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Abstract

We consider f(R) modified gravity theories for describing varying
speed of light in a spatially flat FRWmodel, and find some exact solutions.
Also we examine the dynamics of this model by dynamical system method
assuming a ΛCDM background and we find some exact solutions by con-
sidering the character of critical points of the theory in both formalisms.
The behaviour of the speed of light is obtained.

1 Introduction

The late-time accelerated expansion of the universe is an important challenge
to the cosmological models. There is an observational evidence based on Type
Ia supernovae standard candles[1] and also on standard rulers[2, 3] that the
Universe is in a phase of accelerating expansion now.There are several theoretical
approaches[4, 5] towards the understanding of this accelerating expansion. The
simplest one is to assume the existence of a positive cosmological constant which
is small enough to be dominating only at recent times. The predicted cosmic
history (assuming spatial flatness) is then

(
ȧ

a
)2 = H2

0 [Ω0m(1 + z)3 +Ω0r(1 + z)4 +ΩΛ] (1)

which provides an excellent fit to the observational data[2]. Models with a
cosmological constant suffer from the coincidence problem which is the need for
an extreme fine-tuning of the cosmological constant. To address this problem
two classes of models have been proposed. In the first class one attributes
the accelerating expansion to a dark energy (usually the energy of a scalar
field called quintessence) which has repulsive gravitational properties due to its
negative pressure[6]. The role of dark energy can also be played by Chaplygin
gas[7], topological defects [8], holographic dark energy[9], etc.

The second class of models look for an accelerating expansion via modi-
fication of general relativity on cosmological scales. Examples of these mod-
els include scalar-tensor theories[10, 11], f(R) modified gravity theories[12],
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braneworld models[13], and so on. These models naturally allow[10, 14] for a
super accelerating expansion which the effective dark energy equation of state
parameter w = p/ρ crosses the phantom divide line w = −1. Such a crossing is
consistent with some current cosmological data[15].

The advantage of f(R) theories of gravity is that no extra degree of freedom
is introduced and the accelerating expansion is produced by the Ricci scalar
(dark gravity) whose physical origin is well understood. This is in contrast
to other models where the origin and physical meaning of the extra degree of
freedom is unclear. It has been shown that for appropriate forms of f(R) the
action can produce accelerating expansion at late times in accordance with SnIa
data [16]. On the other hand, the main drawback of such theories is that they
are seriously constrained by local gravity experiments[17, 18, 19].

It can be shown[17] that f(R) models are dynamically equivalent to scalar–
tensor theories with vanishing Brans–Dicke parameter (ω = 0) and a special type
of potential. This implies that in principle the reconstruction of f(R) from a
particular cosmic history H(z) can be performed in a similar way as in the case
of the scalar–tensor theories[10, 14]. However, the vanishing of the Brans–Dicke
parameter requires some modifications of the reconstruction methods especially
when the reconstruction extends through the whole cosmic history through the
radiation and matter eras. The dynamical systems approach followed in the
present study illustrates these modifications.

The construction of cosmological models incorporating late accelerating ex-
pansion based on f(R) theories has been an issue of interesting debate recently.
This debate started from Ref.[20] which demonstrates that f(R) theories behav-
ing as a power of R at large or small R are not cosmologically viable because
they have the wrong expansion rate in the matter dominated era. This con-
clusion was challenged in Ref.[21] claiming that wide classes of f(R) gravity
models including matter and accelerating phases can be phenomenologically re-
constructed by means of observational data. The debate continued with the
recent work[22] where a detailed and general dynamical analysis of the cosmo-
logical evolution of f(R) theories was performed. It was shown that even though
most functional forms of f(R) are not cosmologically viable due to the absence
of the conventional matter era required by data, there are special forms of f(R)
that can be viable with appropriate initial conditions.

There are some ideas suggesting that the constants of nature, such as the
speed of light, should be space–time dependent[23, 24, 25, 26]. Theories with
varying speed of light (VSL) have been firstly proposed by Moffat, Albrecht,
Magueijo and Barrow[26, 27] as an alternative approach to the inflation mech-
anism for solving some problems of Big-Bang cosmological models[26, 28]. In
their formulation the Lorentz invariance is broken and there is a preferred frame,
in which the speed of light depends only on time. In this frame there exists a
pre-set function [27, 29] representing the speed of light and enters in the Fried-
man equations as an input.

It is a well-known fact that it is possible to have a varying speed of light
theory and preserving the general covariance and local Lorentz invariance[30].
The price that have to be paid for this, is to introduce a time–like coordinate
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x0 which is not necessarily equal to ct. In terms of x0 and ~x, one has local
Lorentz invariance and general covariance. The physical time t, can only be
defined when dx0/c is integrable.

The most general scalar-tensor action of gravity which allows for a dynamical
speed of light is illustrated in [31]. This action is previously analysed by many
authors. Demianski et al. [32] present a class of cosmological models derived
from Nöether symmetry requirement. These models describe accelerating evo-
lution of an FRW universe filled with matter and exhibit power law dependence
of the coupling factor and the potential to the scalar field. There is also some
tracking solutions of this model, in which the time evolution of the scalar field
tracks the expansion rate of the universe.

Here we shall investigate the exact cosmological solutions with varying speed
of light in the framework of f(R) modified gravity theories. In the following
sections we shall find some exact cosmological solutions for the spatially flat
universe. In section 3 we shall examine the dynamics of this theory by dynamical
systemmethod assuming a ΛCDM background. Considering the character of the
critical points of the theory we find some exact cosmological solutions. In section
4 we shall use the solution of the above system to reconstruct the cosmological
evolution and functional form of the function f(R) and the speed of light.

2 The Model

The action which we use here is similar to the Jordan-VSL action in [31], except
that we have changed the gravitational part to f(R):

S =
1

16πG

∫

d4x
√
−g (h(ψ)f(R) − 2U(ψ)− Z(ψ)gµν∂µψ∂νψ) + Sm[φi; gµν ]

(2)
Here h(ψ) = ( cc0 )

4 and U(ψ) are arbitrary regular functions of the scalar field ψ
(the field that generates varying speed of light), representing the coupling of the
scalar field ψ with geometry and it’s potential energy density respectively. c0
is the constant velocity of light and hereafter we shall put 8πG = c40 = 1. The
first part of the above action functional is the gravitational part, including f(R)
and a dynamical term for the velocity of light with arbitrary coupling function
Z(ψ). The latter is the action of the matter fields, φi, and we assumed that it
does not involve the scalar field ψ, so that the matter is minimally coupled to
gravity. As emphasized in the introduction, here it is assumed that there is a
time-like coordinate x0 and since dx0/c is not necessarily integrable, it is not
always possible to define time. It has to be noted that Z(ψ) can always be set
equal to unity by a redefinition of the field ψ. Finally it has to be noted that
here we adopt a metric approach so that the metric, the scalar field ψ, and the
matter fields φi are dynamical variables. Varying the action with respect to
metric and ψ field gives respectively:

h(f ′Rµν −
1

2
fgµν)−∇µ∇ν(hf

′) + gµν∇α∇α(hf ′) =
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Tµν + ∂µψ∂νψ − 1

2
gµν(∂αψ)

2 − gµνU (3)

and

∇µ∇µψ =
dU

dψ
−

1

2
f
dh

dψ
(4)

where f ′ is the derivative of f with respect to R.
The weak equivalence principle holds because the matter fields are minimally

coupled to the metric. This means that we have ∇µT
µ
ν = 0 where the energy

momentum tensor of matter is defined as usual; namely T µν = 2√
−g

δSm
δgµν

In a

cosmological context, applying the above field equations to the spatially flat
FRW universe in which the metric has the following form:

ds2 = −(dx0)2 + a(x0)2
(

dr2 + r2dΩ2
)

(5)

and assuming the matter field as a perfect fluid, we have:

3hf ′H2 = ρ+
1

2
ψ̇2 +

1

2
Rhf ′ − 1

2
hf + U − 3H( ˙hf ′) (6)

− 2hf ′Ḣ = ρ+ p+ ψ̇2 + (ḧf ′)−H( ˙hf ′) (7)

ψ̈ + 3Hψ̇ =
1

2

dh

dψ
f −

dU

dψ
(8)

ρ̇+ 3H(ρ+ p) = 0 (9)

where a dot over any quantity denotes derivative with respect to the time-like
coordinate x0. These are c−variable Friedman equations, the field equation of ψ
and the conservation law respectively. H(x0) = 1

a
da
dx0 is the Hubble parameter, ρ

and p are the energy and pressure density of a perfect fluid considered as matter
field. These equations form a coupled set of non-linear differential equations for
H(x0) and ψ(x0). The time-like coordinate x0 is related to cosmic time by the
relation:

dt =
dx0

c
= h−

1
4 dx0 (10)

In the cosmological application dx0/c is integrable and gives the physical time.
Therefore, the physical Hubble parameter Hp(t) = 1

a
da
dt can be evaluated as

Hp(t) = H(x0)dx
0

dt . Substituting 1
H(x0)

d
dx0 by 1

Hp(t)
d
dt in eq.(9) gives: dρ

dt +

3Hp(ρ+ p) = 0 This shows that in this model the conservation equation (9) is

valid even in terms of the cosmic time. Since in this model R = 6(Ḣ + 2H2),
we can rewrite the eqs.(6), (7) in these forms:

3hf ′H2 = ρ+
1

2
ψ̇2 + 3(Ḣ + 2H2)hf ′ − 1

2
hf+

U − 3H [ḣf ′ + 6hf ′′(Ḧ + 4HḢ)] (11)

−2hf ′Ḣ = ρ+ p+ ψ̇2 + ḣf ′ + 12ḣf ′′(Ḧ + 4HḢ) + 36hf ′′′(Ḧ + 4HḢ)2+
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6hf ′′[
...

H +4Ḣ2 + 4HḦ]−H [ḣf ′ + 6hf ′′(Ḣ + 4HḢ)] (12)

The cosmological solutions of the greatest interest are those for which the
time evolution of the Hubble parameter is proportional to the inverse of the cos-
mic time (corresponding to a power law expansion) or a constant (corresponding
to de-Sitter expansion). We can thus distinguish two cases, a c−dominated uni-
verse (Sm = U = 0), and a (c − Λ)−dominated universe for which Sm = 0 but
U = Λg is not zero. This corresponds to adding a constant (−2Λ) to f(R)
which is equivalent to a cosmological constant.

In order to have explicit solutions, we have to choose the form of f(R). In
[33] the VSL Friedman equations for f(R) = R is investigated. But for an
f(R) model with constant speed of light, according to the stability conditions
for de-Sitter space, we have to choose this form of f(R):

f(R) = R−
µ4

R
+ bR2 (13)

Then the condition for the existence of a de-Sitter solution is R0 =
√
3µ2, while

the stability condition is satisfied if b > 1
3
√
3µ2

. For more details see [34]. Here

in this section we shall use the above form of f for our VSL f(R) model.

2.0.1 c−dominated universe

Putting Sm = U = 0 and f(R) = R − µ4

R + bR2 in the equations (11), (12),
we get two independent equations. Assuming a power-law dependence for the
coupling coefficient h(ψ), these equations have the following solution:

H ∼ constant, ψ ∼ eαx
0

, h ∼ ψ2 (14)

This is a special choice which is used by many authors [30, 35, 36]. The coupling
function h(ψ) ∼ ψ2 is a particular case emerged by requiring the existence of
Nöether symmetry [32] and α is related to the other constants like µ and b.

The cosmic time and the physical Hubble parameter are:

t ∼ e
−α
2 x0

, Hp ∼
1

t
−→ a ∼ tν (15)

The conditions which one should impose on VSL models are usually inspired by
the cosmological puzzles. In order to solve the horizon problem of the standard
cosmology, one should set ä

ȧ − ċ
c > 0 for the early universe(see [23] ) and also

one has ȧ > 0. So requesting an expanding universe together with the horizon
criteria, one gets the following constraint; ν > 0.

2.0.2 (c− Λ)−dominated universe

As mentioned before, this era corresponds to a matter free universe but the
potential is non-zero. Assuming this form U = Λg in which Λ is a constant and
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demanding power-law expansion for cosmic scale factor, one can find that the
solution is:

H ∼ constant, ψ ∼ eαx
0

, h ∼ ψ2. (16)

and the cosmic time is:
t ∼ e

−1
2 αx0

. (17)

3 Dynamics of VSL f(R) Cosmology

Another way to find out some exact solutions for cosmological models is the
dynamical system method [37]. In this method by choosing some appropriate
variables, one can convert the field equations of the desired theory to a set of
autonomous differential equations. Then the critical points of the autonomous
system describe interesting exact solutions. Also one can use this method to
check the stability of the solutions. Dynamics of a scalar tensor theory in
the Jordan frame using metric approach has been considered in [33, 38]. Also
dynamics of f(R) cosmology (not VSL f(R) cosmology) has been considered
in [39]. Here we consider a class of VSL theories described by action (2). We
should notice that the volume element is defined as dx0d3x which is different
from the canonical volume element, and in the field equations H is not the
physical Hubble parameter and derivatives are with respect to x0 coordinate.

In section 2, we chose h(x0) such that the corresponding solution for cosmic
scale factor was physically interesting. Here we impose a general form for phys-
ical Hubble parameter which is related to ΛCDM cosmology, given by eq.(1).
Also we assume U(ψ) ∼ h(ψ)n where n is a constant [40]. The form of f(R) is
not fixed here.

Let’s rewrite the VSL Friedman equations (6), (7) as:

3hFH2 = ρm + ρrad +
1

2
ψ̇2 +

1

2
RhF − 1

2
hf + U − 3HḣF − 3HhḞ (18)

− 2hFḢ = ρm +
4

3
ρrad + ψ̇2 + ḧF + 2ḣḞ + hF̈ −HḣF −HhḞ (19)

where F := df
dR and ρm, ρrad represent the matter and radiation energy densities

which are conserved according to

ρ̇m + 3Hρm = 0, ρ̇rad + 4Hρrad = 0. (20)

In order to study the cosmological dynamics implied by eqs.(18), (19) we express
them as an autonomous system of first order differential equations. To achieve
this, we first write (18) in the dimensionless form as

1 =
ρm

3hFH2
+

ρrad
3hFH2

+
ψ′2

6hF
+

R
6H2

− f

6FH2
+

U

3hFH2
− h′

h
− F ′

F
. (21)

where ′ = d
d lna ≡ d

dN = 1
H

d
dt We now define the dimensionless variables x1, ..., x7

as

x1 :=
−F ′

F
, x2 :=

−h′

h
, x3 :=

U

3hFH2
, x4 :=

−f
6FH2

,
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x5 :=
R

6H2
=
H ′

H
+ 2, x6 :=

ψ′2

6hF
, x7 :=

ρrad
3hFH2

= Ωrad (22)

As one can see x7 is in fact Ωrad and x1 + x2 + x3 + x4 + x5 + x6 ≡ ΩDE is
associated with the curvature dark energy (dark gravity). Defining Ωm ≡ ρm

3hFH2

we can write eq.(21) as

Ωm = 1− x1 − x2 − x3 − x4 − x5 − x6 − x7. (23)

Using the defined dimensionless variables, we can express eq.(19) as

x′1+x
′
2 = −1−3x3−3x4−x5+3x6+x7+x

2
1+x

2
2−x2x5+2x1x2−x1x5. (24)

Also, differentiating x3, ...x7 with respect to N we have

x′3 = x3[(1 − n)x2 + x1 − 2x5 + 4] (25)

x′4 =
x1x5
m

− x4(2x5 − x1 − 4) (26)

x′5 = −x1x5
m

− 2x5(x5 − 2) (27)

x′6 = x6(−2− 2x5 + x1 + x2) + x2(x4 + nx3) (28)

x′7 = x7(x1 + x2 − 2x5) (29)

where

m =
F ′R
f ′ =

f,RRR
f,R

(30)

and ,R implies derivative with respect to R.
The autonomous dynamical system (24), (25), (26), (27), (28) and (29) is

the general dynamical system that describes the cosmological dynamics of VSL
f(R) theories. Instead of investigating the above autonomous system for various
different behaviours of m(f(R)) we eliminate m from the system by assuming
a particular form for Hp(N) consistent with cosmological observations. Once
x5(N) is known we can solve (27) for x1x5

m and substituting in (26), we find

x′4 = −x′5 − 2x5(x5 − 2)− x4(2x5 − x1 − 4) (31)

which along with (24), (25), (28) and (29) describes a new dynamical system

which is independent of m. On the other hand one can easily verify that H′

H =
H′
p

Hp
+ 1

4x2, so by substituting this relation in the above equations, we have:

x′1+x
′
2 = −3−3x3−3x4−

H ′
p

Hp
(1+x1+x2)−

9

4
x2+3x6+x7+x

2
1+

3

4
x22+x1

(

7

4
x2 − 2

)

(32)

x′3 = x3

[

(
1

2
− n)x2 + x1 − 2

H ′
p

Hp

]

(33)

x′4 + x′5 = −2

(

H ′
p

Hp
+

1

4
x2 + 2

)(

H ′
p

Hp
+

1

4
x2

)

− x4

(

2
H ′
p

Hp
+

1

2
x2 − x1

)

(34)
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x′6 = x6

(

−6− 2
H ′
p

Hp
+ x1 +

1

2
x2

)

+ x2(x4 + nx3) (35)

x′7 = x7

(

x1 +
1

2
x2 − 2

H ′
p

Hp
− 4

)

(36)

and m = −x1

2
H′
p

Hp
+ 1

2x2

.

The results of our analysis do not rely on the use of any particular form of
x5(N)(i.e. Hp(z)). They only require that the universe goes through the radia-
tion era, matter era and acceleration era. For the sake of definiteness however,
we will assume a specific form for H(z) corresponding to a ΛCDM cosmology
(1) which in terms of N , takes the form

Hp(N)2 = H2
0 [Ω0me

−3N +Ω0rade
−4N +ΩΛ] (37)

where N = ln a = − ln(1 + z) and ΩΛ = 1− Ω0m − Ω0rad. It is straightforward
to study the dynamics of the system (32), (33), (34), (35) and (36) by setting
x′i = 0 to find the critical points and their stability in each one of the three eras.
By setting x′i = 0, we have

x5 =
H ′
p

Hp
+

1

4
x2 + 2 (38)

These equations describe the cosmological dynamics of the VSL f(R) theory.
In general, we should add a further parameter which could be related to

h,ψ and h,ψψ, beside the above n. In fact if we do not try to reconstruct
the function h(ψ), such a function can be fixed priori and the corresponding

parameter would be, for example,
h,ψ
h . In such a case H(N) would not be

fixed as in our reconstruction approach but would have to be determined by the
autonomous system.

The critical points are shown in Tables (1), (2) and (3). The stability anal-
ysis of these Tables assumes that x5 = const and therefore it is not identical to
the full stability analysis where x5 would be allowed to vary. The usual stability
analysis of the cosmological dynamical systems assumes a particular cosmologi-
cal model (e.g. a form of f(R) orm or n) and in the context of this physical law,
the stability of cosmic histories H(N) is investigated. In this context clearly
a stable cosmic history is the one preferred by model. In the reconstruction
approach, however, the stability analysis has a very different meaning. Here
we do not fix the model h(ψ) and f(R) (physical law). Here we fix the cosmic
history and allow the physical law f(R) and h(ψ) to vary in order to predict
the required cosmic history. Thus our stability analysis concerns the physical
law f(R) and h(ψ) and not the particular cosmic history. The physically in-
teresting quantities are the values of the critical points we find in each era in
the context of the ΛCDM cosmic history. These tell us the possible physical
laws f(R) and h(ψ) that can reproduce a ΛCDM cosmic history. Some criti-
cal points in each era are not stable. This however does not imply that these
points are not cosmologically relevant. These instabilities are not instabilities
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of the trajectory H(N) (which we keep fixed) but of the forms of f(R) which
is allowed to vary. Thus they are not so relevant physically since in a physical
context f(R) is assumed to be fixed a priori. Calculation of eigenvalues are too
long, but in what follows we don’t need them. So we will not write them, and
thus we will not present them here.

x1 0 4m
1−m

8m(n−1)
−1+2n+m m(4− 1

2x
∗
2)

x2 8 −8m
1−m

8(m+1)
−1+2n+m x∗2

x3 0 0 x∗3 0
x4 3 2m

1−m2
−2

−1+2n+m
−1

4(1+m)x
∗
2

x5 2 −2m
1−m

2(m+1)
−1+2n+m

1
4x

∗
2

x6 −12 −8m2

(1−m)(1−m2) x∗6 x∗∗6

x7 0 −5m3+9m2+3m+1
(1−m)(1−m2) 0 0

Table 1: The critical points of the system in the radiation era.

In Table (1) the critical points of the system for radiation era is given, in
which

x∗3 =
−3(1−m) + 2n(1− 2m)

n(−1 + 2n+m)2 (12n(1 +m) + 9(1−m)− 6n(1− 2m))
×

(

(−1 + 2n+m)
(

n2 + (n− 3)(n− 2)−mn(53− 16m2 + 8m(1 + 4n))
)

−16n(1 +m)2(m− 2)(m− 3/2)
)

+
2

n(−1 + 2n+m)

and

x∗6 =
4(1 +m)

(−1 + 2n+m)2 (12n(1 +m) + 9(1−m)− 6n(1− 2m))
×

(

(−1 + 2n+m)
(

n2 + (n− 3)(n− 2)−mn(53− 16m2 + 8m(1 + 4n))
)

−

16n(1 +m)2(m− 2)(m− 3/2)
)

and

x∗∗6 =
(1 − 16m2)

3
+

−2− 27m− 12m2 + 16m3

12(1 +m)
x∗2 −

1

12
(m2 − 7

2
m+ 3)x∗22

and x∗2 satifies a cubic equation whose solutions are

x∗2 =
4(−1 + 2m)

m− 1

x∗2 =
−12m2 + 16m3 − 2− 27m+

√
64m4 − 39m2 − 80m3 + 52 + 148m

2m3 − 5m2 −m+ 6

9



x1
2m
1−m 0 3m

1−m
6m(−1+n)
−1+2n+m m(3− 1

2x
†
2)

x2
2(1−3m)

1−m 6 −6m
1−m

6(1+m)
−1+2n+m x†2

x3 0 0 0 x†3 0

x4
1−2m
1−m2 0 −1+4m

2(1−m2) − n+2m+1
2n+2nm+m2−1

3
2+

1
2x

†

2−
1
8x

†2
2

(1+m)(−3+ 1
2x

†

2)

x5
1−2m
1−m 2 1−4m

2(1−m)
n+2m+1
−1+2n+m

1
4x

V
2 + 1

2

x6 − 6m2−5m+1
(1−m)(1−m2) −7 (1−4m)m

(1−m)2(1+m) x†6 x††6

x7 −m(5m2−10m+3
(1−m)(1−m2) 0 0 0 0

Table 2: The critical points of the system in the matter era.

x∗2 =
−12m2 + 16m3 − 2− 27m−

√
64m4 − 39m2 − 80m3 + 52 + 148m

2m3 − 5m2 −m+ 6

In Table (2) the critical points of the system for the matter era is given, in
which

x†3 =
1

1 +m
×

6n2m3 − n2m2 − 7mn2 + 2n2 − 5nm3 + 7nm2 + 8nm− 8n+ 3m+ 8− 4m2 −m3

4n2 + 4nm− 4n+m2 − 2m+ 1

and

x†6 = −6n2m2 + 5mn2 − 2n2 + nm2 + 7nm+ 8n+ 2m+ 1

4n2 + 4nm− 4n+m2 − 2m+ 1

and

x††6 =
x†2

(

3
2+

1
2x

†

2−
1
8x

†2
2

(1+m)(−3+ 1
2x

†

2)

)

(1−m)(3− 1
2x

†
2)

and x†2 satisfies a cubic equation, whose solutions are

x†2 =
6m

m− 1

x†2 =
2
(

6m3 − 8m2 − 5m+ 6 +
√
49m4 − 76m3 − 44m2 + 72m

)

−5m2 + 2m3 + 6−m

x†2 =
2
(

6m3 − 8m2 − 5m+ 6−
√
49m4 − 76m3 − 44m2 + 72m

)

−5m2 + 2m3 + 6−m

Finally the critical points of Λ− dominated era is given in Table 3, where
x♮2 satisfies a cubic equation, whose solutions are

x♮2 =
−6

m− 1

x♮2 = −
2
(

5m2 − 7m− 9−
√
49m4 − 154m3 + 7m2 + 210m+ 9

)

−5m2 + 2m3 −m+ 6
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x1 0 −4m
1−m

−1
2 mx

♮
2 0

x2 0 8
1−m x♮2 0

x3 0 0 0 1−m
1+m

x4 −1 −4+2m
1−m2

−1
(1+m) (2 +

1
4x

♮
2)

−2
1+m

x5 2 4−2m
1−m

1
4x

♮
2 + 2 2

x6 0 4(−4+2m)
(1−m)(1−m2)

x♮2(2+
1
4x
♮
2)

(1+m)(−6+ 1
2 (1−m)x♮2)

0

x7 0 9(1−m)+m2(13−5m)
(1−m)(1−m2) 0 0

Table 3: The critical points of the system in the de-Sitter era.

x♮2 = −
2
(

5m2 − 7m− 9 +
√
49m4 − 154m3 + 7m2 + 210m+ 9

)

−5m2 + 2m3 −m+ 6

4 Reconstruction of f(R), h(ψ), U(ψ)

We can now reconstruct the form of the function f(R) and h(ψ) and U(ψ) that
correspond to each one of the critical points of the system shown in tables (1),
(2) and (3). These reconstructions are effectively an approximation of these
functions in the neighbourhood of each critical point.

Consider a critical point of the form (x̄1, x̄2, x̄3, x̄4, x̄5, x̄6, x̄7). Now we want
to reconstruct the form of the potential U(ψ) and h(ψ). Using (22), we find
that:

F (N) = F0e
−x̄1N , h(N) = h0e

−x̄2N (39)

where F0 and h0 are the present value of F and h. Assuming that at the present
time the velocity of light is equal to c0 we have to set h0 = 1. Using eq. (22)
we find

ψ(N) = −2(6F0)
1
2

x̄
1
2
6

x̄1 + x̄2
e−(x̄1+x̄2)

N
2 + C (40)

where C is a constant which can be put equal to zero by a shift in ψ-field.
Equations (39) and (40) allow us to eliminate N in favour of ψ

h(ψ) = ξψ
2x̄2

(x̄1+x̄2) (41)

where ξ =
(

1
24F0

(x̄1+x̄2)
2

x̄6

)

x̄2
(x̄1+x̄2)

.

It is interesting to note that for all solutions obtained here from the analysis of
the critical points and for any epoch, the h function has a unique form. Since
c/c0 = h1/4 we have:

c

c0
= a−x̄2/4 (42)

Depending on the value of x̄2 given in tables (1), (2) and (3), this can lead to a
constant, decreasing or increasing speed of light with respect to the scale factor.
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Using the horizon criteria one can obtain some restrictions on x̄2 and thus on m.
For radiation era this condition leads to x̄2 > 4. For matter era we have x̄2 > 2.
And finally for de-Sitter era it is x̄2 > −4. This can be used as a selection rule
for model parameters m and n.

In a similar way we can reconstruct U(ψ). From eq.(22), we have

U(N) = 3x̄3h(N)F (N)H(x0)2 = 3x̄3h(N)
1
2F (N)Hp(N)2 (43)

Using now the input form of Hp(N) (eq.(37)), we find the dominant term of
Hp(N) in each era. Using eq.(40) and (43) we have:

U(ψ) = λψ
2nx̄2
x̄1+x̄2 (44)

where

λ = 3x̄3F0Ω0rξ
4+x̄1+1

2
x̄2

x̄2 , Rad. era

= 3x̄3F0Ω0mξ
3+x̄1+1

2
x̄2

x̄2 , Mat. era

= 3x̄3F0ξ
1
2+

x̄1
x̄2 (1− Ω0r − Ω0m), d.S. era

We can now reconstruct the form of the function f(R) corresponding to
each one of the critical points of the system. This reconstruction is effectively
an approximation of f(R) in the neighbourhood of each critical point. It is
particularly useful because most of the dynamical evolution takes place close to
fixed points. Using the relation

R = 6(2H2 +H ′H) = 6

(

2H2
ph

− 1
2 +H ′

pHph
− 1

2 − 1

4
H2
ph

′h−
3
2

)

(45)

In terms of Hp in each era, we obtain

R(N) =
3

2
x̄2Ω0re

(
x̄2
2 −4)N , Rad. era

= 3
(

1 +
x̄2
2

)

Ω0me
(
x̄2
2 −3)N , Mat. era

= 6(2 +
x̄2
4
)(1− Ω0r − Ω0m)e

1
2 x̄2N , d.S. era (46)

which leads to

F (R) = F0

(

2R
3x̄2Ω0r

)

−x̄1

−4+1
2
x̄2

, Rad. era

= F0

(

R
3(1 + x̄2

2 )Ω0m

)

−x̄1

−3+ 1
2
x̄2

,Mat. era

= F0

(

R
6(2 + x̄2

4 )(1− Ω0r − Ω0m)

)

−2x̄1
x̄2

, d.S. era (47)
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and by integration we get

f(R) ∼ R
−x̄1

−4+ 1
2
x̄2

+1
, Rad. era

R
−x̄1

−3+ 1
2
x̄2

+1
, Mat. era

R
−x̄1
1
2
x̄2

+1
, d.S. era (48)

Although we can reconstruct f(R) for any critical point and for each one of
the three epochs in terms of the values of x̄1 and x̄2, it has to be noted that all
of these can be written as

f(R) ∼ R1+m (49)

as it is clear from the definition of m in equation (30).

5 Conclusion

Here we have investigated analytically the behaviour of VSL f(R) gravity. We
saw that it is possible to produce the background expansion history H(z) in-
dicated by observations. Choosing the form f(R) ∼ R1+m we get c ∼ a−x̄2/4.
The horizon criteria puts some limitation on x̄2 and thus on m. It has to be
noted that the form of the potential of the VSL field has to be fixed according
to equation (44).
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