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Abstract

In nonparametric statistics an optimality criterion for estimation
procedures is provided by the minimax rate of convergence. However
this classical point of view is subject to controversy as it requires to
look for the worst behaviour reached by an estimation procedure in a
given space. The purpose of this paper is to show that this is not jus-
tified as the minimax risk often coincides with a generic one. We are
here interested in the rate of convergence attained by some classical
estimators on almost every, in the sense of prevalence, function in a
Besov space.
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1 Introduction
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Since its introduction in the seventeen’s, nonparametric estimation has
taken a large place in the work of mathematical or signal processing
communities. Often a signal has too many components, in the case for
instance of densities or curve images, to allow classical studies upon
finite dimensional spaces to give accurate results. But which kind of
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estimator can be more appropriate in nonparametric cases?

This question raised a lot of definitions and discussions in statis-
tical community. How can two estimators be compared when they
point out infinite dimensional objects and what kind of optimal be-
haviour can be expected. One of the most common way to test the
performance of a procedure is to compare its convergence rate with
an optimal one given by minimax theory. Nonetheless, this technique
comes from a particular definition which can be subject to controversy.
The main drawback is the pessimist point of view of this theory, which
looks for the worst rate of estimation obtained in a given space. In
this paper, we introduce a new test of the risk, obtained thanks to
genericity theories, and which shows that the minimax rate of estima-
tion should not be as pessimistic as believed.

In the minimax paradigm one supposes that a function f belongs
to a certain space ©, which can be, for instance a Sobolev or Hélder
space linked to some regularity properties and one defines a risk, or
loss function thanks to a pseudo-distance on ©, denoted R(.,.). Given
a radius C > 0 and an estimation procedure 5,, depending on the
model and of a data parameter n, the maximal risk of;, on ©¢ is then
defined by:

R"(w) = sup E(R(fa, f)), (1)
f€ed¢
where O¢ is a closed ball in © with radius C' > 0.
If 7,, denotes the set of all estimation procedures defined on © the
minimax risk on G¢ is given by :

R™©) = inf sup E(R(fn, [)). (2)
f€Tn feBc

This minimax risk gives an optimal bound over the function class
O¢. It is thus natural for estimation procedures to attempt to reach
this risk, at least asymptotically when n tends to infinity.

The main drawback of the minimax theory is that we are looking
for the maximum risk on a function space, thus for the worst be-
haviour. This point of view seems pessimistic and can be not generic
enough as it can be used to merge estimation procedures. Indeed, the
worst case could be a misleading one and a method can be rejected
although it is a good one for a lot of functions. The purpose of this



paper is to show that it is not the case and that in fact minimax
rate corresponds to a generic one. The purpose of this paper is thus
twofold. We introduce a new test of estimation performances, based
on generic properties. Thanks to this definition, we show that the
minimax risk coincide with an “almost every” one.

Let us first introduce what is meant by almost every function. In
a finite dimensional space, we say that a property holds almost every-
where if the set of points where it is not true is of vanishing Lebesgue
measure. The Lebesgue measure has here a preponderant role, as it
is the only o-finite and translation invariant measure. Unfortunately,
no measure shares those properties in infinite dimensional Banach
spaces. A way to recover a natural ”almost every” notion in infinite
vector spaces is thus defined as follows by J. Christensen in 1972 see
[2, 4, 12).

Definition 1. Let V' be a complete metric vector space. A Borel set
A C V is Haar-null (or shy) if there exists a compactly supported
probability measure i such that

VeeV, plx+A)=0. (3)

If this property holds, the measure p is said to be transverse to A.
A subset of V' is called Haar-null if it is contained in a Haar-null
Borel set. The complement of a Haar-null set is called a prevalent set.

As it can be seen in the definition of prevalence, the main issue
in proofs is to construct transverse measures to a Borel Haar-null set.
We remind here two classical ways to construct such measures.

Remarks. 1. A finite dimensional subspace of V, P, is called a

probe for a prevalent set T C V if the Lebesgue measure on P is
transverse to the complement of T .
Those measures are not compactly supported probability mea-
sures. However one immediately checks that this notion can also
be defined the same way but stated with the Lebesgue measure
defined on the unit ball of P. Note that in this case, the support
of the measure is included in the unit ball of a finite dimensional
subspace. The compactness assumption is therefore fulfilled.

2. If V is a function space, a probability measure on V can be de-
fined by a random process X; whose sample paths are almost
surely in V.. The condition pu(f + A) = 0 means that the event
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X — f € A has probability zero. Therefore, a way to check that a
property P holds only on a Haar-null set is to exhibit a random
process Xy whose sample paths are in 'V and is such that

VfeV,as. Xi+ f does not satisfy P.

The following results enumerate important properties of prevalence
and show that these notions supply a natural generalization of “zero
measure” and “almost every” in finite-dimensional spaces, see [2, 4,

12].

Proposition 1. o If S is Haar-null, thenVx € V, x + S is Haar-
null.

e Ifdim(V) < oo, S is Haar-null if and only if meas(S) = 0 (where
meas denotes the Lebesgue measure).

e Prevalent sets are dense.

e The intersection of a countable collection of prevalent sets is
prevalent.

e If dim(V') = oo, compact subsets of V are Haar-null.

As we can see from the properties of prevalent sets, this theory
provides a natural generalization of the finite dimensional notion of
almost every. Since its definition, this theory has been mainly used in
the context of differential geometry [12] and regularity type properties
[11]. A classical example is given in [11], where it is proved that the
set of nowhere differentiable functions is prevalent in the space of
continuous functions.

Using this theory, a natural way to exhibit a risk for an estimating
procedure is to look at the risk reached on almost every function of
O, in the sense of prevalence.

As the minimax theory has been widely studied, a large class of
results exist in different function spaces and with different losses. His-
torically, the first one is the result of Pinsker [21] which shows that
suitable linear estimators reach the optimal L? risk rate on L? Sobolev
classes. If the risk function is given by an LP norm, [13, 3] show that,
under certain conditions, kernel estimators are optimal in the sense
of minimax theory in the same function spaces. More recent results,
such as those of [20], stated that linear estimators cannot reach the
optimal bound in nonlinear regression, as soon as we take the LP risk
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and Sobolev classes.

In this paper we focus on Besov spaces and take the general LP
loss function. The interest of studying Besov spaces is motivated by
its practical use in approximation theory and its theoretical simplicity
in terms of wavelet expansions. Furthermore, in the theoretical point
of view, they also generalize some classical function space, such as
Holder and L? Sobolev spaces.

In those Besov spaces we study the performances in terms of generic
approximation of two classical estimation procedures in both white
noise model and density estimation problem. A second result gives
the generic rate of estimation for larger families of procedure in the
case of the white noise model.

2 Models and estimation procedures

In the following, we consider two classical estimation problems. The
first one is given by the Gaussian white noise model. Following the
definition of [13], we suppose that we observe Y; such that

1
where dW; stands for the d-dimensional Wiener measure, n is
known and f is the unknown function to be estimated.

The second theoretical framework in which our theory can be ap-
plied is the problem of density estimation. In this case, the model
is given by a sequence X1, ..., X, of independent and identically dis-
tributed random variables of unknown density f on R.

The estimation procedures that we deal with are defined thanks to
a base decomposition of the function to be estimated. To define them,
we first introduce the wavelet decomposition. In our framework, those
bases allow both to define function spaces and estimation procedures.
It provide thus a key tool to introduce our results.

The wavelet transform is a powerful approximation tool largely
used in statistics applied to signal processing, thanks to its properties
of localization in time and frequency domains. Indeed, this property



allows to reconstruct a signal with few coefficients. Its use in statisti-
cal communities and the development of wavelet based estimators are
thus natural, as introduced in [18].

To define wavelets, we refer to [6] where it is proved that for r
large enough there exists 2¢ — 1 functions 1(® with compact support
and which belong to C". Furthermore each ¥ has r vanishing mo-
ments and the set of functions {wj(zll =242 (20— k), jE€Z, ke
7% i€ {1,...,24 —1}} forms an orthonormal basis of L2(R9). Tt is also
noticed in [19] that wavelets provide unconditional bases of LP(R%) as
far as 1 < p < oco. Taking periodized wavelets allow to restraint our
properties to [0, 1]%.

Thus any function f € LP can be written as

F=>" i) (5)

i7j7k
where

)

&) =29 [ (- Kyda, ©)

We can notice that we stand in isotropic cases. Thus the direction of
the wavelets is not involved and in the following, we omit the direc-
tional index 3.

As the collection of {29/2¢(") (21 — k), jeN, ke {0,...,27 —
1}4,i=1,...,24 — 1} form an orthonormal basis of L?([0, 1]¢), observ-
ing the whole trajectory of Y; in (4) is equivalent to treat the following
problem, in which is observed (y;x)jen kefo,...21—1}4 € (2(N%+1) such
that Vi, k,

1
Yk =0+ 7 i (7)

where y; = [1;,dY, v; are 1.i.d. Gaussian random variables and
0, 1) is the sequence to be estimated.
]7

In terms of density estimation, one can also notice that the den-
sity function to be estimated f can be represented in terms of wavelets
f =2 0;xk¥;k. Inthis case, the purpose is to find a sequence (ng)]k
approximating (5;x); k-



Furthermore wavelets are useful as they provide a simple charac-
terization of Besov spaces.

Homogeneous Besov spaces are characterized, for p,q > 0 and
s € R, by

q/p

J §>0,k€{0,...,.21 —1}d
(8)

This characterization is independent from the chosen wavelet has
r vanishing moments, with r > s.

We also denote by B;d(R?) the closed ball in By ?(R?) of radius
c> 0.

In terms of wavelets approximation, or in any base, the most nat-
ural and classical way to define estimators reachable is given by linear
estimation.

Definition 2. Suppose that we stand in the model (7). Linear esti-
mators fX are constructed by

fE@) =300 (x), 9)
ik
where X
0% = X (10)

Parameters ()\ﬁ) )jk can be seen as smoothing weights depending

of the problem. Those weights can be of different natures. Classical
ones are:
n)

e Projection weights: )\g-k =Ljcmy,-

e Pinsker weights: )‘5‘,”) =(1- (min)a)Jr,
where my, is an increasing function of n.
Definition 3. Suppose that we stand in the model of density estima-

tion. In this case, a linear estimator of the density f is constructed
by taking

R 1 &
Bk = - Z_; < Yjg, Xi > . (11)
And R )
fh = Zﬁj,k%’,k- (12)
ik



The localization property of wavelet expansions is such that a given
signal may have a sparse representation in those bases. Thus a natural
estimation procedure in the white noise model, defined in [7] and ever
since widely used in the signal community is to take away small wavelet
coefficients. This is the principle of wavelet thresholding.

Definition 4. Suppose that we stand in the case of white noise model
(7). The wavelet thresholding procedure is then defined by

j(n)
@) =>">" 8l (13)
7=0 k
Here the weights are given by:
ﬁjjjk = Y5kl {ly; xl>ntn}s (14)

in the case of hard thresholding, or

e = sign(y; ) (1Yl — Ktn)+, (15)

for the soft thresholding. Here,

logn
t’l’L — 9 16
- (16)

stands for the universal thresholding and j(n) is such that

9-i(n) < 18T _ o—j(m)+1
n

9

Kk being a constant large enough.

Once again, in the model of density estimation wavelet threshold-
ing is obtained thanks to a slight modification of the previous defini-
tion.

Definition 5. Suppose that we stand in the problem of density estima-
tion, and let (3, be the coefficients defined in (11). Thus the density
estimator by wavelet thresholding is given by

i)

FT 3. ;

fo = 2%:@#1“@,”%}’ (7
‘7:



Where

logn
ty = ) 1
e (15)

is the universal thresholding and j(n) is such that

9-i(n) < 198 _ o—j(m)+1
n

Those estimators all belong to larger classes of estimation proce-
dures, namely the classes of limited and elitist rules.

Definition 6. Suppose that we stand in the white noise model (7).
Let us consider the class of shrinkage estimators

Fn = {fn = nyj,kyj,kl/}jk; vik € [0,1], measumble} .

Thus we say that fn € Fy, is a limited rule if there exist a deterministic
function A, and a constant a > 0 such that for every j, k:

ik >a= 27>\, (19)
In this case, one say that f, belongs to the class LA, a).

We say that fn € F, is an elitist rule if there exist a deterministic
function A, and a constant a > 0 such that for every j, k:

Yik > a = |yjk > A (20)

Thus, f, belongs to the class E(Mn,a).

One can easily see that linear estimators introduced in Definition
2 are limited rules and that thresholding algorithms, hard and soft
thresholding, or some Bayesian procedures with Gaussian prior are
elitist rules.

3 Statement of main results

Let us recall minimax results in Besov spaces. Taking the LP norm,
where 1 < p < 00, as the loss function, we know from [9], for the white
noise model or in the case of density estimation, that the minimax
lower bound in closed balls in Besov spaces in given by the following
proposition.



Proposition 2. Let 1 <r <oo, 1 <p<oo and s > %. Then, there
exists C' > 0 such that

R”(Bﬁ,fo) =inf sup E|T, — fH‘zp > Cryp(s,m,p) (21)

Tn peBnee
where e
n” 2 ifr > 52,
rn(s,7,p) = _p—f+d) (22)
n 2(s—4)+d
<logn> T else.

Let us now check what is known concerning estimation procedures
that we deal with. Although it is proved in [9] that thresholding
procedures reach asymptotically the optimal rate up to a logarithmic
correction, it is not always the case for linear procedures. As it can be
seen in [8], with L? risk, linear estimators do not attain the minimax
rate when studied functions have a sparse representation in a given
base. In fact, the following proposition is proved in [8] which gives the
optimal rate that can be reached in this case.

Proposition 3. Let 1 <r <oo, 1 <p< > and s > %. There exist
C > 0 such that

R (Bi®) = inf  sup E|T, — f|}, 2 Crn(s,rp)  (23)
’ Tnlinear fe B3

where e
n_ 2s+d ifr>p
n(s,7,p) = n _#id (24)
<logn) else,

I o_d_ d
and s’ = s T+p.

We see in the following theorem that Proposition 3 remains true
if we replace the risk maximum by the risk reached for almost every
function. We also prove that in the same context Proposition 2 is true
for thresholding algorithms up to a logarithmic term. We say in the

following that a, & b, if 18%x

log by, — 1

Theorem 1. Let 1 <r <oo,1<p< o0 and s > %. Then, in the
context of (4) or for the problem of density estimation:

e For a suitable linear estimator ff as in Definition 2 and for
almost every function f in By°°([0,1]9),

E|fy = flf» =00, (25)
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where

3ord if r > p,
else (26)

e For almost every function in By'*((0,1]%), and for thresholding
estimator f1

—ap
E| {7 — fIP, ~ il 2
172 = 118~ () (27)
where
- ifr > 52
o 254 f 2s+d (28)
(-i+d)
2-Tya e

This theorem can be extended in term of shrinkage classes thanks
to the following result.

Theorem 2. Let 1 <r <oo,1<p< o0 and s > %. Then, in the
context of (4) one has

1. For limited rules, and for almost every function f in By°°([0,1]9),
for every C > 0,

El|fn — fI7, > Cn=°%, (29)
where
3ord if 1> p,
o = s—é.—‘,-d (30)
rr else.

d,  d
2(s—F+5)+d

2. For almost every function in By°°([0,1]4), and for elitist rules,
for every C > 0,

o » n —ap
E|fn — > — 1
o= 1182 € (o) (31)
where .
%+ ifr> 503
C=9 6o (32)
2=t else.

The previous theorems are stated in terms of Besov spaces and
wavelet based estimation. Nevertheless, they can be easily extended
to other function spaces, such as Sobolev spaces, thanks to an adapted
basis. One can also notice that all of our results are given in terms of
polynomial rate of estimation.
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4 Proofs of Theorem 1 and 2

Indeed, the proof of this theorem is based on the maximal space where
an estimation procedure attains a given rate of convergence. For the
sake of completeness, let us recall some basic facts upon the corre-
sponding theory.

4.1 Maxiset theory

The maxiset theory introduced recently in [5, 16, 17] is an alterna-
tive way to compare different estimation procedures. In our case, it
provides a crucial key to prove Theorem 1. The main idea is to look
for the maximal space on which an estimator will reach a given rate,
instead of searching an optimal rate for a given space.

Definition 7. Let p be a risk function and (vy,)nen a sequence such
that v, — 0. For’, a procedure, the maximal space associated to p, v,
and a constant T is given by

MGy v T) = {f; sup v E(p(, f)) < T}. (33)

Several improvements were made in nonparametric theory thanks
to this idea. For instance, it is shown in [5] that, for the density estima-
tion model the thresholding procedure is more efficient than the linear
procedure, whose maxiset is given in [15]. And in the heteroscedastic
white noise model, [22, 23] shown that thresholding procedures are
better than linear estimators and as good as Bayesian procedures. In
the case of white noise model, we recall the following result which is
a particular case of [22].

Proposition 4. Let 1 <p < oo, 1 <r < o0, s > %l and o € (0,1).
Let f# be the estimator given in Definition 2.

For every f, we have the following equivalence:
There exists ¢ > 0 such that for everyn € N,

Ellfy = flIh < emy, (34)
if and only if f € By™.

Before stating the result associated with thresholding algorithms,
we define new function spaces closely related to approximation theory.
Those spaces, weak Besov spaces, defined in [5] are subsets of Lorentz
spaces, and constitute a larger class than Besov spaces.
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Definition 8. Let 0 < r < p < oo. We say that a function f =
Zj’k ¢k belongs to W(r,p) if and only if

Sup)\TZQj(%_d)Z]lﬂcjkb)\} < 0. (35)
A>0 % '

A fast calculation shows that the space W (r,p) contains Besov
spaces BE’OO as soon as (3 > %(% —1).

The maxiset associated with the thresholding estimation procedure
is given by a weak Besov space as proved in [5], and developed further
in the heteroscedastic regression case in [16].

Proposition 5. Let 1 <p<oo,1<r<oo, s> % and & € (0,1).Let
f;{ be the estimator defined by (4) and (15). Then for every f we

have the following equivalence:
dK > 0 such that ¥n > 0,

EIFT ~ fIp < K (Vnlogl) 1) (36)
if and only if f € BS‘/ZOO NW((1—-a)p,p).

Concerning shrinkage procedures, the following result from [1] also
gives maxiset results for a large class of procedures.
Proposition 6. Let 1 < p < oo and o > 0 be fized.

o Let f, be a limited rule in L(\n,a), with a € [0,1] and A\, a non

decreasing continuous function. Thus

MS(fo, |1115, A7) € By e (37)

prn

o Let f, be an elitist rule in E( A, a), with a € [0,1] and A, a non
decreasing continuous function. Thus

MS (fa |15, X77) € W (o p). (38)

Furthermore, another important key result involving Besov spaces
is the following proposition from [10].

Proposition 7. Let us define the scaling function of a distribution f

by
Vp>0 sp(p)=sup{s: f€ By} (39)
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Let sg and py be fized such that sg — p% > 0. Outside a Haar-null set

in BpY™°(R?), we have:

50 if p < po

Sf(p):{d d .
5 tso—3 i =po.

(40)

One can check that a lower bound of this scaling function is given
by Besov embeddings and interpolation theory, which can be found in
[24]. This result thus state that we cannot have a better regularity
than the one given by those embeddings. In our case, we will ex-
ploit this result by comparing those critical spaces with the maxiset
associated to each procedure.

4.2 Generic risk for linear estimators

Let1§p<oo,1§r<ooands>%lbeﬁxed. Denote

and

(41)

In this section, we prove the first part of Theorem 1. We define the

linear estimator as in Definitions 2 and 3. A bias-variance compromise
1
shows that for » > p, we have to take m,, = n2?+d whereas when p > r,
1
. . 2-didy1a
the bias and the variance are compensated when m; = n*¢" 7"+,

The upper bound is straightforward. Actually, from [7] we know
that there exists ¢ > 0 such that for any n € N, and for any f €
B([0,1]%),

E|fy — fIlf < en=P. (42)

Let us now check the lower bound. In a first time, we have to show
that for every € > 0 fixed, the set

M(e) = {f € B=([0,11%); 3¢ > 0¥n € N, B(|f£ - fI},) < en~((+ar}
(43)
is a Haar null set.
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Furthermore, with the particular form of m,, taken, it coincides
with the following set:

{£ € Br=(0,1"); 3¢ > 090 e N, B(IfF = f15,) < emy 7+
But, by applying Proposition 4 we see that M (¢) is included in B3 T5°°(]0, 1)4).
And from Proposition 7, we know that this set is a Haar null Borel
set of By*°([0,1]%).
We thus obtain that Ve > 0, the set

{f € B>>([0,1]%); 3e>0Vn e N, E(||fF — f|%,) < Cn—(a(s')+e>p}

is a Haar null set. This set can also be written,

{ £ e B0, 11%): Tim sup 2EEUE — FI))

>a(s)+ep.
n—00 —plogn () }

Taking the countable union of those sets over a decreasing sequence
en — 0, and the complementary we obtain that for almost every func-
tion in B;"*°(]0, 1]9),

log(E L £|P
n—00 —plogn

Which induces the expected result.

4.3 Thresholding algorithms

In this part, we take the estimation procedures f,{ given in Definition
4 and Definition 5.

Let us turn out our attention to the minimax rate of convergence.
For this purpose, we write in the following

2s if pd
3 s t+d r>sa
a(s) = 2omted) (45)
72(5—%)+d else.

The proof of the second point of Theorem 1 follows the same
scheme as the previous one. In this case, the upper bound is given in
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[9]. Thus we know that for every function in B;*°([0,1]%), and for all

1<p<oo,
- , nas)p
E(FT -5 <oy ioem -

In order to prove the lower bound, we use Proposition 5.

For every values of &, let 0 < e < 1 — & be fixed, and M (e) be the
set defined by

R ———(a(s)+e)p
M(e) = { f € By(0,1]); 3e > 0vn € N, E(If = fll,) < ey /1o :

ate o
Thanks to Proposition 5, this set M (e) is embedded in B,* ~ N
W((1—a—e)p,p).

The end of the proof is based on the following proposition.

Proposition 8. Let us define the weak scaling function of a distribu-
tion f by

Vp>0 3p(p)=sup{a: feW((1-a)pp)} (46)

Let s and r be fized such that s — % > 0. Outside a Haar-null set in
B®°(R?Y), we have:

2 , d
. %ord ifr> g5
S0 = 2lien) o
2(s—4)+d )

Proof: 1In order to prove Proposition8, let us prove that W((1 — & —
€)p,p) is a Haar null Borel set in By*°([0,1]%). For this purpose, we
define our transverse measure as the probe generated by the function
g defined by its wavelet coefficients:

2—(8—g+g)j2—%J
where a = 1+ 2 and 0 < J < j and K € {0,...,27 — 1} are such
that

K k
YT (49)
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is an irreducible fraction. As it can be seen in [14], this function g
belongs to By">°([0,1]¢). Let f € B;*°([0,1]%) be an arbitrary function
and consider the affine subset

M={aeR f+ageW((1l—-a—-c¢e)p,p)}. (50)

Suppose that there exist two points a1 and as in M. Thus f +
a19 — (f + agg) belongs to W((1 — & — €)p,p), and therefore there
exists ¢ > 0 such that

|f + 19 — (f + c2g)lw(a-a—e)pp) = a1 — a2)gllw(-a—c)pp) < c
(51)

As a fast calculation shows that
Vo > 0, ||a.gHW(r,p) = aTHgHW(r,p) (52)

we just have now to determine ||g||yy (. ,). Thanks to equation (35),
this is equivalent to determine for every ¢t > 0, the value of

5 o d
2_(1—04—6)Pt Z 2](7p_d) Z ]]-{dj,k>27t}
>0 k

But by definition of g, we have,

9= (s=+5)ig—7J d d.. d
_ S27 o (s— S+ D)4 ST <t
7@ ro 2 r
which implies that
r d d.r
J<=t—(s— =+ =)=J. 53
<Tt—(s— S+ 5)5] (53)
Note that the condition J > 0 implies also that
d d
i(s — = 4+ =) < ¢. 54
js=S+5) < (54

We denote by t = ﬁ and by F= ﬁ. Thus we have, for every
2 2
t>0,

™

GA[Gt—(s—2+4) 5]
> 9—(1—a—e)pt sup 2;'(%_[1) Z odJ

9w ((1—a—e)p,p) )
0<5<t J=0

J
—a— i(de _ (4 _
a=pt qup sup 21(F-9 E 2 sup  20(F9
0<j<—to — — 1<t
_]_S+% J=0 S+%+ SIS

dpj
2

—(1—a—e)pt ' ' '
> R sup < sup 22 (1— 2794y sup Qﬂ(d%’—d)(grtg—ﬂ(wrg—%) 1)

Sutll

0<j<t <j<t
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Merging this result with (51) together with (52), we obtain that,
if there exist o and ag in M then they satisfy that for every t > 0
and 0 < j <t,

1—a—e)pt Lo
\041—02!(1_&_5)’) <inf c2ll = ca(l—a—e)p
SUP( <t2_|1 —27 ]d| Sup;_; ~2J( |2"t2 gr(s+2-2) _ 1|
(55)
We have thus two cases:
o If r > 2s+d
~ 2s
a= )
25 +d

But, if we take the first term, which satisfies

dpj —j tdp_
sup 22 ’1—2 ]d‘ ~ 22s+d

0<j<t
we have i
lay — ap|(17879P < et (56)
e When r < 55 + 5erqs thus as s > g we have necessarily p > 2 and
2(s — 4+ 9)
b=—>" (57)
In this case,
td(p—2)
sup 2j( )’2712 jr(s+——; - 1’ ~ 22(57%)”'
f<j<i
And once again,
VE> 0 Jag — ag|1E7EP < et (58)

As 1 —a—¢e > 0, it can be deduced from equations (56) and
(58) that for t large enough, M is of vanishing Lebesgue measure and
W((1 —a —e)p,p) is an Haar null set in B>, 0

Thanks to invariance under inclusion, we have obtained that for
every € > 0, the set of functions f in B;"® such that

———(a(s)+e)p

Je>0vneN, B(|fi - fll,) <c (59)

logn

is a Haar null set.
The end of the proof follows similarly as for linear estimators.
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4.4 Shrinkage procedures

The result of Theorem 2 is straightforward from Proposition 6 together
with Propositions 7 and 8.
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