thus,

P(sup[ra(z) — r(z)] > A) < Tfélz?ép('?"(z’“) —r(zk)| > A — 2).

zeC
It follows, by Theoreni 1L, that

lim sup L log P(sup [P (z) — r(z)| > A) < inf sup () (1),

n— o0 ngf)(h) zeC >0 2¢cc

where

1
I.(t) =exp{—(tA— 26) K(1)} — 1+ t(A — 26)/0 K'(u) exp{—t(A — 2¢) K (u) }{o(u) du.

By continuity arguments, and the fact that

inf Sup U(x)I(t) = Sup Inf ((2)1(t),

we obtain

1
lim sup ——— log P(sup |7 (z) — 7(x)] > A) < g(A).
zeC

Combining [(I2) and(18), we see that the limit exists which(is).

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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