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Boost-rotation symmetric spacetimes are exceptional as they are the only exact asymp-
totically flat solutions to the Einstein equations describing spatially bounded sources
(“point-like” particles, black holes) undergoing non-trivial motion (“uniform accelera-
tion”) with radiation. We construct the Newtonian limit of these spacetimes: it yields
fields of uniformly accelerated sources in classical mechanics. We also study the special-
relativistic limit of the charged rotating C-metric and so find accelerating electromagnetic
magic field.
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1. Introduction

The boost-rotation (BR) symmetric solutions describe spatially bounded charged

rotating objects undergoing a “uniform acceleration”; they are asymptotically flat in

the sense that they admit smooth though not complete null infinity. Moreover, they

are radiative (it has been proven that boost Killing vector is the only one additional

Killing vector to axial Killing vector which does not exclude gravitational radiation).

They were used both in analytical and numerical relativity (for their brief review

see Refs. [1,2]).

2. Boost-rotation symmetric spacetimes and the C-metric

The electrovacuum BR symmetric metric,1,3 generally of algebraic type I, in global

coordinates reads

ds2 =
eµ

[

z dt− t dz −
(

z2 − t2
)

ω dϕ
]2

− eν (z dz − t dt)2

z2 − t2
− eν d̺2 − e−µ̺2 dϕ2 ,

(1)

where µ, ν and ω are functions of (̺2, t2 − z2) only. Substituting (1) for non-

rotating case (ω = 0) into vacuum Einstein’s field equations we get the flat space

wave equation �µ = 0. With non-vanishing rotation or electromagnetic field present

system of coupled non-linear PDEs arises. Therefore, in general, only non-rotating

vacuum solutions are explicitly known.

The charged rotating C-metric – also a member of BR symmetric spacetimes,

but algebraically special (of type D) – reads4,5

ds2 =
1

A2(x− y)2

{

G(y)

1 + (aAxy)
2

[

(

1 + a2A2x2
)

Kdt+ aA
(

1− x2
)

Kdϕ
]2
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−
1 + (aAxy)2

G(y)
dy2 +

1 + (aAxy)2

G(x)
dx2

+
G(x)

1 + (aAxy)
2

[

(

1 + a2A2y2
)

Kdϕ+ aA
(

y2 − 1
)

Kdt
]2
}

, (2)

where the structure function G(ξ) following from the Einstein-Maxwell equations is

G(ξ) =
(

1− ξ2
)

(1 + r+Aξ) (1 + r
−
Aξ) r± = m±

√

m2 − a2 − q2 . (3)

Here m, a, q and A are respectively the mass, rotation, charge and acceleration

parameters, K is a constant scaling angular coordinate.

The explicit (but complicated) transformation of the C-metric (2) with q = a = 0

to the Weyl form and subsequently to the form of (1) can be found in Ref [6].

The 4-potential of the electromagnetic field corresponding to (2) is

A =
Kqy

1 + (aAxy)2
[(

1 + a2A2x2
)

dt+ aA
(

1− x2
)

dϕ
]

. (4)

3. The Newtonian limit of boost-rotation symmetric spacetimes

In our work,7 based upon the Ehlers frame theory,8 we found physically plausible

Newtonian limits of the BR symmetric solutions.

What has to be done is to introduce the causality constant λ = c−2 in the

metric and choose suitable coordinate systema. Then in the limit λ → 0 the Ehlers

frame theory goes over to the Newton-Cartan theory where two distinct spatial

and temporal metrics together with affine connection occur. The connection is then

given by the Newtonian potential Φ as follows: Γα
βγ = t,β t,γ s

αδ Φ,δ.

The next key point is to observe that even in special relativity the world-

line of a uniformly accelerated particle is hyperbola z =
√

c4g−2 + c2t2 =
√

λ−2g−2 + t2λ−1. The whole hyperbola disappears to infinity in the limit λ → 0

and the acceleration horizon (the “roof” – see Ref. [1]) becomes the hyperplane

t = 0. Hence, in order to obtain a nontrivial limit, we have to “go” to infinity with

the particle. We do this by introducing a new coordinate ζ by

z = ζ +
1

λg
, (5)

and so we make a λ-dependent shift of z. Then in the limit the hyperbola turns into

the parabola.

Before performing the limit λ → 0 it is crucial to make the substitution (5). We

can calculate the nontrivial components of affine connection and find

Γa
tt = lim

λ→0

[

(

1

2

µ,a

λ

)
∣

∣

∣

∣

z=ζ+ 1
λg

]

, a = {̺, z} . (6)

Notice that the other metric function ν does not enter the Newtonian results.

aor congruence of observers, as we used for charged C-metric
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After long but straightforward calculations of the limit (6), we obtain the result-

ing Newtonian potential. Remarkably, complicated form (for functions µ, ν entering

(1) see Ref. [7]) of the C-metric leads to the simple classical potential of uniformly

accelerated point particle with mass m (for similar results for other BR symmetric

spacetimes see Ref. [7]):

Φ = −
Gm

√

̺2 +
(

ζ − 1
2
gt2

)2
.

For charged C-metric (2) global coordinates appropriate for a Newtonian limit

are not known. Therefore we have to introduce suitable class of observers (“static

observers at infinity”) – using purely geometric formulation of the Ehlers frame

theory – and calculate the limit with respect to these observers.

The Newtonian limit then leads to charged massive point particle with standard

Newtonian potential and the electromagnetic field according to the Newtonian limit

of Maxwell equations as introduced by Kunzle.9

4. Flat-space limit of the charged rotating C-metric

In Ref. [5] we give a detailed account of the special relativistic limit of charged

rotating C-metric. Taking the limit G → 0 in the metric (2) while keeping a, A,

q constant and choosing constant K = (1 + a2A2)−1 we arrive at flat spacetime

in non-trivial coordinates (in Ref. [5] we give the explicit transformation formulae

from these “uniformly accelerated” coordinates to Rindler coordinates.). The form

of the electromagnetic potential, the field and its invariants remain the same as in

Eq.(4). The sources of this field are two rotating uniformly accelerating charged

discs which become bent in the global inertial frame. This is a generalization of the

Born solution for a point particle and of the “electromagnetic magic field” studied

by Lynden-Bell.10
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