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Strong gravitational field in R + µ4/R gravity
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We introduce a new approach for investigating the weak field limit of vacuum field equations in
f(R) gravity and we find the weak field limit of f(R) = R + µ4/R gravity. Furthermore, we study
the strong gravity regime in R + µ4/R model of f(R) gravity. We show the existence of strong
gravitational field in vacuum for such model. We find out in the limit µ → 0 , the weak field limit
and the strong gravitational field can be regarded as a perturbed Schwarzschild metric.

PACS numbers: 04.50.Kd

I. INTRODUCTIONS

Observations on supernova type Ia [1], cosmic mi-
crowave background [2] and large scale structure [3], all
indicate that the expansion of the universe is not pro-
ceeding as predicted by general relativity, if the universe
is homogeneous, spatially flat, and filled with relativistic
matter. An interesting approach to explain the positive
acceleration of the universe is f(R) theories of gravity
which generalize the geometrical part of Hilbert-Einstein
lagrangian [4–11]. One of the initiative f(R) models sup-
posed to explain the positive acceleration of expanding
universe has f(R) action as f(R) = R − µ4/R [5]. Af-
ter proposing the f(R) = R − µ4/R model, it was ap-
peared this model suffer several problems. In the metric
formalism, initially Dolgov an Kawasaki discovered the
violent instability in the matter sector [12]. The analysis
of this instability generalized to arbitrary f(R) models
[13, 14] and it was shown than an f(R) model is stable if
d2f/dR2 > 0 and unstable if d2f/dR2 < 0. Thus we can
deduce R− µ4/R suffer the Dolgov-Kawasaki instability
but this instability removes in the R+µ4/Rmodel, where
µ4 > 0. Furthermore, one can see in the R−µ4/R model
the cosmology is inconsistent with observation when non-
relativistic matter is present. In fact there is no matter
dominant era [10, 15]. However, the recent study shows
the standard epoch of matter domination can be obtained
in the R+ µ4/R model [10].

It is obvious that a viable theory of gravity must
have the correct newtonian limit. Indeed a viable the-
ory of f(R) gravity must pass solar system tests. After
the R − µ4/R was suggested as the solution of cosmic-
acceleration puzzle, it has been argued that this theory
is inconsistent with solar system tests [16]. This claim
was based on the fact that metric f(R) gravity is equiva-
lent to ω = 0 Brans-Dicke theory, while the observational
constraint is ω > 40000. But this is not quite the case
and it is possible to investigate the spherical symmetric
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solutions of f(R) gravity without invoking the equiva-
lence of f(R) gravity and scalar tensor theory [7, 9, 17–
21]. It has been shown that some f(R) models accept
the Schwarzschild-de Sitter spacetime as a spherical sym-
metric solutions of field equation[17]. Hence R − µ4/R
model has a Schwarzschild-de Sitter solution with con-
stant curvature as R =

√

3µ4 where this is not the case
in R+ µ4/R model.
In this paper we study the R + µ4/R model of f(R)

gravity. We find the static spherically symmetric solution
of vacuum field equation in both weak field limit and
strong gravity regime, moreover, the weak field analysis
can be expanded on f(R) models of the form f(R) =
R+ ǫg(R).

II. WEAK FIELD LIMIT

In this section we investigate the weak field solution
of vacuum field equation in f(R) theories of gravity. We
are interested in model of the form f(R) = R + ǫg(R),
with ǫ an adjustable small parameter. The motivation
for discussing these models is that the nonlinear curva-
ture terms that grow at low curvature can lead to the
late time positive acceleration, but during the standard
matter dominated epoch, where the curvature is assumed
to be relatively high, could have a negligible effect.
The vacuum field equations for these models are

Gµν = −ǫ
[

Gµν + gµν�−∇µ∇ν +
gµν
2

×
(

R− g(R)

ϕ(R)

)]

ϕ(R), (1)

where ϕ(R) = dg(R)/dR. Contracting the field equation
we obtain

R = ǫ

[

R− 2g(R)

ϕ(R)
+ 3�

]

ϕ(R). (2)

If ǫ = 0 the above equations reduce to Einstein equation.
Hence we suppose Gµν and R in the r.h.s of Eqs.(1,2)
can be neglected for small values of ǫ. Furthermore if
the condition lim

R→0
[g(R)/ϕ(R)] = 0 is satisfied we can
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neglect this term too. neglecting these terms leads to the
following equations

Gµν = −ǫ [gµν�−∇µ∇ν ]ϕ(R), (3)

and

R = ǫ3�ϕ(R). (4)

The analysis of spherically symmetric solution can be
carried out using schwarzschild coordinate

ds2 = −A(r)dt2 +B(r)−1dr2 + r2dΩ2. (5)

In the weak field limit approximation the metric deviates
slightly from the Minkowski metric, so we can write

A(r) = 1 + a(r),

B(r) = 1 + b(r),

| a |, | b |≪ 1. (6)

When solving the field equations(3,4) we will keep only
terms linear in the perturbations a(r), b(r). Hence equa-
tions (3,4) leads to

a′

r
+

b

r2
= −ǫ

2

r

dϕ(R)

dr
b′

r
+

b

r2
= −ǫ∇2ϕ(R), (7)

and

R = 3ǫ∇2ϕ(R). (8)

where (′) indicates a derivation with respect to r.

A. f(R) = R1+ǫ

This model is considered in [7]. It is shown that this
model has an exact spherically symmetric vacuum solu-
tion and regarding the general line-element in Eq.(5), it
may be written as

A(r) = r2ǫ(1+2ǫ)/(1−ǫ) + c r−(1−4ǫ)/(1−ǫ),

B(r) =
(1 − ǫ)2

(1− 2ǫ+ 4ǫ2)(1 − 2ǫ− 2ǫ2)

×
(

1 + c r−(1−2ǫ+4ǫ2)/(1−ǫ)
)

,

where c is a constant. In the limit ǫ → 0, these solutions
become

ds2 = −
(

1 + 2ǫ ln r +
c

r

)

dt2 +
(

1 + 2ǫ+
c

r

)−1

dr2

+r2dΩ2. (9)

because we seek the weak field limit, in above equation
we assume c/r ≪ 1.

Since we are interested in the limit ǫ → 0, we may
expand f(R) = R1+ǫ around ǫ = 0. Then we have

f(R) = R+ ǫR lnR,

h(R) = R lnR,

ϕ(R) = 1 + lnR.

It is clear that g(R) satisfies the condition
lim
R→0

[g(R)/ϕ(R)] = 0. Inserting ϕ(R) in the trace

equation (8), the Ricci scalar is obtained as

R = −6ǫ

r2
. (10)

Then we arrive at the solutions of Eqs.(7)

a =
c

r
+ 2ǫ ln r, b =

c

r
+ 2ǫ, (11)

where c is a constant. We can see our solutions are in
agreement with the exact solutions (9). Also one can
check neglecting R, Gµν and g(R)/ϕ(R) in Eqs.(1, 2) is
reasonable.

B. f(R) = R± µ4/R

Based on equivalence between f(R) gravity and Brans-
Dicke theory with ω = 0, it was argued that this the-
ory is inconsistent with solar system tests [16]. In-
deed by this approach the Post-Newtonian parameter
is found as γPPN = 1/2 while the measurements indi-
cate γPPN = 1 + (2.1 ± 2.3) × 10−5 [22]. Also we must
note that using equivalence between f(R) gravity and
scalar tensor gravity one can find models which are con-
sistent with the solar system tests. This consistency can
be made by giving the scalar a high mass or exploiting the
so-called chameleon effect[23–25]. However, when one is
using equivalence between f(R) gravity and scalar ten-
sor gravity, the continuity of scalar field or its equivalent,
the Ricci scalar, at the matter boundary is crucial con-
dition which is not the case in Einstein gravity. But in
this work we don’t adopt the continuity of Ricci scalar
for solving the field equations. Instead, we suppose that
when µ tends to zero we arrive at the Einstein gravity.
Thus we find a solution for 1/R model which is radically
different from other solutions in [26, 27].
For this model we have

g(R) = ±1/R,

ϕ(R) = ∓1/R2, (12)

where g(R) fulfills the condition lim
R→0

[g(R)/ϕ(R)] = 0.

Solving Eqs.(7,8) we obtain

R = ∓7αµ
4

3 r−
2

3 ,

µ4

R2
=

1

49α2
µ

4

3 r
4

3 ,

a = −2M

r
± 3

4
αµ

4

3 r
4

3 ,

b = −2M

r
± αµ

4

3 r
4

3 . (13)
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where α3 = 4/147 and M is a constant. Therefore the
metric for space time is

ds2 = −
(

1− 2M

r
± 3

4
αµ

4

3 r
4

3

)

dt2

+

(

1− 2M

r
± αµ

4

3 r
4

3

)−1

dr2 + r2dΩ2. (14)

From Eq.(13) it is obvious that in the limit µ → 0,
µ4/R2 tends to zero, so there is not singularity in the
field equations. Also one can check neglecting R, Gµν ,
and g(R)/ϕ(R) in Eqs.(1, 2) is reasonable.

C. f(R) = R+ ǫ lnR

For this model ϕ(R) = 1/R. Solving trace equation
(8) and field equations (7) we obtain

R =

√
6ǫ

r
, (15)

and

a = b = −2M

r
−
√

ǫ

6
r. (16)

where M is a constant. Therefore the space time metric
for empty space in this model is

ds2 = −
(

1− 2M

r
−
√

ǫ

6
r

)

dt2

+

(

1− 2M

r
−
√

ǫ

6
r

)−1

dr2 + r2dΩ2. (17)

We can see, the generalized Newtonian potential is

ΦG = −M

r
− 1

2

√

ǫ

6
r. (18)

This generalized gravitational potential has two terms.
The first term is the standard Newtonian potential and
the second term make a constant acceleration, +

√

ǫ/24,
which is independent of the mass of star. In [28] this
metric is used to address the Pioneer’s anomalous.

III. STRONG GRAVITY REGIME IN R+ µ4/R
MODEL

In this section we investigate the existence of strong
gravitational field for f(R) = R + µ4/R model of f(R)
gravity. We can rewrite the field equation (1) as

Gν
µ

(

1− µ4

R2

)

= −1

3
δνµR−∇µ∇ν

(

µ4

R2

)

, (19)

where we have used the trace equation

R = −3[R+�]
(

µ4/R2
)

. (20)

In the above equation we have neglected the energy-
momentum tensor of matter because we investigate the
strong gravitational field around a spherically symmetric
distribution of matter. Adopting the general spherically
symmetric metric (5), we can rewrite the trace equation
(20) and (rr),(tt) components of field equation (19) as

−
[

B

(

d2

dr2
+

2

r

d

dr

)

+
1

2

(

B′ +
BA′

A

)

d

dr
+R

]

×
(

µ4/R2
)

=
R

3
, (21a)

(

BA′

rA
+

B − 1

r2

)

(

1− µ4/R2
)

+

(

B
d2

dr2
+

B′

2

d

dr

)

(

µ4/R2
)

= −R

3
, (21b)

(

B′

r
+

B − 1

r2

)

(

1− µ4/R2
)

+
BA′

2A

d

dr

(

µ4/R2
)

= −R

3
, (21c)

where(′) denotes derivation with respect to the (r). In
the previous section we showed , (R + µ4/R) model has
the week field solution as

ds2 = −
[

1− 2M

r
+

3

4
α(µr)

4

3

]

dt2

+

[

1− 2M

r
+ α(µr)

4

3

]−1

dr2 + r2dΩ2, (22)

where α = (4/147)1/3 . It is obvious this metric reduces
to Schwarzschild metric in the limit µ → 0. Now we
seek the solution of field equation in the limit (r → 2M).
Without loss of generality we can assume 2M = 1. In
order to solve equations (21) we use some definitions as

φ = γ/R,

γ = −µ4/3,

A = 1− 1

r
+ γa(r),

B = 1− 1

r
+ γb(r). (23)

Because we seek the solution in the limit r → 1, we may
define a new variable as x = r−1. Using these definitions
we can rewrite Eqs.(21) as

γ

(

b
d

dx
+

2b

x+ 1
+

b′ + a′

2
+

(x+ 1)(b− a)

2(x+ γa(x+ 1))
(

1

(x+ 1)2
+ γa′

))

dφ2

dx
=

(

1

3
− γφ2

)

1

φ

−
(

x

x+ 1

d2

dx2
+

2x+ 1

(x+ 1)2
d

dx

)

φ2 (24a)
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FIG. 1: a against x. The red-dashed line shows numerical
results of Eqs.(25). The green-dashed line represents approx-
imate solution for x ≪ 1 (Eq.(26a)) and the black-dotted line
is the approximate solution for x ≫ 1 (Eq.(28a)). A close up
on the origin of main figure is presented .
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FIG. 2: b against x. The red-dashed line shows numerical
results of Eqs.(25). The green-dashed line represents approx-
imate solution for x ≪ 1 (Eq.(26b)) and the black-dotted line
is the approximate solution for x ≫ 1 (Eq.(28b)). A close up
on the origin of main figure is presented .

(

x

x+ 1

d2

dx2
+

1

2(x+ 1)2
d

dx
+ γ

(

b
d2

dx2
+

b′

2

d

dx

))

φ2

=
1

3φ
+

(

b

(x+ 1)2
+

a′

x+ 1
+

b− a

x+ γa(x+ 1)

×
(

1

(x + 1)2
+ γa′

))

(1 + γφ2) (24b)

1

2

(

1 + γ
(x+ 1)(b− a)

x+ γa(x+ 1)

)(

1

(x+ 1)2
+ γa′

)

dφ2

dx

=
1

3φ
+

(

b

(x+ 1)2
+

b′

x+ 1

)

(

1 + γφ2
)

, (24c)

where (′) denotes derivation with respect to the (x). For
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FIG. 3: ϕ against x. The red-dashed line shows numerical
results of Eq.(25a). The green-dashed line represents approx-
imate solution for x ≪ 1 (Eq.(26c)) and the black-dotted line
is the approximate solution for x ≫ 1 (Eq.(28c)). A close up
on the origin of main figure is presented .

the limit µ → 0, in the above equations we suppose
that we can neglect terms containing γ . After solving
equations we check this assumption. By neglecting these
terms, equations 24 can be rewritten as

1

3φ
=

(

x

x+ 1

d2

dx2
+

2x+ 1

(x+ 1)2
d

dx

)

φ2 (25a)

b

(x+ 1)2
+

a′

x+ 1
+

b− a

x(x+ 1)2
= − 1

3φ

+

(

x

x+ 1

d2

dx2
+

1

2(x+ 1)2
d

dx

)

φ2 (25b)

1

2

1

(x + 1)2
dφ2

dx
=

1

3φ
+

b

(x + 1)2
+

b′

x+ 1
. (25c)

In the limit x ≪ 1, solutions of Eqs. (25) are

a0 =
3

8

(

4

3

)1/3

x2/3, (26a)

b0 = −1

8

(

4

3

)1/3

x2/3, (26b)

φ0 =

(

3

4

)1/3

x1/3. (26c)

Thus we obtain the metric for x ≪ 1 as

ds2 = −
(

1− 1

r
− 3

8

(

4

3

)1/3

µ4/3(r − 1)2/3

)

dt2

+

(

1− 1

r
+

1

8

(

4

3

)1/3

µ4/3(r − 1)2/3

)

dr2

+ r2dΩ2. (27)
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Furthermore, for x ≫ 1, we can obtain the solutions of
equations (25) as

a∞ = −3

4
αx4/3, (28a)

b∞ = −αx4/3, (28b)

φ∞ =
1

7α
x2/3, (28c)

which are in agreement with week field limit (22). Now
we can check the validity of our assumption. Considering
the solutions (28), shows that neglecting terms contain-
ing γ in Eqs. (24) is valid only for x ≫| γ3 | or x ≫ µ4.
Hence the metric (26) is solution of field equations in the
range of µ4 ≪ x ≪ 1. By performing a conformal trans-
formation and changing coordinate we can see the strong
field solution (27) is

ds2 =

−
(

1− 2M

r
− 3

8

(

4

3

)1/3

(2Mµ)4/3(
r

2M
− 1)2/3

)

dt2

+

(

1− 2M

r
+

1

8

(

4

3

)1/3

(2Mµ)4/3(
r

2M
− 1)2/3

)

dr2

+r2dΩ2,

which is valid in the range of (2Mµ)4 ≪ r/2M − 1 ≪ 1
and farther where r ≫ 2M , the metric of space time can
be approximated by the metric (22). Furthermore, we
have solved field equations (25)numerically. figure shows
that the numerical solutions are in agreement with the
approximate solutions (26,28).

IV. DISCUSSION

We have studied spherically symmetric solution of
f(R) gravity. At first we have introduced a new ap-
proach for investigating the weak field limit of vacuum
field equations in f(R) gravity and we find the weak
field limit of f(R) = R + µ4/R gravity, which dif-
fers slightly from the schwarzschild metric. Moreover
we have investigated the strong field regime for this
model. We have shown that if (r − 2M)/(2M)5 ≫ µ4,
where 2M and r are Schwarzschild radius and radius in
the Schwarzschild coordinate, the gravitational field is
a perturbed Schwarzschild metric even in strong gravity
regime.
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