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Abstract

We show how the constant curvature spacetimes of 3d gravity and the associated
symmetry algebras can be derived from a single quantum deformation of the 3d Lorentz
algebra sl(2,R). We investigate the classical Drinfel’d double of a “hybrid” deformation
of sl(2,R) that depends on two parameters (η, z). With an appropriate choice of basis
and real structure, this Drinfel’d double agrees with the 3d anti-de Sitter algebra. The
deformation parameter η is related to the cosmological constant, while z is identified with
the inverse of the speed of light and defines the signature of the metric. We generalise
this result to de Sitter space, the three-sphere and 3d hyperbolic space through analytic
continuation in η and z; we also investigate the limits of vanishing η and z, which yield the
flat spacetimes (Minkowski and Euclidean spaces) and Newtonian models, respectively.
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1 Introduction

Quantum group symmetries have been discussed extensively as possible symmetries of a
quantum theory of gravity. It is widely believed, see [1] and references therein, that the
low energy limit of a quantum theory of gravity would be invariant under certain quantum
deformations of the Poincaré group. This gave rise to the so-called “doubly special relativity”
theories [1, 2, 3, 4, 5, 6, 7, 8], in which the deformation parameter is interpreted as an observer-
independent fundamental scale related to the Planck length. On the other hand, there is a
number of models of quantum gravity based on q-deformed universal enveloping algebras, in
which the deformation parameter is identified with the cosmological constant [1, 9, 10, 11].

Of particular interest in this context is 3d gravity, which can be quantised rigourously and in
which quantum group symmetries appear naturally as the quantum counterparts of Poisson–
Lie symmetries in the classical theory [12, 13]. In this case, there is strong evidence [14,
15, 16] that the relevant quantum groups are certain Drinfel’d doubles associated with the
isometry groups of Lorentzian and Euclidean constant curvature spacetimes. In fact, the
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Drinfel’d double approach to obtain deformed spacetime symmetries was early introduced
in [17] and applied to the construction of a one-parameter quantum Lorentz group. Moreover,
the 3d spacetimes arising for different signatures and values of the cosmological constant
exhibit strong similarities both in their geometrical features [18] and with respect to their
Poisson–Lie and quantum group symmetries [11]. This makes 3d gravity an ideal model
for the investigation of the role of deformation parameters and their physical interpretation.
Specifically, it allows one to study their role in the physically relevant limits (vanishing
cosmological constant, classical limit, vanishing gravitational constant) [19].

It is therefore natural to search for the underlying mathematical structures which account
for these similarities and to develop a framework that relates the physical parameters of
the models to quantum deformations. In this letter we provide a preliminary answer to
this question. We show that the constant curvature spacetime in 3d gravity, their isometry
groups and the associated quantum groups all arise from a single quantum deformation of
the 3d Lorentz algebra sl(2,R). Moreover, this quantum deformation supplies the additional
structures (star structure and pairing) that enter in the Chern–Simons formulation of the
theory. This establishes a direct link between quantum deformations of sl(2,R) and 3d
gravity models in which the different physical limits arise as Lie algebra contractions.

While most quantum deformations investigated in the context of quantum gravity are based
on a single deformation parameter, we show in this letter that multi-parametric ones provide
a common framework for 3d gravity. More specifically, we consider a two-parametric quan-
tum deformation of the sl(2,R) Lie algebra with real deformation parameters η and z. This
deformation has a “hybrid” character since it can be understood as a superposition of the
standard (or Drinfel’d–Jimbo) deformation (with parameter η) and the nonstandard (or Jor-
danian twist) one (with parameter z). We show that both parameters have a direct physical
interpretation in the context of 3d gravity: η corresponds to the cosmological constant, while
z is related to the speed of light.

The letter is structured as follows. In the next section, we give a brief summary of 3d gravity
with an emphasis on its formulation as a Chern–Simons gauge theory. In Section 3, we
recall the two fundamental quantum deformations of sl(2,R) and their role as kinematical
symmetries in Planck scale constructions. In Section 4 we construct the classical Drinfel’d
double of the “hybrid” two-parametric deformation of sl(2,R) following [20, 21]. We show
that this double has a natural interpretation as the isometry algebra of 3d anti-de Sitter (AdS)
space with its two parameters corresponding to the cosmological constant and the speed of
light. In Section 5, we extend our model through analytic continuation in both parameters
η and z and investigate the limits η → 0, z → 0. This yields a unified description of nine
homogeneous spaces which contains the six constant curvature ones arising in 3d gravity: the
three-sphere, 3d hyperbolic and Euclidean space for Euclidean signature, together with the
3d AdS, de Sitter (dS) and Minkowski space for Lorentzian signature. The remaining three
cases correspond to Newtonian (non-relativistic) limits [10, 22, 23]. Finally, we comment on
our results and present perspectives for future work.

2 Gravity in three dimensions

The distinguishing feature of 3d gravity is that the theory has no local gravitational degrees
of freedom. Any solution of the 3d vacuum Einstein equations is of constant curvature,
which is given by the cosmological constant Λ, and is locally isometric to one of six standard
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Table 1: Constant curvature spacetimes and isometry groups in 3d gravity.

Λ > 0 Λ = 0 Λ < 0

Lorentzian dS
2+1 = SO(3, 1)/SO(2, 1) M

2+1 = ISO(2, 1)/SO(2, 1) AdS
2+1 = SO(2, 2)/SO(2, 1)

Isom(dS2+1) = SO(3, 1) Isom(M2+1) = ISO(2, 1) Isom(AdS
2+1) = SO(2, 2)

Euclidean S
3 = SO(4)/SO(3) E

3 = ISO(3)/SO(3) H
3 = SO(3, 1)/SO(3)

Isom(S3) = SO(4) Isom(E3) = ISO(3) Isom(H3) = SO(3, 1)

spacetimes. For Euclidean signature these are the three-sphere S
3 (Λ > 0), 3d hyperbolic

space H
3 (Λ < 0) and 3d Euclidean space E

3 (Λ = 0). For Lorentzian signature, we have 3d
dS space dS2+1 (Λ > 0), AdS space AdS

2+1 (Λ < 0) and Minkowski spaceM2+1 (Λ = 0). All
of these spacetimes are homogeneous spaces and given as quotients of their isometry group
by either the 3d rotation group SO(3) (Euclidean) or Lorentz group SO(2, 1) (Lorentzian).

The absence of local gravitational degrees of freedom in 3d gravity allows one to formulate the
theory as a Chern–Simons (CS) gauge theory [24, 25], where the gauge group is the isometry
group of the associated standard spacetime in Table 1 or a cover thereof. It is shown in [25]
that the Lie algebras of these isometry groups can be parametrised in terms of generators
Ja, Pa, a = 0, 1, 2, such that the cosmological constant and signature arise as parameters in
the Lie bracket. We have

[Ja, Jb] = ǫabcJ
c, [Ja, Pb] = ǫabcP

c, [Pa, Pb] = λǫabcJ
c, (1)

where, depending on the signature, indices are raised with either the 3d Minkowski metric or
the 3d Euclidean metric and λ is directly related to the cosmological constant Λ:

λ =

{

Λ for Euclidean signature;

−Λ for Lorentzian signature.
(2)

It is shown in [11] that this parametrisation of the symmetry algebras gives rise to a uni-
fied description of the isometry groups for different signatures and curvature in terms of
(pseudo)quaternions over commutative rings.

The CS formulation of 3d gravity is obtained from Cartan’s formulation of the theory by
combining the triad e and the spin connection ω into a CS gauge field. Locally, the gauge
field is a one-form on a three-manifold M with values in the Lie algebra (1). In units where
the speed of light is set to one, it is given by

A = eaPa + ωaJa.

In order to reproduce the reality conditions of 3d gravity, namely that the triad e and spin
connection ω are real-valued, the Lie algebras (1) have to be regarded as real Lie algebras,
i.e. equipped with the star structure

J∗

a = −Ja, P ∗

a = −Pa. (3)

In addition to the choice of a Lie algebra, the formulation of a CS gauge theory requires the
choice of a symmetric, non-degenerate, Ad-invariant bilinear form 〈 , 〉 on this Lie algebra. For
the Lie algebras (1), the space of symmetric, Ad-invariant bilinear forms is two-dimensional.
It is shown in [25], for a detailed discussion see also [16, 26], that the form relevant for the
CS formulation of 3d gravity is given by

〈Ja, Pb〉 = gab, 〈Ja, Jb〉 = 〈Pa, Pb〉 = 0, (4)
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where, depending on the signature, gab is either the Euclidean or the Minkowski metric. With
these choices, the CS action

ICS [A] =

∫

M

〈A ∧ dA+
1

3
A ∧ [A,A]〉, (5)

can be rewritten as the Einstein–Hilbert action for 3d gravity, and the equations of motion
derived from it are equivalent to the Einstein equations, namely the requirements of vanishing
torsion and constant curvature [25].

The CS formulation of 3d gravity gave rise to important progress in the description of the
phase space and in the quantisation of 3d gravity. In particular, it is shown in [12, 13]
that the Poisson structure on the phase space has a natural description in terms of Poisson–
Lie group and coboundary Lie bialgebra structures associated with the isometry groups.
The admissible classical r-matrices are characterised by the condition that their symmetric
component coincides with the element t = Pa⊗J

a+Ja⊗P
a associated with the pairing (4) or,

equivalently, that their anti-symmetric component solve the modified classical Yang–Baxter
equation (YBE) [12]

[[r, r]] = −Ω with Ω = [[t, t]], t = Ja ⊗ P a + Pa ⊗ Ja. (6)

Although this does not define the classical r-matrices uniquely, there are strong indications
that the relevant Lie bialgebra structures are the ones associated to Drinfel’d doubles [14,
15, 16, 17]. In this context, the associated quantum groups arise naturally as symmetries
of the quantum theory and have a clear physical interpretation. The coproduct determines
the composition of observables for multi-particle models as well as the implementation of
constraints, while the antipode describes anti-particles. The universal R-matrix governs the
exchange of particles through braid group symmetries and the ribbon element the quantum
action of the pure mapping class group.

3 Quantum deformations of sl(2,R)

To relate the spacetimes and symmetry algebras of 3d gravity to quantum deformations, we
consider the real Lie algebra sl(2,R) ≃ so(2, 1) with Lie bracket and star structure given by

[J3, J±] = ±2J±, [J+, J−] = J3, (7)

J∗

3 = −J3, J∗

± = −J±. (8)

The universal enveloping algebra of sl(2,R) can be endowed with a non-deformed Hopf struc-
ture [27] with coproduct ∆(0) : sl(2,R)→ sl(2,R)⊗ sl(2,R),

∆(0)(Ji) = Ji ⊗ 1 + 1⊗ Ji, i = 3,±, (9)

which corresponds to the usual “composition rule” for observables in the two particle case.

Up to equivalence, there are only two possible quantum (i.e. Hopf algebra) deformations for
sl(2,R). The first one is the so-called standard or Drinfel’d–Jimbo deformation, which was
introduced in [28, 29] and reads:

[J3, J±] = ±2J±, [J+, J−] =
sinh(ηJ3)

η
, (10)

∆(J3) = J3 ⊗ 1 + 1⊗ J3, ∆(J±) = J± ⊗ e
η

2
J3 + e−

η

2
J3 ⊗ J±. (11)
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In the following, we denote it by slη(2,R), where initially η is a real deformation parameter
(usually written in terms of q = eη). In the limit η → 0 (or q → 1) we recover (7) and (9).

The expansion of the deformed coproduct ∆ as a formal power series in the parameter η

∆ =
∞
∑

k=0

∆(k) =
∞
∑

k=0

ηkδ(k) ,

allows one to characterise quantum deformations of sl(2,R) by the underlying Lie bialgebra
structures. These are given by the Lie algebra sl(2,R) (7) together with the cocommutator
δ : sl(2,R)→ sl(2,R) ⊗ sl(2,R) defined by the first-order deformation of the coproduct:

δ = η · (δ(1) − σ ◦ δ(1)),

where σ(Ji⊗Jj) = Jj ⊗Ji is the flip map. For the deformation (11) the cocommutator reads

δ(J3) = 0, δ(J±) = ηJ± ∧ J3. (12)

The associated Lie bialgebra structure is coboundary; the cocommutator is of the form

δ(Ji) = [Ji ⊗ 1 + 1⊗ Ji, rη], i = 3,± , (13)

rη = ηJ+ ∧ J− = η(J+ ⊗ J− − J− ⊗ J+), (14)

where rη is a classical r-matrix, i.e. a constant solution of the modified classical YBE

[[rη, rη ]] = −η
2Θ, Θ = J3 ⊗ J− ⊗ J+ − J3 ⊗ J+ ⊗ J− + cyclic permutations.

We recall that the quantum algebra slη(2,R) ≃ soη(2, 1) is the rank-one case within the
series of the quantum soη(p, q) algebras of Drinfel’d–Jimbo type. Under quantum con-
tractions [30, 31], these quantum algebras have provided the well-known κ-Poincaré alge-
bra [32, 33, 34, 35] as well as its associated κ-Minkowski spacetime [36, 37, 38] in which
κ = 1/η. In this framework, the deformation parameter κ has been interpreted as a second
observer-independent fundamental scale in addition to the speed of light c, which would be
related with the Planck length and, presumably, with the cosmological constant [1].

A second nonstandard or Jordanian twist deformation for sl(2,R) was introduced in [39]. We
denote it by slz(2,R) where z is a real deformation parameter (q = ez). Its commutation
rules and coproduct read

[J3, J+] =
4 sinh(z2J+)

z
, [J3, J−] = −J− cosh(zJ+/2) − cosh(zJ+/2)J−, [J+, J−] = J3,

∆(J+) = J+ ⊗ 1 + 1⊗ J+, ∆(Jl) = Jl ⊗ e
z

2
J+ + e−

z

2
J+ ⊗ Jl, l = 3,−. (15)

The limit z → 0 again reproduces the non-deformed Hopf algebra structure of sl(2,R), and the
associated Lie bialgebra structure is coboundary with classical r-matrix and cocommutator

rz =
z

2
J3 ∧ J+, δ(J+) = 0, δ(Jl) = zJl ∧ J+, l = 3,−. (16)

Note that for this deformation, the classical r-matrix rz is a constant solution of the unmod-

ified classical YBE: [[rz , rz]] = 0.

This quantum deformation has been used in the construction of higher dimensional nonstan-
dard quantum so(p, q) algebras [40, 41, 42, 43, 44], which have an interpetation as quantum
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deformations of conformal symmetries. In this context, the deformation parameter z plays
the role of the lattice step on uniform discretisations of the Minkowski space. The non-
standard deformation of sl(2,R) also defines the so called “null-plane” quantum Poincaré
algebra [45] which gave rise to non-commutative Minkowskian spacetimes [46, 47] different
from the κ-Minkowski one. For recent applications of twist deformations in the construction
of non-commutative Minkowskian spacetimes, see [48, 49] and the references therein. Finally,
this twist deformation has also been used to obtain “deformed” AdS and dS spacetimes,
understood as spaces endowed with a non-constant curvature governed by the deformation
parameter z [9, 10].

Although quantum deformations generally do not admit superpositions, it turns out that
the standard and nonstandard deformations introduced above can be superposed, giving rise
to the so-called “hybrid” deformation of sl(2,R) [50], which we denote by slη,z(2,R) in the
following. In this case the two-parametric classical r-matrix

r = rη + rz = ηJ+ ∧ J− +
z

2
J3 ∧ J+, (17)

is of standard type, i.e. a solution of the modified classical YBE: [[r, r]] = −η2Θ. The
associated cocommutator, given by (13), is the sum of (12) and (16):

δ(J+) = ηJ+ ∧ J3, δ(J3) = zJ3 ∧ J+, δ(J−) = ηJ− ∧ J3 + zJ− ∧ J+. (18)

The full quantum Hopf structure of slη,z(2,R) is rather involved and can be found in [50]. For
our purposes, it is sufficient to consider its lowest order terms, i.e. the Lie bialgebra structure
defined by (7) and (18).

From a purely mathematical viewpoint, the fact that the classical r-matrix (17) is of a stan-
dard type makes this deformation equivalent to the Drinfel’d–Jimbo one through an appro-
priate change of basis which was achieved in [51]. Consequently, the deformation parameter z
would be viewed as non-essential. However, we will show in the following that in the context
of 3d gravity both parameters play essential roles and have a clear physical interpretation.

4 3d AdS gravity from the “hybrid” Drinfel’d double

As explained previously, each quantum deformation of sl(2,R) gives rise to a unique cobound-
ary Lie bialgebra structure (sl(2,R), δ) characterised by a classical r-matrix. Conversely, each
coboundary Lie bialgebra associated with sl(2,R) gives rise to a Drinfel’d double Lie alge-
bra [20, 21]. In this section, we construct the Drinfel’d double for the “hybrid” deformation
slη,z(2,R), for real deformation parameters, and show that this generates the AdS symmetry
algebra of 3d gravity shown in Table 1.

We consider the “hybrid” deformation slη,z(2,R) and denote by Ak
ij the structure constants

of the Lie algebra sl(2,R) (7) and by Bij
k the structure constants of the cocommutator (18)

with respect to the basis {J3, J±}

[Ji, Jj ] = Ak
ijJk, δ(Ji) = Bjk

i Jj ⊗ Jk, i, j, k = 3,±. (19)

As a Lie algebra, the classical Drinfel’d double Dη,z(sl(2,R), δ) is the six-dimensional Lie
algebra spanned by the basis {Ji}i=3,± and its dual basis {ji}i=3,± with Lie brackets

[Ji, Jj ] = Ak
ijJk, [ji, jj ] = Bij

k j
k, [Ji, j

j ] = Bjk
i Jk −Aj

ikj
k. (20)
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The full set of Lie brackets definingDη,z(sl(2,R), δ) thus consists of the brackets (7) of sl(2,R),
the brackets of its dual Lie algebra induced by the cocommutator (18)

[j3, j+] = −ηj+ + zj3, [j3, j−] = −ηj−, [j+, j−] = −zj−, (21)

and the “crossed” or “mixed” Lie brackets

[J3, j
3] = zJ+, [J3, j

+] = −zJ3 − 2j+, [J3, j
−] = 2j−,

[J+, j
3] = −ηJ+ − j−, [J+, j

+] = ηJ3 + 2j3, [J+, j
−] = 0,

[J−, j
3] = −ηJ− + j+, [J−, j

+] = −zJ−, [J−, j
−] = ηJ3 + zJ+ − 2j3.

(22)

The cocommutator of Dη,z(sl(2,R), δ) is obtained via (13) from its classical r-matrix

r =
∑

i=3,±

ji ⊗ Ji, (23)

which induces the pairing between the basis {Ji}i=3,± and the dual basis {ji}i=3,±

〈Ji, j
k〉 = 〈jk, Ji〉 = δki , 〈Ji, Jk〉 = 〈j

i, jk〉 = 0, i, k = 3,±. (24)

If both deformation parameters are real, Dη,z(sl(2,R), δ) inherits a star structure from the
star structure (8) of sl(2,R)

J∗

3 = −J3, J∗

± = −J±, j3∗ = −j3, j±∗ = −j±. (25)

The essential step in relating the “hybrid” quantum deformation of sl(2,R) to the spacetimes,
symmetry algebras and quantum groups of 3d gravity [1, 11, 16] is the introduction of a new
basis of Dη,z(sl(2,R), δ), in the following referred to as Chern–Simons basis. This basis
consists of generators Ja, Pa, a = 0, 1, 2, that are related to the generators of the hybrid
Drinfel’d double Dη,z(sl(2,R), δ) as follows

J0 =
1

2
(J+−J−), J1 =

z

2
J3, J2 =

z

2
(J++J−), (26)

P0=η(J++J−)−
z

2
J3+j−−j+, P1=−z

2J++2zj3, P2=ηz(J+−J−)+
z2

2
J3+z(j++j−).

Using expressions (7), (21) and (22) for the Lie brackets of Dη,z(sl(2,R), δ), we find that the
Lie brackets in the CS basis take the form

[J0, J1] = −J2, [J0, J2] = J1, [J1, J2] = z2J0,

[J0, P0] = 0, [J0, P1] = −P2, [J0, P2] = P1,

[J1, P0] = P2, [J1, P1] = 0, [J1, P2] = z2P0,

[J2, P0] = −P1, [J2, P1] = −z
2P0, [J2, P2] = 0,

[P0, P1] = −4η
2J2, [P0, P2] = 4η2J1, [P1, P2] = 4η2z2J0.

(27)

Provided that the deformation parameters η, z are non-zero real numbers, we have

Dη,z(sl(2,R), δ) ≃ so(2, 2). (28)

The deformation parameters thus enter the Lie bracket (27) in the CS basis as structure
constants 4η2 and z2 which can be set equal to +1 by rescaling the generators as

4η2 → 1 : Pa →
1

2η
Pa (a = 0, 1, 2); z2 → 1 : Pb →

1

z
Pb, Jb →

1

z
Jb (b = 1, 2). (29)
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If the elements of the CS basis J0, Jb, P0, Pb, b = 1, 2, are interpreted, in this order, as
the generators of rotations, boosts, time translations and spatial translations, then so(2, 2)
can be identified with symmetry algebra of the 3d AdS space, in which J0, J1, J2 span the
Lorentz subalgebra so(2, 1). The AdS spacetime is then obtained as the homogenous space
AdS

2+1=SO(2, 2)/SO(2, 1) where J1 and J2 are the generators of inertial transformations
along the 2 and 1 directions.

Surprisingly enough, this result gives rise to a direct identification between the deformation
parameters of the hybrid deformation slη,z(2,R) and the physical parameters of the 3d gravity:
the cosmological constant Λ = −λ (2) and the speed of light c, which are given by

λ = 4η2, c2 = 1/z2. (30)

In other words, η determines the cosmological constant (and hence the curvature), while z
characterises the signature of the metric g as

g = diag(−1, z2, z2). (31)

The other two essential ingredients in the CS formulation of 3d-gravity are the Ad-invariant
symmetric bilinear form (4) on the symmetry algebra and the star structure (3). Using the
relations (26) between the original Drinfel’d basis and the CS basis, we find that the star
structure (25) induces the star structure (3). Moreover, up to a rescaling with z, which sets
the speed of light to one, the pairing (24) agrees with the pairing (4) in the CS action

〈J0, P0〉 = −1, 〈J1, P1〉 = z2, 〈J2, P2〉 = z2. (32)

The hybrid deformation slη,z(2,R) with non-zero real parameters η, z thus reproduces all
relevant structures that enter into the CS formulation of Lorentzian 3d gravity with negative
cosmological constant: the Lie bracket (1), the star structure (3) and the pairing (4).

It is instructive to express the classical r-matrix (23) of Dη,z(sl(2,R), δ) in the CS basis:

r =
1

z
(zJ0 ∧ J1 + 2η J2 ∧ J0 + J2 ∧ J1) +

1

z2
(

P1 ⊗ J1 + P2 ⊗ J2 − z2P0 ⊗ J0
)

. (33)

The resulting r-matrix consists of two terms: the first is spanned by the Lorentz subalgebra
while the second one is related to the angular momentum or Pauli–Lubanski invariant. This
classical r-matrix is a solution of the modified classical YBE (6), which implies that the
associated quantum group symmetries are compatible with 3d gravity.

5 Spacetimes and symmetry algebras of 3d gravity

The results of the last section demonstrate that the hybrid Drinfel’d double naturally gives rise
to all data that defines 3d AdS gravity and at the same time provides a physical interpretation
of both deformation parameters. We will now generalise this result to other signatures and
values of the cosmological constant through analytic continuation and contractions.

For this purpose we note that expressions (26) and (27) for the CS basis and the Lie brackets
are well defined also for imaginary values of η, z. If, additionally, we consider the limits
η, z → 0, we obtain nine 3d homogenous spaces Xη,z , which are a subfamily of the Cayley–
Klein spaces [10]. They are given as the quotient of the Lie group associated with the Lie
algebra (27) by the subgroup spanned by the three generators Ja

Xη,z = 〈Dη,z(sl(2,R), δ)〉/〈J0 , J1, J2〉.

8



Table 2: The nine homogeneous 3d spaces obtained from the hybrid Drinfel’d double according to

the possible values of the deformation parameters η, z. The signature of the pairing together with the

star structure of the Drinfel’d basis for z 6= 0 are also displayed.

Riemannian spaces

• Three-sphere • Euclidean space • Hyperbolic space

S
3 = SO(4)/SO(3) E

3 = ISO(3)/SO(3) H
3 = SO(3, 1)/SO(3)

η ∈ R
∗, z ∈ iR∗ η = 0, z ∈ iR∗ η ∈ iR∗, z ∈ iR∗

Λ = λ > 0, c ∈ iR∗ Λ = λ = 0, c ∈ iR∗ Λ = λ < 0, c ∈ iR∗

P = (−1,−1,−1) P = (−1,−1,−1) P = (−1,−1,−1)

J∗
3 = J3, J∗

± = J∓ J∗
3 = J3, J∗

± = J∓ J∗
3 = J3, J∗

± = J∓

j3∗ = j3 −
z

2
(J+ + J−) j3∗ = j3 −

z

2
(J+ + J−) j3∗ = j3 −

z

2
(J+ + J−)

j±∗ = j∓ + z

2
J3 ± 2ηJ± j±∗ = j∓ + z

2
J3 j±∗ = j∓ + z

2
J3

Newtonian spaces

• Oscillating NH space • Galilean space • Expanding NH space

NH
2+1

+ = NH+/ISO(2) G
2+1 = IISO(2)/ISO(2) NH

2+1

− = NH−/ISO(2)

η ∈ R
∗, z = 0 η = 0, z = 0 η ∈ iR∗, z = 0

λ > 0, c = ∞ λ = 0, c = ∞ λ < 0, c = ∞

P = (−1, 0, 0) P = (−1, 0, 0) P = (−1, 0, 0)

Lorentzian spaces

• AdS space • Minkowski space • dS space

AdS
2+1 = SO(2, 2)/SO(2, 1) M

2+1 = ISO(2, 1)/SO(2, 1) dS
2+1 = SO(3, 1)/SO(2, 1)

η ∈ R
∗, z ∈ R

∗ η = 0, z ∈ R
∗ η ∈ iR∗, z ∈ R

∗

Λ < 0, λ > 0, c > 0 Λ = λ = 0, c > 0 Λ > 0, λ < 0, c > 0

P = (−1,+1,+1) P = (−1,+1,+1) P = (−1,+1,+1)

J∗
3 = −J3, J∗

± = −J± J∗
3 = −J3, J∗

± = −J± J∗
3 = −J3, J∗

± = −J±

j3∗ = −j3, j±∗ = −j± j3∗ = −j3, j±∗ = −j± j3∗ = −j3, j±∗ = −j± ± 2ηJ∓

As in the AdS case, we find that the Lie groups associated with the Drinfel’d double via
(27) act as the isometry groups of these spaces. The parameters η, z define, respectively,
their curvature λ and the speed of light c via (30). Therefore, we recover the six spacetimes
of Table 1 with cosmological constant Λ = ±λ (2) whenever z 6= 0. These nine spaces are
presented in Table 2, together with the corresponding values of Λ, λ and c.

Note that the expression for the pairing (32) coincides with the one for 3d gravity (4) for all
non-zero values of z, i.e. whenever a relevant 3d gravity model exists. This pairing defines
the signature P = signature(−1, z2, z2) of the associated homogeneous spaces in Table 2.
However, in order to obtain the star structure (3) for the CS formulation of 3d gravity, we
need to impose different star structures on the initial Drinfel’d basis J3, J±, j

3, j± which are
listed in Table 2 for z 6= 0.

The limits η → 0 and z → 0 are well defined for the Lie algebra (27) as well as the pairing
(32). They can be understood, respectively, as the “flat” and “non-relativistic” Inönü–Wigner
contractions. Explicitly, if we start with a Lie algebra Dη,z(sl(2,R), δ) with one of the two
deformation parameters fixed to a non-zero value, then the Lie algebra contractions are
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obtained via a rescaling of the CS basis together with the corresponding limit:

“Flat” contraction: Pa → ηPa, a = 0, 1, 2, η → 0.

“Non-relativistic” contraction: Pb → zPb, Jb → zJb, b = 1, 2, z → 0.

In these transformations the parameters η and z have a proper interpretation as contraction
parameters, and the rescaling of the generators is the inverse of (29). Note, however, that
in the limit z → 0 the basis transformation (26) becomes singular and the r-matrix (23)
diverges, thus precluding the use of the initial Drinfel’d basis for the three spaces with z = 0.
Nevertheless, this limit can be performed for the r-matrix (33) if it is combined with a
rescaling r → z2r. The resulting r-matrix, r = P1 ⊗ J1 + P2 ⊗ J2, is a Reshetikhin twist as
all the generators contained in it commute for z → 0.

To summarise, the quantum algebra slη,z(2,R) gives rise to nine homogeneous spaces:

• For z ∈ iR∗, the parameter z can be set to i via the rescaling (29). We obtain the three
classical Riemannian 3d spaces of constant curvature: the three-sphere, 3d hyperbolic
space and 3d Euclidean space. In these cases Λ = λ = 4η2 = ±1/R2, where R is the
radius of the space (R→∞ for E3). These are the three relevant models for Euclidean
3d gravity given in Table 1. Note that the limit η → 0 corresponds to the well-known
flat contraction so(4)→ iso(3)← so(3, 1).

• For z ∈ R
∗, the parameter z can be set to 1 through (29). This yields the three

standard Lorentzian 3d spacetimes of constant curvature: 3d AdS, dS and Minkowski
space. Now Λ = −λ with λ = 4η2 = ±1/τ2, where τ is the (time) universe radius
(τ → ∞ for M

2+1), so we recover the three relevant models for Lorentzian 3d gravity
given in Table 1. The limit η → 0 yields the contraction so(2, 2) → iso(2, 1)← so(3, 1).

• The limit z = 0 (c → ∞) gives rise to three non-relativistic or Newtonian spacetimes

which cover the two Newton–Hooke (NH) curved spacetimes [10, 22, 23] and the flat
Galilean one. As both the metric (31) and the pairing (32) become degenerate, these
models do not describe standard 3d gravity in which the metric is required to be non-
degenerate and of either Euclidean or Lorentzian signature. However, these spaces are
of interest as they arise in the non-relativistic or Galilean limit of the theory [19]. The
associated isometry groups are semidirect products

NH+ = T4 ⋊ (SO(2)⊗ SO(2)), NH− = T4 ⋊ (SO(1, 1) ⊗ SO(2)),

where T4 is the four-dimensional abelian Lie algebra spanned by {Pb, Jb}, b = 1, 2.

To conclude, we remark that the quantum algebra slη,z(2,R) could be used as the cornerstone
for a unified construction of 3d doubly special relativity theories with a non-zero cosmological
constant and with either Lorentzian or Euclidean signature. Also, we note that the symmetry
algebras of 3d gravity obtained from the hybrid deformation slη,z(2,R) coincide with the Lie
algebras that arise as the conformal symmetries of 2d constant curvature spacetimes in [52].
Since the curvature and signature parameters of the latter correspond, respectively, to the
signature and curvature parameters of the 3d spacetimes, it would be interesting to explore
this duality further and to clarify its interpretation in the context of 3d gravity.
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