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Abstract . . .

We present the first tree-based regressor whose con- s . .

vergence rate depends only on the intrinsic dimen- . ; .
sion of the data, namely its Assouad dimension. . o ° o

The regressor uses the RPtree partitioning proce-
dure, a simple randomized variant/etl trees.

(a) Dyadic tree (b) k-d tree (c) RPtree

Figure 1: Spatial partitioning induced by various spligtin
1 Introduction rules. Two levels or the tree are shown for each.

Non-parametric learning algorithms tend to suffer from tvha
is referred to as the curse of dimensionality, namely thet pr ~ the usually shallow tree down to an appropriate cell. These
diction performance deteriorates dramatically as the rermb methods are popular due to their ease of use and compu-
of features increases. This phenomenon is quantifiablein th tational efficiency (e.g. CART, dyadic trees;d tree, see
case of regression algorithms: as initially shown by Stone [GNO5,[SNO6[ LGL96]), but none has been shown to adapt
[Sto80,[Sto8P], if we only assume that the regression func- to intrinsic dimensionality in terms of their regressioskri
tion f(x) is Lipschitz] in RP, then no non-parametric esti- ~ See figur&ll for some examples.
mator can achieve a convergence rate fasteran(2+2). The Random Projection tree (RPtree) is a hierarchical
In other words, the number of points required to attain a low partitioning procedure which recursively bisects the datece
risk may be exponential iy, and this is infeasible even for ~ with random hyperplanes (see figlire 1(c)). Although RP-
moderate values ab. tree’s connections to intrinsic data dimensionality hasrbe
However, itis often the case that data which appears high studied in unsupervised settings ([DIF08, GLZ08]), its use f
dimensional, actually conforms to a structure of low irgitn ~ regression has not been explored.
dimensionality (interpreted broadly). Examples of such si Using RPtrees for regression requires a method for se-
uations are traditional continuous settings where the idata lecting a partition on which to learn the regresgpr Select-
close to a low dimensional submanifold®f, and discrete  ing a good partition from the hierarchy is essential to bal-
settings such as when the data is sparse. These are all exancing the bias and variance of the regressor. Traditional
amples of data with low Assouad dimension (see definition methods use penalized empirical risk minimization over all
[); this notion of dimension thus offers a natural and broad possible partitions induced by the tree. Our approach can be
model of intrinsic data complexity. more efficient in practice. We grow the tree in careful steps
We show that, for any input data distribution, the risk of a that enable us to quickly identify a small set of candidate
regressor based on RPtree (a variari-dftree) depends just ~ partitions. We then provide a couple of options for select-
on the unknown Assouad dimension of the data, regardlessgng the final partition: one is to use cross-validation over t
of the ambient dimensio®. This is the first such result for ~ candidate partitions, another is a criterion which allows t

tree-based regression. automatically stop growing the tree when a good partition
is attained. The latter method is computationally cheaper,
1.1 Tree-based regression while the former method results in a slightly better risk. In

Tree-based regression consists of first building a hiegarch POth cases, the excess risk of the RPTree regressor depends
of nested partitions of the data space (the tree), and thenuSt 0n the unknown Assouad dimension of the input space,
learning a piecewise continuous functigp over the cells ~ for all distributions. _ _

of some chosen partition in the hierarchy. Future evalunatio On the technical side, RPtree regression requires novel

of f.(z) can be done in time jusD(logn) by navigating techniques for analyzing the bias of the estimator. Estima-
tor bias is well understood to decrease with the diameters of

Stone’s result concerns a much larger class of regressimn fu ~ the partition’s cells. Unfortunately thephysical diameters
tions; here we focus on Lipschitz conditions. are hard to assess for RPtrees given the random and irregu-
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lar shapes of the cells, and in fact they may not decrease at
all. However, we can track the diameters of the data within
the cells, and we develop new techniques to relate these em-
pirical data diameterdo the estimator’s bias. We believe
these techniques are of independent interest as they take fo
cus away from the cells’ physical diameters, thus opening
the door to richer partitioning rules whose cell diametees a (a) Sparse data set. (b) 2-d manifold.
hard to control.

1.2 Background and related work Figure 2: Examples of data with low Assouad dimension.
The realization that data is often less complex than inditat
by the ambient dimension has spurred a significant body of Definition 1 The Assouad dimension (or doubling dimen-
work (referred to as manifold learning) that aim to embed sion) of ¥ C R is the smallest/ such that for any ball
the data into a low dimensional euclidean space (see e.g.B C R”, the setB N X can be covered bg? balls of half
[RS00,BNO3[ TSLOD]). A possible approach to regression the radius ofB3.

on high dimensional data is to first reduce dimension using

manifold learning and learn the regressor in the new space.  The Assouad dimension has proved useful in capturing
Unfortunately, this approach is not guaranteed to workesinc  the intrinsic complexity of data spaces as shown in various
pertinent information may be lost by the embedding. This Works on data analysis (see elg. [I[NO7, BK106, Cla05]).
raises the following natural question: can learning meshod It coincides with the natural notions of dimension of vari-
such as regression adapt automatically to data that has lonous geometric objects: it is easy to see thalimensional
intrinsic dimensionality while operating in the originglace ~ cubes, spheres, all have Assouad dimengiid) (see e.qg.
RDP? [CIa08)). It also captures notions of data complexity that a

An important result in the direction of adaptive regres- Standard in the machine learning and statistics commsnitie
sion is the realization by Bickel and Ui [BLO6] that standard this is stated in the following remarks for emphasis.
kernel regressors are adaptive in the following senseether . .
exists an appropriate bandwidth setting such that the asymp Remark 1 A d-dimensional hyperplane iR” has Assouad
totic pointwise risk at: € RP depends just on the manifold ~ dimensiorO(d) (see [Cla05]).
dimension and on the behavior of the kernel in a neighbor- . . . . .
hood ofz. One then has to search for the appropriate band- Rémark 2 Ad-dimensional Riemannian submanifoldiof
width setting, either by estimating the manifold dimension has Assouad dimensi@(d), subject to a bound on its cur-
or through cross validation over all possible values of this Vature (see theorem 22 6f [DF08]).
dimension (see e.d. [BLOB, LWD7]). _

Kernel regressors can be expensive in practice: the kernelRemark. 3 Ad-sparse data space ", I.€. one where each
weights must be computed anew at each training point in dat@ point has at most non zero coordinates, gas Ass?iuad
order to evaluate the regressor on a new data point. ThisdimensionO(dlog D): it can be described byy) < D
translates into an evaluation time @fn) which is often a  hyperplanes of dimensiah
burden given large samples. Contrast this with@h&g n)
evaluation time of tree-based regressors.

In the case of classification, a recent result by Scott and - - ) )
Nowak ([SNO6]) for dyadic decision trees is related: they Let A be some partition 01(_. Tradltlonally,.blas analysis r/e-
show that if the input data is drawn from an approximately Volvesaround thphysical diametera\(4) = Jnax, [l — 2|
uniform measure on a manifold, and the Bayes decision boungs cells A € A (see e.g. m%]). In this
ary is sufficiently smooth, DDTs achieve classificationsate \ork we instead relate bias to tHata diametersf the cells,

2.2 Notions of diameter

that depend just on the manifold dimension. It is unclear that iSA,(A) = max |z —2'|or0if ANX = 0.
whether their result will apply in a distribution free regre z,z'€ANX
sion setting.

2 Detailed overview of results

We're given i.i.d training datdX,Y) = {(X;,Y:)}~, €
(X x V)", where the input spac& C RP is contained
in a balfl of (unknown) diameten », and the output space
Y c R?" is contained in a ball of (unknown) diametts,.

2.1 Assouad dimension CellAc A
We model the intrinsic dimensionality of the spateausing . . )
the notion of Assouad dimension defined below. Focusing on data diameter has the following advantage.

We never need to evaluate the physical diameters of the cells
2\We assume a Euclideds norm in this work. and these need not decrease. Consequently, we don’t have to



constrain the partition to regular shaped cells (e.g. aais p  constant regressor over the returned partitordefined as
allel hyper-rectangles) whose physical diameters ardyeasi follows:
controlled. In particular, it opens the door to richer parti Forxz € X, let A(x) be the cell ofA to whichx belongs. If
tioning rules such as RPtree which adapt better to the datau,, (A (x)) > 0, the regressor is obtained as
complexity at the expense of creating irregular cells. We ex "
pand on this last point in the example below. B dic1 Vi Ixea()

Consider a data space of the following form: foalz) = n-pun(Adz))

Uizj{tei £ee; it € [-1,1]}, 4, j € [D], forafixede < 1. otherwise use a default settiffg a () = yo € ) whenever

This is an extreme case of a noisy sparse data set of Assoua?‘(x) is empty of training points. We'll often refer to the
dimensionO(log D), depicted in figurg¢ 2(&). We'd like to inal regressor ag,(-) as long as the partition used for the
partition this space in a way that reduces the data diame-€Stimate is clear from context,

ters of the cells (for low estimator bias) while achieving a ProceduredaptiveRPtree makes calls to the the sub-
small partition size (for low estimator variance). Axis par Procedur&oreRPtree which implements the basic RPtree
allel splitting rules such ak-d trees or dyadic trees would splits. We defer the complete treatment of this subproce-
require a number of cells exponentialihin order to halve dure to sectiofi 51 since most of the analysis will concern
the diameters. Yet, the set itself can be partitioned into at 2@daptiveRPtree. Fornow, note thatthe call toreRPtree
most2D? cells of half its radius. The richness of random returns a subtree rooted.atwith the following property.: let
splits allows us to achieve a partitioning just a bit largeert A be the collection of subsets &f ° defined by the leaves
this, even in the worst case over distributions on the set. In Of this subtree, we hava,,(A) < A,,(A)/2. Also, the im-
fact, given any data set of Assouad dimensipRPtrees are plementation otoreRPtree ensures that the final tree built

. o . 3 by adaptiveRPtree has height at mostlog n.
guaranteed to achieve a partition of size at m%t), such : : 0
that the data diameters of each cell is at most half of the di- , , " roceduredaptiveRPtree grows the tree in steps”,

1 i+1 7
ameter of the full data set. We refer the readefto [DF08] for A',... whereA, (A ) < A (A7) /2f and eventually
a detailed analysis. returns one of the partitionA® for somei. We present a

We'll soon see that. for low estimator bias. we don't couple of options for selecting a good partition to returheT
need every cell of a partition to have small data diameter, first option uses cross-validation: grow a large tree anderu

but rather that these diameters are small in an average. sensé Pack by minimizing empirical risks over an i.i.d test sam-
Given a collectionA of disjoint subsets oft, we define the P& (X, Y’) of sizen. The other option is that of automatic

following notion of average data diameter: Zt.o.ppi_ng: we return a partition as soon as some stopping con-
ition is met.
A (A > Aca Hn (A)A2 (A) / _ The two options for gelectlng the return partition are out-
n(A) D (A) ) lined in proceduradaptiveRPtree. The empirical risk in
Aca Hn the cross-validation option is defined as
wherey,, is the empirical measure ov&r (we'll let 1 denote 1
the marginal measure ova). R (g) = - Z Y7 = g(XD)7.
2.3 Regression setup i€n]
We assume that the regression functign) = E [Y| X = z] The automatic stopping option returns one of two par-
is A\-Lipschitz, for an unknown parametgr titions and requires no test sample. It is a computationally

faster option and, as we’ll see, the resulting bounds ang onl

Va, o' € X, || f(@) = f@) < Alw = 2] marginally worsened.
For any functiory(z) : X — Y, thels pointwise risk at .

= satisfies 2.5 Main Results

Definition 2 Given a sampl&, we say thakdaptiveRPtree

- 2 _ 2
R(g(x)) = Ey [IY —g(@)|” = R(f(2)) + f(2) = 9(@)II",  attains a diameter decrease ratetodn X for & > d, if every

and the integrated risk can then be written as call to the subprocedureoreRPtree (A, A, (4) /2,4,1)in
. ) the second loop of the procedure returns a tree rooted at
R(g) = Ex R(9(X)) = R(f) + Ex [|/(X) —g(X)]". of depth at most.

Thus, the pointwise excess risk @fz) over f(x) is simply

| f(z) — g(z)||*. In this paper we'll be interested in the inte-
grated excess risk

Theorem 3 Assume tha” has Assouad dimensiah There
exist constant€’, C’ independent of and (X'), such that
the following holds.

If = gl* = R(g) — R(f) =Ex || f(X) - g(X)|I*. Suppose the cross-validation option is used. Define

2.4 Choosing a good partition for regression a(n) = (log” n) loglog(n/8) + log(1/9),
A tree-based regressor works in two phases. The partition- 9
ing phase returns a partitioA of the data spac& and a  and assume, > max{()‘AX/Ay) =a(")} - With proba-

final regressor is learned as a piecewise continuous functio bility at leastl —d, the algorithm attains a diameter decrease
over the cells ofA.. In this work we'll consider a piecewise rate ofk < C’dlogd, and the excess risk of the regressor



Procedureadapt i veRPt r ee( sampleX, confidence parameté)
A —{x};
for i «— 1tooodo ‘
foreachcell A € Ai~! do
/] Create a subtree rooted at A:
[ < level (A) inthe currenttree/,/ Root is at level 0O
(subtree rooted at) < coreRPtree (A, A,(A)/2,6,1);
end
A’ — partition of X defined by the leaves of the current tree;
level (A%) « max sca: level (4) ;
/1l At this point we have two options for stopping and returning a partition.
|Option 1: Cross-validation|

if A, (Al) =0 or level (Ai) > log n? then
Draw test sampléX’, Y’) of sizen and defineR/, (-) as the empirical risk over the test sample;
A — argmin R (fy a0);
Aie{A0,. A}

return f, = fn A
end

‘Opti on 2: Autonmmtic stoppi ng‘
a(n) «— (log®n) loglog(n/8) + log(1/6);
if level (A7) >log (n - AZ (A%) /a(n)AZ (X)) then
A —  argmin <M-|A-i‘+Ai( j)),
Aje{Ai-1 Ai} n
retum f, = foa;

end
end
satisfies the cross -validation option, and lemma 15 for the automatic
) 2/(2+k) stopping). We subsequently argue that these decrease rates
I — f||2 < C.0A )2k/(2+k) Ay - a(n) depend just on the intrinsic dimensionality of the datagtor
n = X n lary[17 of sectiofib).
T loan® £In3/5 TheoreniB results from lemrhial13 and corollary 17, while
202 \/M theoreni# results from lemrfial1l5 and corolfary 17.
2n
3 Proof preliminaries: risk bound for f, o
Theorem 4 Assume thal’ has Assouad dimensiah There In this section we develop the necessary tools to bound the
exist constant§’, C’ independent off and u(X'), such that excess risk of, a, whereA is an RPtree partition, i.eA is
the following holds. defined by the leaves of some subtree of the tree returned by

Suppose the automatic stopping option is used. Define adaptiveRPtree.

a(n) = (log®n) loglog(n/) + log(1/6). 3.1 Generic decomposition of excess risk

With probability at least — J, the algorithm attains a diam-  We start the analysis with a standard decomposition of the
eter decrease rate df < (’dlogd, and the excess risk of —excess risk into bias and variance terms. Aebe any par-
the regressor satisfies tition of X. The following function ofx € X" provides a

a(n))2/(2+k) bridge between the regressfy; o and the regression func-

Ufo = FIP < C- (A +22) (A% 4+ 1) - (T tion /-

~ . Yoy f(Xi)lx,cam)
n g = E n, = ! - 5
o Irale) = a0 = = Aw)
Analysis outline if 11, (A(z)) # 0, otherwise we sef, a(z) = yo € V.
We start in sectiofl3 by laying out the necessary tools forthe ~ The pointwise excess risk can be bounded as
rest of the analysis. 9 ~ 2
The theorems are then proved in two parts. First we [fr,a(@) = fF(@)]7 < 2| fnalz)— fn,A(a:)H
~ 2
Joal@) = f@)|| - @

bound the excess risk of the algorithm in terms of the ob-
served diameter decrease rates in sedflon 4 (lemtha 13 for +2




We therefore proceed by bounding each term on the r.h.s sep-

arately in the following two lemmas.

Lemma 5 (Variance) Let A be a partition ofX’. The fol-
lowing inequality holds for alke € X' s.t.u,(A(z)) > 0,
with probability at leastl — 4’ over the random choice &f
for X fixed:

fr.a(z) — ﬁz7A($)H2 2+In(|A[/d)

n,un(A(x))

<A 2

Proof: Fix X. Now fix A € A, and letz ¢ A. We'll
considerY 4 = {Y; e Ys.t.X; € A}. Write:

W(Ya) = an<x>—an<x>H
sz 1 J(Xi)lx,ea
nﬂn(A)

We can now apply McDiarmid’s inequality to(-), as it is
easy to verify that, changing one of theé values inY 4
changes the value af(-) by at most—>1 ( 7. We then have
that,

In(|A[/d")

P(Ya) <EP(Y S (A)

A)+Ay

with probability at least — ¢’/ |A| over the random choice
of Y 4.
The expectation can be bounded as follows

(E@va?)”
J(Xi)lx,ea

1/2
< | )

<ZHE|Y f(x >||2nx,;e,4>”2
i (A))

>1/2
\/ Nty (A

The first inequality above is an application of Jensen’s in-
equality. The second inequality results from the fact that,
for independent random vectarswith null expectation, we
haveE |3, vi||> = 2, E ||ui||*; here we just take; to be
(Vi — F(X))x,ea/ (njn(A)). ,

Combining the above yields the desired bound ¢ , )
with probability at least — §’/ |A|. We then conclude with
a union bound over alll € A. |

IN

E¢(Ya)

(Zz IA ]1X i EA

(npn(A

Lemma 6 (Bias) Let A be a partition ofX’. The following
inequality holds for alle € X' s.t.u, (A(z)) > 0:

~ 2
|Foa@) = 1@ <xa2@A@). @

\Qf

AR @/
2% 4 .
QN

7

~——

(a) CoverB

(b) PartitionA.  (c) PartitionA’
Figure 3: We start with a covét of X with balls of different
size, next we see the data and obtain a partiigrwe then
substituteA with A’ by intersecting the cells &k with balls
of B.

Proof: Fix A € A and letz € A. Now write

ﬁz,A(I)_f(x)"2 = HZZ 1 n;n(j)(x))]lxie;x ?
S (X)) = f@)] 1x,e 2
< ( o () X A)
< (Zi—l A |n),i;(_A:§” ]lX,ieA>
< NA%(4),

where the second inequality results from the Lipschitz con-
dition on f(-). |

In lemmal® above, the bias is bounded in terms of the
physical diametera\(A). However, for an RPtree partition
A (i.e. A is defined by the leaves of some subtree), the phys-
ical diameterdA(A), A € A} could be as large a& v, the
diameter of the whole space. As previously discussed, RP-
tree focuses on decreasing thiata diameters\,,(A), and
we’ll argue that this is sufficient to decrease the bias of the
estimator. For this purpose, we will replace RPtree partsi
A with alternate partitiong\’ as explained in the next sec-
tion.

3.2 Alternate partitions

Given a partitionA built by RPtree, we will consider an al-
ternate partitionA’ which will serve to analyze the bias of
the regressof,, a (see above discussion of lemfja 6). Each
cell of A’ will either contain no data point, or has physical
diameter roughly the same as its data diameter. This is done
by intersecting the cells oA with balls or complements of
balls from a fixed collection defined below (see figulé 3).
We'll see thatA’ approximately maintains key properties of
A, namely partition size and average data diameters.

Definition 7 We defing3 as the following collection of balls
iNRP. Letl = |logn? 2+ |, Foreachi = 0to I, consider
a minimal (2—iAX)-cover ofX’; let B; be the set of all balls
B (z,27(=2) A ) centered at points in the cover. We set
B = Ul_,B.

Every cellA € A such thatd N X # () will be replaced in
A’ by two cellsA], A, obtained as follows. ‘
Consider the smalleste {0,...,I} suchthaR*Ay <

maX{An (A) ,2*1AX}, ie. i min {I, [log —Aé(XA)}}



There exists a balB € B; which coversANX: pick anyz €
ANX, and pick the balB in B; whose centet is closest to
z; we havevz’ € ANX, thatz' € B = B (2,277 Ay)
since by a triangle inequality
< lz—all+llz -2 <27°Ax + A, (4)
< 271‘AX + 27(i71)AX < 27(i72)A/\(.

We defined] = BnAandA, = A\ A) forall A €
A, ANX # 0; on the other hand we let] = A, A, =0
forall A € A, AnX = (). We finally defineA’ to be the
collection of all suchA], A} overA € A.

In the following lemma we relate diameters of cells of
A’ to the data diameters of cells Af.

Iz — 'l

Lemma 8 (Diameters ofA’) Let A be some partition oft’
and letA’ as defined above. We have that

D un(A)A%(A) < 64A7 (A) + 2560 DL AZ
ATEA’

Proof: Let A € A, AN X # (. We haveu, (A}) = un(A)
andu, (A%) = 0. Also, given the smallest € {0,...,1}
such tha "Ax < max {A, (4),277Ax}, we have that

o A, (A)>27 1Ay impliesA(A}) <2-270"2A, <
8A, (4),

e A, (A) <27 TAyimpliesA(A]) <2-27U-2A, <
16n~2/C+d) . Ay,
Therefore, leiA | = {A c A, A, (A) > 27 TAx}, we have
Z fin (A" )AZ(A") Z 1in(A)A%(A})

A’eA’ AcA,

S a(A)A2(AY)

AEA\A |

> 64un(A)AL (A)

AcA

+

<

ST 256p, (AT
ACA\A

64A2 (A) + 256n 777 - A%,
[

In order to bound the integrated excess risk, we'll need
the empirical mass of cells A’ to be close to their true
mass. In particular, this will allow us to effectively disda
cells that are empty of data since they will have little effec
on the integrated excess risk. The following lemma from VC
theory will come in handy.

Lemma 9 (Relative VC bounds {[VC71]) LetC be a class
of subsets oR”, and let its2n-shatter coefficient be given
by S (C, 2n). With probability at least — ¢’ over the choice
of X, all A’ € C satisfy

+ A%

<

pA) < pn(A) + 2\/un(A’)1nS (¢, 2"21 +1In(4/d")

41118 (C,2n) +1n(4/¢")
- .

(4)

The next lemma establishes the convergence of empirical
masses of cells oA’.

Lemma 10 (Mass of cells ofA’) With probability at least —
¢’ overX and the randomness in the algorithm, we have for
all RPtree partitionsA, for all A’ € A’ that

WA < )+ 24 L)
+ 47]} + 11;(4/5/), where
YV < O(logn)(logn + loglog(1/9)).

Proof: Suppose w.l.o.g that the RPtree is built by picking
random directions from a fixed collectidhwithout replace-
ment. How big shoul® be so we have enough directions to
choose from? The implementation @freRPtree ensures
that |P| < 2nClog (6n%/6) is sufficient (see remaik 4 of
sectiof 5.11). Now fix such a collection and letH» be the
union of { X'} and the class of half spaces®f defined by
hyperplanes normal to the directionsfn For an RPtree par-
tition A, each cell ofA is the intersection of at moétlog n
elements of{» since the tree is guaranteed to have height at
most6logn (remark4). Each cell oA’ is the intersection
of a ball or the complement of a ball i with a cell of A.

All such cells therefore belong to the following class of
subsets oR”:

6logn
C= {h:h:hoﬁ ( ﬂ hl>,h00rhgisin8,hl€7{p}.
=1

We now proceed to bounding§ (C, 2n), the 2n-shatter
coefficient ofC as follows.

Given2n sample points, every directian € P defines
at most2(2n + 1) equivalent choices of half-spacesi? .
We therefore have

S(C,2n) < 2|B|((4n+2)|P|+ 1)%="

2B (n®(8n + 4) log (6n2/6) +1)°'*" .

<
SinceX’ has Assouad dimensiahwe have 3| < S°/_ 2% <
2n?4/(2+d) The proofis completed by letting = log S (C, 2n)
for P fixed, and calling on lemnia 9. |

Lemma 11 (Excess risk) There exists a constaidt; inde-
pendent ofd and 1.(X) such that the following holds with
probability at leastl — 6/3 over the choice ofX,Y) and
the randomness in the algorithm.

Definea(n) = (log” n) loglog(1/8) + log(1/4). LetA’
be the final partition reached bydaptiveRPtree. For all
partitionsA € {A7}"_, we have

a(n)

n

lon—fI* < O (A§|A|

A2 (Ai (A) +nY (2+d)A§() ) .



Proof: Let the partitionA € {Aj}i,:0 and the sampl&X

be fixed. By lemm&_10 we have, with probability at least
1 — ¢’, that equation[{5) holds for alil’ € A’ with V <
O(log n)(log n + loglog(1/9)).

The excess risk decomposes o¥€ras

I fna—FIF =D

A’eA’

/ 1 fa(@) — F@)]? n(da).
.

We next divide the cells oA’ into two groups:
> V +1n(4/6") } 7

Al = {A’ €A jn(A) -

andA = A"\ AL.
It's easy to see that from equatidd (4), we hatd <
AL, p(A') < Tpn(A'), andvA’ € AL, p(A") < 720
Integrating overA’_, we have

2 /A | fua(@) — F@)]? n(de)

A'eA’

< > AL u(A)

ATeA

YV +1n(4/8")

< 2 2 NP
< DA T——

ATeAl

In(4/4’

< 7A§}.|A'|.V++(/). (5)

For the integration oveA’_, we first apply[(ll), and recall
lemmag® anfll5 to have that with probability at lekast ¢’
overy,

> /A, | faalz) — f(@)|? pldz)

ATEAL

= .8 (@) = f(@)]|* plda)
A’GXI:X; /A’ "
3 2X2A2(A) - p(4))
A’eAL
2+ In(|A'] /¥)
A2 2 )
+A/€z;¥> Y nin (A
> 2XNA%(A) - T, (A
A’€eAL

24 1In(JA’| /d)
+ 203, —— =
A’GZA; Y niin (A')

1N > pn(A)A (A)
A’eAl

IN

(A"

IN

: 7/1% (AI)

IN

2+ 1In(|A'] /&

+14A3,|A/| - —(|n |/ >. (6)
Note that the ternin |A’| in (€) is at mosO(Inn) since
the entire tree has height at mdstog n. Combining the
bounds in[(b) and{6), we get that there exists a congtant

such that|f, a — f||* is at most

log? nloglog 1/8 + log(1/4")
n

Co (Agz A

+A? Z ,Un(A/)AQ (A/)> )
ATEA’
with probability at least — 24’.

Settingd’ = /36 1ogn, the lemma follows by a union

bound over at modilog n partitions in{Aj}ézo, and then

calling on lemm&B. [ |

4 Risk of final regressor f,, = f, a

In this section we bound the excess risk of the final regressor
fn = fn.a interms of the diameter decrease rate attained
whenadaptiveRPtree Stops.

To see that the stopping criteria eventually hold, note that
the implementation oéoreRPtree ensures that all cells at
some level down the hierarchy have a single data point in
them (see remafl 4). In other words, we hadvg(A?) = 0
eventually, forcing either stopping criterion to hold.

We now outline the arguments in this section. For sim-
plicity, assumeA v, Ay, and\ are all1. Consider some
RPtree partitionA and letA,, (A) ~ ¢ for some scalac,
we then haveA| < ¢~* wherek is the diameter decrease
rate attained by the algorithm. From lemmd 11 above, we
roughly have||f,.a — f|I° < ¢ %/n + ¢2, and the best
bound is obtained by setting ~ n~/*¥) Provided we
pick an appropriate partition which optimizés the final
bound would then take the forfly,, a — f||* < n=2/(+h),

4.1 Risk bound for cross-validation option

Lemma 12 (Existence of a good pruning)Suppose the cross-
validation option is used, anddaptiveRPtree attains a
diameter decrease rate éfon X. Define

a(n) = (log”n) loglog(n/d) + log(1/9),

ol 1/ (2+F) 2
and¢ = (%2%) . Letn > max { (AAA—;) ,a(n)},
X

and fori > 0, let A’ as defined iridaptiveRPtree. Then
there exists, > 0 such thatA,, (A%) < 2¢ - A, (X) and
A <

Proof: Leti > 0. We have by definition thaf\,, (A?) <
271A,, (X), while it follows from the assumption on diam-
eter decrease rate thiatel (A’) < ki. Now let A’ be the
last partition ofX achieved byadaptiveRPtree when the
stopping criteria holds. We have either tiat(A?) = 0 <
¢-A, (X),or

ki > level (Al) > logn? > klog n2/(k+2) > klogl/(,

implying thatA,, (A%) <277 A, (X) < (- A, (X).
Now, letj € 1,...,i be the firstj such thatA,, (A7) <
¢- A, (X). We consider the following two cases:

e Eitherlevel (A7) <log¢~", and we gefAJ| < (7*.



e Or level (Aj) > log ¢(~* in which case the following 4.2 Risk bound for automatic stopping option

must hold: Lemma 14 (Properties ofA*) Suppose the automatic stop-

- A, (AT7Y) <2¢-A, (X), sincekj > level (A7) > ping option is used, and thatlaptiveRPtree attains a di-
klog1/¢, implying thatj — 1 > log(1/2¢). ameter decrease rate éfon X. Define

— level (A771) < log (™", for otherwisej — 1 > : 2
, = (1 log1 8) + log(1/6),
log 1/¢ implying thatA,, (A7) < ¢A,, (X). It a(n) = (log"n) loglog(n/9) + log(1/9)

follows that| A7 | < ¢~* 1/(2+k)

and(¢ = (M . Finally, assume: > «(n). Then,
Thus, eitherA’ or A7~! satisfies the claim. | the following holds for the final partitio’" retained for re-
gression:

Lemma 13 There exists a constant independent of and
11(X), such that the following holds with probability at least (@ A+ A2 ( Ak)> < (402 (X) +1) 2
1—2§/3 over(X,Y) and the randomness in the algorithm. n " N "

Suppose the cross-validation option is used, and proce-
dure adaptiveRPtree attains a diameter decrease rate of Proof: Fori > 0, let A® as defined irndaptiveRPtree.

k > d onX. Define We have by definition thah,, (A7) < 27°A,, (X), while it
= (loe? ) loe 5 + loa(1/8 follows from the assumption on diameter decrease rate that
a(n) = (log" n) loglog(n/9) +log(1/5), level (A?) < ki. Now for somei > 1, let A’ be the fi-

nal partition of ¥ achieved byadaptiveRPtree when the

2
and assume: > max | (AAx/Ay) ’O‘(n)}' The excess 0 0ning criteria holds. We consider the following two case

risk of the regressor is then bounded as

) sreem [ g aln) 2/(2+k) . E.itherlevgll .(Ai)hg.logc—k, and we have by the stop-
lfn = £l < C-(M\Ax) (Ay._n > ping condition that:
23 \/1n10gn6 +n3/6 AL (AY) < @Tevel(“) A7 (X)
2n a(n)

< SHCRAL() = a2 ().

‘ alm\ 1/ (2+K)
Proof: Let A’ beasinlemm@al2, ar(dfé%’y—())

By applying lemmd~1 and then lem
probability at least — §/3 that

Or level (A?) > 1 —kin which case the followin
12, we have Wlth ¢ musetvﬁol(d: ) 08¢ 9

- A, (A1) <2¢A, (X), sinceki > level (A7) >

lono —1* < G (Ag, 0| 20 K lo(1/¢), implying thati — 1 > lo(1/2¢).
— level (A"™1) < log (", for otherwise we would
12 (Ai (Aio) + n‘4/(2+d)A§() ) have stopped at— 1. To see this, assume instead
thatlevel (A"~1) > log(~*: we have tha{i —
> 1
< o (Aﬁ, _ C7,604(71) N 5)\2§2A§(> 1) > log ¢ and subsequently that
n . .
< CNALC A% (AT < 2DAT(Y) < AT (X)
To analyze the cross validation phase, we first fix the parti- = aln) R AZ (X))
tion tree and consider the obtained partitions frathto the n
final partition A* when the stopping criteria holds. We have < a(n) An) glevel(AT71) A2 (X).
with probab|I|ty atleasl — §/3 over the choice of X', Y’) - n "
thatvj € {0,..., 1} In other words,
6 . .
IR (funs) — By (fons)| < Aﬁ,\/ e e 3/6 level (A7) > log (A% (A1) Ja(n)A2 (X)) .
n
The above is obtained by applying McDiarmid’s to the em- In either case at least one &f° and A*~! has size at
pirical risk followed by a union bound over at mdslog n most¢—* and diameter at mo8&t - A x. It follows that
regressorg, ai,j € {0,...,i}.
Let f,, = f..a be the empirical risk minimizer, we can min (O‘(”) (| A7 + A2 (Aj)) <
then conclude that jefi—1,4} n
6 a(n)
1f = FIP < C2A203%¢2 + 2A?V\/1n1°g”2+ In3/9 —51 Lor g a2 () = (an2 () +1) ¢
n

with probability at least — 25/3. [ | which concludes the argument. |



Lemma 15 There exists a constant independent of and

1(X), such that the following holds with probability at least

1 —6/3 over(X,Y) and the randomness in the algorithm.
Suppose the automatic stopping option is used; assume

adaptiveRPtree attains a diameter decrease rate/of> d

onX. Definea(n) = (log” n) loglog(n/§)+log(1/4). The

excess risk of the regressor is then bounded as

a(n)

2/(2+k)
|fn—f||2<C-(A§,+/\2)(A§(+1).( ) .

Proof: Forn < a(n), the bound on the excess risk holds

vacuously. We assume henceforth that- «(n). Let( =
a(n) 1/(2+k

)
. . By first applying lemm&11 then lemrhal 14,
we have with probability at leagt— ¢/3 that

a(n)

n

A

an.A“ - f||2 >

o (My A&

+A2 (A2 (&) + 04/ DAL) )

a(n)

Ci (A3 +2?) (|A*|

+ (Ai (&) +n~Y (2+d)A§() )
Cr (A3 +2%) ((44% +1) ¢ +¢2A%)
C (A3 +X°) (A% +1) ¢,

which concludes the argument.

IAN A

5 Core RPtree and diameter decrease rates

5.1 Core RPTree procedures

Procedurebasi cRPtree( 4y C X, A, levell)
Ao — {Ao};
fori «— 1toocodo
if JANS (Aifl) < A then

return ;
end
Choose a random directian~ N (0, 51p);
Choose a random ~ U[—1,1] - % n(Ao);

foreachcell A € A;_; do
if (I +14)is oddthen
/1 Noisy splits.
t «— mediafz'v:z€ XN Ay} +7;
else
/1 Median splits.
t — mediafz"v:z € XN A};
end
At — {z € A, 2Tv < t};
Aright — A \ Alett;
end
A, — partition of A; defined by the leaves of the
current tree;
end

Procedurecor eRPtree( Ag C X, A, 4, levell)

Callbasi cRPt ree( Ay, A,1) log (6n?/6) times
and return the shortest tree.

RPtree consists of hierarchically bisecting the data space
with random hyperplanes. basicRPtree we alternate be-
tween two types of bisections: we split exactly at the median
in order to balance the tree, while we split at the median +
noise to improve the rate at which the data diameters are re-
duced down the tree. Notice that for the “noisy” split we use
the same hyperplane to bisect all nodes A;_;.

The procedureoreRPtree serves to boost the probabil-
ity that we get a small tree. The many call$tosicRPtree
can be done in parallel so that we don't keep growing the
trees that are to be discarded once the smallest tree is-ident
fied.

Remark 4 Given the implementation aforeRPtree, the
tree returned byadaptiveRPtree has the following prop-
erties:

e Any node at leveb logn has at mosil data point: the
data is split at the exact median at every other level
so that the number of points per nodes decreases ex-
ponentially from the root down. If were a power of
2, we'd need at moslogn levels to get tol point
per node. For generah, notice that the number of
points in a node at level > 2 is at most% of that of
its ancestor at level — 2. In other words we need at
most2logn/log(4/3) < 6logn levels to get down to
1 point per node.

e As a consequence, the entire tree reaches depth at most
6 log n under either stopping criteria, and therefore has
at most2n® nodes.

e Another consequence is that at ma@st log(6n2/6)
random directions are required to build the entire tree.

5.2 Worst case decrease rates

In this section we consider worst case bounds for the diam-
eter decrease rates attainable by the algorithm over stgpor
of low intrinsic dimension.

The following theorem, adapted from Dasgupta and Fre-
und [DFQ8], is the core of the argument.

Theorem 16 Let A ¢ R” and supposel N X has Assouad

dimensiond. There exists a constait’ independent of the
sampleX andd, with the following property. We have with
probability at Ieast% that the tree rooted atl returned by

the call basicRPtree(4, A, (A) /2,1) has depth at most

C’dlogd.

Proof Idea: The proof is a direct consequence of lemma 9
of [DEQ8] applied to the “noisy” splits at alternating lesel
in proceduréasicRPtree.

Letr = A,(A)/512v/d and consider an-cover of A;
now consider pairs of ball® = B(z,r), B = B(Z,r),

wherez, 2’ are in the cover anflz — 2'|| > 2 A, (A) — 2r.

Notice thatbasicRPtree stops if for all such pairs, no leaf
of the tree contains points from bothn X and B’ N X.



References
6 [BKLO6] A Beygelzimer, S. Kakade, and J. Langford.

[BLO6]
LW
[BNO3]
[Cla05]
Figure 4: Hilbert space filling curve, balls of smaller rasliu
have lower Assouad dimension.
[DFO08]

Fix such a paitB andB’. By lemma 9 of [DF0B], every
“noisy” split has a constant probability of separatiBgh X [GLZ08]
and B’ N X. Thus, the probability that some cell at level
contains points from botB N X and B’ N X goes down
exponentially withi. A union bound over at mog(d)?) [GNO5]
such pairs yields the theorem. [ |

Corollary 17 SupposeY has Assouad dimensiah Let [INO7]
C’ be as in theoreri’16. FiX. With probability at least

1 — /3 over the randomness in the algorithm, the proce-

dure adaptiveRPtree attains a diameter decrease rate of [LGLOE]
k < (C'dlogdonX.

Proof: Consider a subtree rooted Atreturned by the call [LWO7]
coreRPtree(A, A, (A) /2,4,1) in the second loop of pro- RS00
cedureadaptiveRPtree. SinceX has Assouad dimension [ ]
d, AN X also has Assouad dimensidiy definition so the-

orem 16 holds. [SNO]

ProcedurecoreRPtree callsbasicRPtree as many as
log (6n? /) times and returns the smallest tree; thus the prob-
ability that the subtree rooted dthas depth ove€’dlog d [Sto80]
is at most5/6n2. Now, under both stopping conditions,
coreRPtree is only called on nodes at level at masg n?;
a union bound over all such nodes (at mst) yield a prob— [Sto82]
ability of failure at most /3.

6 Final Remarks [TSLOQ]

We have shown in this paper that an RPtree regressor will
perform well in a scenario where the data spatéas low
Assouad dimensioi << D. [VC71]
Our results are easily extended to other settings. We can
for example consider a scenario where the data has low As-
souad dimension at small resolution but “fills” up space at
higher resolution. One may think for instance of a Hilbert
space filling curve where balls of small enough radius have
low Assouad dimension relative to the entire space. (see fig-
ure[d). RPtree in this case would initially decrease diamete
at a slow rate till it arrives at small enough neighborhoods,
at which time the diameter decrease rates speed up. Even
in this case, the complexity of the data in larger regions of
space has little effect on the final excess risk, providésl
large enough for the tree to arrive at well populated regions
with sufficiently small diameter.

Cover trees for nearest neighbol@ML, 2006.

P. Bickel and B. Li. Local polynomial regression
on unknown manifolds.Tech. Re. Dep. of Stats.
UC Berkley 2006.

M. Belkin and N. Niyogi. Laplacian eigenmaps
for dimensionality reduction and data representa-
tion. Neural Computation15:1373-1396, 2003.

K. Clarkson. Nearest-neighbor searching and met-
ric space dimensiond\Nearest-Neighbor Methods
for Learning and Vision: Theory and Practice
2005.

S. Dasgupta and Y. Freund. Random projec-
tion trees and low dimensional manifoldSTOGC
2008.

A. B. Goldberg, M. Li, and X. Zhu. Online mani-
fold regularization: a new learning setting and em-
pirical study. ECML PKDD, 2008.

S. Gey and E. Nedelec. Model selection for cart
regression treeslEEE Transactions on Informa-
tion Theory 51, 2005.

P. Indyk and A. Naor. Nearest neighbor preserv-
ing embeddingACM Transactions on Algorithms
2007.

L.Devroye, L. Gyorfi, and G. LugosiA Proba-
bilistic Theory of Pattern RecognitionSpringer,
1996.

J. Lafferty and L. Wasserman. Statistical analysis
of semi-supervised regressiddlPS 2007.

S. Roweis and L. Saul. Nonlinear dimensionality
reduction by locally linear embeddingScience
290:2323-2326, 2000.

C. Scott and R.D. Nowak. Minimax-optimal clas-
sification with dyadic decision treedlEEE Trans-
actions on Information Theorp2, 2006.

C. J. Stone. Optimal rates of convergence for non-
parametric estimator&nn. Statist.8:1348-1360,
1980.

C. J. Stone. Optimal global rates of conver-
gence for non-parametric estimatofgn. Statist.
10:1340-1353, 1982.

J.B. TenenBaum, V. De Silva, and J. Langford.
A global geometric framework for non-linear di-
mensionality reductionScience290:2319-2323,
2000.

V. Vapnik and A. Chervonenkis. On the uniform
convergence of relative frequencies of events to
their expectation. Theory of probability and its
applications 16:264—-280, 1971.



	Introduction
	Tree-based regression
	Background and related work

	Detailed overview of results
	Assouad dimension
	Notions of diameter
	Regression setup
	Choosing a good partition for regression
	Main Results

	Proof preliminaries: risk bound for fn, A
	Generic decomposition of excess risk
	Alternate partitions

	Risk of final regressor fn =.fn,A*
	Risk bound for cross-validation option
	Risk bound for automatic stopping option

	Core RPtree and diameter decrease rates
	Core RPTree procedures
	Worst case decrease rates

	Final Remarks

