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Abstract
We illustrate the crucial role played by decoherence (consistency of quantum histories) in extract-

ing consistent quantum probabilities for alternative histories in quantum cosmology. Specifically,

within a Wheeler-DeWitt quantization of a flat Friedmann-Robertson-Walker cosmological model

sourced with a free massless scalar field, we calculate the probability that the univese is singular in

the sense that it assumes zero volume. Classical solutions of this model are a disjoint set of expand-

ing and contracting singular branches. A naive assessment of the behavior of quantum states which

are superpositions of expanding and contracting universes may suggest that a “quantum bounce”

is possible i.e. that the wave function of the universe may remain peaked on a non-singular classical

solution throughout its history. However, a more careful consistent histories analysis shows that for

arbitrary states in the physical Hilbert space the probability of this Wheeler-DeWitt quantum uni-

verse encountering the big bang/crunch singularity is equal to unity. A quantum Wheeler-DeWitt

universe is inevitably singular, and a “quantum bounce” is thus not possible in these models.
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I. INTRODUCTION

Whatever form a theory of quantum gravity may ultimately take – string theory, loop
quantum gravity, causal dynamical triangulations, causal sets, or something else1 – extract-
ing coherent physical predictions will require more than just the basic technical apparatus of
the theory. Because one of the explicit aims of such theories is to provide a complete quan-
tum description of the universe as a whole, a framework within which consistent predictions
can be made in the absence of external observers or an external notion of “measurement”
will also be required in an essential way.

In this essay we aim to outline an explicit realization of one such framework, the gen-
eralized “consistent histories” quantum theory of J.B. Hartle [2], in the context of the
Wheeler-DeWitt quantization of a flat homogeneous and isotropic Friedman-Robertson-
Walker (FRW) model universe populated with a free, massless, minimally coupled scalar
field. (Previous discussions of decoherent histories formulations of quantum cosmological
models include [3–8].) We will describe when and how, within the framework of decoherent
histories, consistent quantum predictions may be extracted from the theory – namely, when
the histories describing the possible outcomes decohere – emphasizing the fundamental quan-
tum fact that it is not normally the case that a probability may sensibly be assigned to every
history of a system. We illustrate with an example of a prediction that depends crucially on
decoherence of the appropriate histories: whether or not Wheeler-DeWitt quantized FRW
universes are singular. The classical solutions of this model are all singular and fall into
disjoint sets of ever-expanding or ever-contracting universes. We shall show that decoher-
ence is critical to a coherent quantum analysis of this question, concluding unambiguously
within this framework that all quantumWheeler-DeWitt FRW universes are singular as well.
This stands in contrast to a naive analysis of the behavior of the quantum wave function
alone, not taking care of the proper description and decoherence of the corresponding his-
tories. This (erroneous) analysis of states which are superpositions of wavefunctions peaked
on classically disjoint expanding and contracting solutions seems to suggest that quantum
avoidance of the singularity is possible. However, a careful analysis of the quantum histories
shows that the probability of avoidance of the singularity is zero and the probability that a
Wheeler-DeWitt quantum universe encounters a singularity is unity.

The organization of this paper is as follows. Section II describes the overall framework of
generalized quantum theory. In section III we give details of the cosmological model and its
(canonical) quantization, including a discussion of the model’s observables, and in section
IV we discuss the analysis of the quantum singularity. (Complete technical details of the
model and its decoherent histories formulation will be given elsewhere [9].)

II. GENERALIZED “CONSISTENT HISTORIES” QUANTUM THEORY

Quite generally, the job of any quantum theory is to do two things. For any given physical
system, a quantum theory must, for all observable quantities, tell both What are the possible

values of those observables? and How likely is each of these values? In Hilbert space
formulations of quantum theory, where observables are represented by self-adjoint operators
{Â} on a Hilbert space H, the answer to the first question is found in the eigenvalues {a}

1 See [1] for an overview.
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of those operators, and to the second, in amplitudes constructed from the corresponding
eigenstates {|a〉} and the state |Ψ(t)〉 of the system at the moment in question:

pa = |〈a |Ψ(t)〉|2. (2.1)

In the textbook “Copenhagen” view, this framework is usually supplemented with the rule
that once a particular outcome {a′} has been “observed”, the state of the system is replaced
by that of the observed outcome, |Ψ(t)〉 → {|a′〉}. This is commonly referred to as the
“collapse of the wave function”.

But when does it make sense to assign such probabilities, and thence reassign the state
of the system in this discontinuous, uncontrollable way? Certainly such amplitudes do not
always make sense. Most commonly, this is the case when considering the likelihood of
sequences of outcomes, as is well known, for example, in the two-slit experiment [10]. Quite
generally, in experiments of this kind, probabilities may be consistently assigned only when
there are physical mechanisms in place (such as a measuring apparatus or a suitable physical
environment) which destroy the interference between the possible alternative histories.

Taking a rather conservative approach, this idea has been formalized into a scheme known
as the “decoherent” or “consistent” histories formulation of quantum theory, in which prob-
abilities may be consistently assigned whenever interference between histories vanishes, ir-
respective of the presence of measuring devices, external observers, or other such notions;
see [2, 11, 12] for broad overviews. In fact, the principal virtue of this perspective is that it
employs criteria entirely internal to the system to determine whether or not the assignment
of probabilities makes coherent sense. 2

The most general formulation of the consistent histories program, suitable for application
to quantum cosmology, is due to J.B. Hartle [2]. In this form it is often referred to as
“generalized quantum theory”. We summarize very briefly its chief elements for theories
with a homogeneous time here.

Particular sequences of physical outcomes (“histories”) are characterized by “class op-
erators”, products of Heinseberg projections onto ranges of eigenvalues of observables of
interest:

Ch = P α1

∆ak1

(t1)P
α2

∆ak2

(t2) · · ·P αn

∆akn

(tn) (2.2a)

= U(t0 − t1)P
α1

∆ak1

U(t1 − t2)P
α2

∆ak2

· · ·U(tn−1 − tn)P
αn

∆akn

U(tn − t0), (2.2b)

where U(t) = exp(−iĤt/~) is the system’s propagator and t1 ≤ t2 ≤ · · · ≤ tn. Given the
initial state of the system |ψ〉, the “branch wave function” corresponding to the state of a
system following the history h is constructed from the class operator for h:

|ψh〉 = C†
h|ψ〉. (2.3)

One may see that |ψh〉 is exactly the state one would assign to this system in “Copenhagen”
quantum theory were the observed outcomes to be the ranges ∆aki ; the projections corre-
spond to the “collapses”. In a histories-oriented formulation, however, |ψh〉 is not the state
of the system, |ψ〉 is. The apparent discontinuous evolution of the state in Copenhagen
quantum theory is the result of insisting on assigning a meaning to |ψ(t)〉 separately along

every possible “branch” of the system.

2 By which it is meant that the appropriate probability sum rules are satisfied.

3



The probability of the history h is given by the Lüders-von Neumann formula:

p(h) = 〈ψh |ψh〉. (2.4)

Such a probability only makes sense, however – meaning
∑

h p(h) = 1 – when the interference
between the possible histories vanishes, 〈ψh′ |ψh〉 = 0 for h′ 6= h.

One therefore defines the “decoherence functional”

d(h, h′) = 〈ψh′ |ψh〉. (2.5)

When the decoherence functional is diagonal on a given set of histories,3 then that set is
said to “decohere” or “be consistent”. In such sets

d(h, h′) = p(h) δh′h. (2.6)

The decoherence functional of a system thus provides an internally defined, objective mea-
sure of interference between the possible histories of a system, independent of notions of
external observers or measurements – though it does reproduce the predictions of ordinary
quantum theory in appropriate “measurement situations”. It is the decoherence functional
that determines when the quantum theory makes a prediction concerning a possible history,
and, when a probability may be sensibly assigned, what that probability is.

III. MODEL COSMOLOGY & ITS QUANTIZATION

To illustrate the essential importance of the consistency of alternative histories to pre-
diction in quantum gravity, we consider the predictions of a simple quantum cosmological
model concerning the volume of the universe. We find that decoherence is critical to a co-
herent prediction, and indeed, if one ignores the role it plays, one is led to infer a conclusion
which is in fact the precise opposite of the correct prediction. The point is not so much the
applicability of the content of the prediction itself for our universe. Different models might
– and indeed, do – give a different result [13]. Rather, it is to emphasize the essential role
played by quantum considerations in making such predictions.

In this paper, we concentrate on the implications of these quantum considerations, refer-
ring to [9] for technical details.

The model we consider is a flat, homoegeneous and isotropic Friedmann-Robertson-
Walker (FRW) universe with line element

ds2 = −dt2 + a2(t) dq̊2, (3.1)

where dq̊2 is a fixed, flat fiducial metric on the spatial slices. Since the flat FRW universe
is spatially infinite we choose a fiducial cell with unit spatial volume with respect to dq̊2

and restrict all integrations to it. Choosing for matter content a free, massless, minimally
coupled scalar field, the action for this model cosmology is

S =
3

8πG

∫

dt (−aȧ2) + 1

2

∫

dt a3φ̇2. (3.2)

3 Complete in the sense that it consists in a set of mutually exclusive, collectively exhaustive histories.
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Canonical phase space variables for the model are {a, pa, φ, pφ}, the scale factor and scalar
field and their conjugate momenta. A canonical transformation to the volume V = a3 and
its conjugate β = −4πG

3

pa
a2

(so {β, V } = 4πG) [14] puts the Hamiltonian constraint in the
form

− β2V 2 +
4πG

3
p2φ ≈ 0, (3.3)

from which one sees that β2 measures the energy density p2φ/2V
2 in the classical theory.

Classically, pφ is a constant of the motion, and

φ = ± 1√
12πG

ln
V

Vc
+ φc (3.4)

are expanding and contracting branches of the classical solution. (Vc and φc are integration
constants.)

It is shown in [14, 15] that this model may be canonically quantized by setting [β̂, V̂ ] =
i4πG~ and p̂φ = −i~ ∂/∂φ. Defining a rescaled volume variable

ν =
V

(4π
3
)3/2 l3p/K

, (3.5)

where K = 2
√
2/3

√

3
√
3, the constraint becomes the Wheeler-DeWitt equation

∂2φ χ(ν, φ) = −Θ(ν)χ(ν, φ), (3.6)

where Θ(ν) = −2πGν∂ν(ν∂ν) is positive definite and self adjoint on L2(R, ν−1dν). General
solutions of the quantum constraint may be decomposed in terms of positive and negative
frequency parts, each of which satisfy the first order Schrödinger-like quantum constraint
equation:

∓ i ∂φχ±(ν, φ) =
√
Θχ±(ν, φ) . (3.7)

The scalar field φ thus appears mathematically in the role of a “time” parameter,4 and
the dynamics may be expressed in terms of the propagator U(φ) = exp(i

√
Θφ).

The multiplicative volume operator ν̂ has eigenvalues 0 ≤ ν < ∞ with eigenfunctions
satisfying

〈ν |ν ′〉 = δ(ln ν − ln ν ′) (3.8)

and projections on the range dν given by

dPν =
dν

ν
|ν〉〈ν|. (3.9)

The scalar momentum p̂φ is a constant of the motion just as it is in the classical the-
ory. Physical predictions may be extracted from observables which commute with the
quantum constraint. These are the Dirac observables p̂φ and ν̂|φ. Here ν̂|φ∗ , defined by

ν̂|φ∗ ψ(ν, φ) = exp i
√
Θ(φ− φ∗) ν̂ ψ(ν, φ∗), is the “relational observable” corresponding to ν̂

giving the volume at φ = φ∗.

4 This interpretation may provide a convenient way of conceptualizing mathematical results, but is by no

means essential to the analysis or its conclusions.
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The inner product and hence the physical Hilbert space may be found by demanding that
the action of these observables be self adjoint; it turns out to be [15]

〈χ |ψ〉 =
∫ ∞

0

dν

ν
χ∗(ν, φ)ψ(ν, φ) . (3.10)

The same inner product can be obtained from a more rigorous group averaging procedure
[16, 17]. (See Ref. [18] for details.)

Because the dynamics (and hence Dirac observables) preserve the positive and negative
frequency subspaces in the physical Hilbert space, we can restrict to either subspace. Here we
choose to work with positive frequency solutions. Solutions to the Wheeler-DeWitt equation
may then be represented as a sum of “expanding” (R for “right-moving” in a plot of φ vs.

ν) and “contracting” (L for “left-moving”) orthogonal branches,

Ψ(ν, φ) = ΨR(ν−) + ΨL(ν+), (3.11)

where ν± = ln ν±
√
12πGφ. (Negative frequency solutions can be written in a similar way).

Defining Heisenberg projections with the dynamics U(φ), class operators for histories
pertaining to values of physical quantities at specific values of φ may be defined similarly
to Eq. (2.2). The decoherence functional for this quantum cosmological model may then be
defined just as in Eq. (2.5) with the inner product given by Eq. (3.10) [5].5

One can then show within the framework of generalized quantum theory outlined above
that the probability (for the history in which) the volume ν is in a range ∆ν when φ = φ∗

is given by

p∆ν(φ
∗) =

∫

∆ν

dν

ν
|Ψ(ν, φ∗)|2. (3.12)

A comment concerning this result is in order. The operator ν̂ does not commute with
the quantum constraint, and is therefore not a Dirac observable [19–21]. However, the
corresponding relational observable ν̂|φ∗ is. It is satisfying that the probability for the history
in which ν̂ assumes values in ∆ν at φ∗ gives precisely the result one would expect from
considering expectation values of ν̂|φ∗ . One thus may see how consideration of relational
observables arises naturally within histories formulations of quantum theory. (Alternately,
one may consider class operators constructed directly from projections onto ranges of values
of the Dirac observables.) For further details see [9].6

5 The striking similarity of this formulation of generalized quantum theory for our cosmological model with

that of ordinary non-relativistic quantum mechanics described in section II is a consequence of two factors.

First, in this quantization a natural “clock” (namely, the scalar field φ) appears in the model through

Eq. (3.7). Second, we are here restricting consideration to histories of alternatives defined by sequences of

values of physical quantities at definite values of that clock. More general categories of alternatives, and

therefore class operators, are certainly of potential physical relevance. We do not however consider them

here. Previous discussions of decoherent histories formulations of quantum cosmological models may be

found in [3–8]. These prior formulations generally lack, however, a well-defined underlying Hilbert space

and observables. On the other hand, some of them may be better suited to models with no emergent

“clock”.
6 An alternative approach demands that the class operators themselves must commute with the constraint

[3, 4, 7, 8].
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IV. QUANTUM SINGULARITIES

We turn now to the question of whether this model quantum universe is singular, just
as the classical model is. There are many incommensurate criteria one might apply to this
question. We focus on a simple one: does the universe ever achieve zero volume?

For a universe whose state is purely “left-moving” (contracting) or “right-moving” (ex-
panding) (cf. Eq. (3.11)), this question is easy to answer in the affirmative. From Eq. (3.12)
it is straightforward to show that if ∆ν∗ = [0, ν∗] and|Ψ〉 = |ΨL〉 or |ΨR〉,

lim
φ→−∞

pL∆ν∗(φ) = 0 lim
φ→+∞

pL∆ν∗(φ) = 1 (4.1a)

lim
φ→−∞

pR∆ν∗(φ) = 1 lim
φ→+∞

pR∆ν∗(φ) = 0 (4.1b)

for any fixed choice of ν∗, no matter how small. This is just as one may have expected: con-
tracting universes will inevitably shrink to arbitrarily small volume, and expanding universes
will equally inevitably have grown from arbitrarily small volume.

For this prediction, the role of decoherence was essentially trivial since decoherence for
alternatives defined only at a single moment of “time” (φ) is automatic.7

Far more interesting, however, is the general case in which the state of the universe is a
superposition

|Ψ〉 = |ΨL〉+ |ΨR〉 (4.2)

of expanding and contracting universes. Here, pL = 〈ΨL |ΨL〉 and pR = 〈ΨR |ΨR〉 (with
〈ΨL |ΨR〉 = 0 and pL+pR = 1) measure the “amount” of each in the superposition. One may
ask, what is the likelihood that a universe in such a “Schrödinger’s Cat”-like superposition
of (possibly macroscopic) states could “jump” from the contracting to the expanding branch
i.e. remain peaked on a large classical solution at both “early” and “late” values of φ?

Indeed, such a “quantum bounce” may at first seem possible. As before, one may show
that

p∆ν∗(φ) = pL∆ν∗(φ) + pR∆ν∗(φ). (4.3)

Now, though,
lim

φ→−∞
p∆ν∗(φ) = pR and lim

φ→+∞
p∆ν∗(φ) = pL. (4.4)

Thus, there is in general a non-zero probability for the universe to be non-singular in both

the “past” (pL) and the “future” (pR). Is this not precisely the possibility (with probability
pL · pR) of a “quantum bounce” we were seeking?

The answer is emphatically no. We are being misled because Eq. (4.3) is the answer to
a specific quantum question: What is the probability that the volume of the universe is in

∆ν∗ at a given value of φ? But the question of whether a quantum universe bounces is
really about two values of φ: What is the probability that the universe is not in ∆ν∗ at both
φ→ −∞ and φ→ +∞? The class operator for this question is

Cbounce = lim
φ1→−∞
φ2→+∞

P ν
∆ν∗

1

(φ1)P
ν
∆ν∗

2

(φ2), (4.5)

7 This is because the corresponding class operators are simply projections; the branch wave functions for

different histories are thereby automatically orthogonal.
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where the intervals ∆ν∗ are the complements of the intervals ∆ν∗ specifying small volume.
The complementary history

Csing = 1− Cbounce (4.6)

is the one for which the universe is inevitably singular i.e. assumes zero volume (enters ∆ν∗)
at some point in its history.

Now, however, decoherence is not automatic, and it is not trivial. In general, questions
about the volume of the universe at two different values of φ make no more quantum sense
than the question of which slit the particle passed through in two-slit interference. The
question can only be given a coherent answer when the histories decohere, such as when
there is a measuring device in place.

In this particular case, however, it is possible to show with complete generality that in

the given limit φ→ −∞ and φ→ +∞, the histories {bounce, sing} do decohere. Indeed, in
this limit

|Ψbounce〉 = C†
bounce|Ψ〉 = 0 and |Ψsing〉 = C†

sing|Ψ〉 = |Ψ〉, (4.7)

so that
pbounce = 0 and psing = 1. (4.8)

We have thus shown, within an explicit framework for computing quantum probabilities
in an objective, observer-independent way, that a quantum bounce is not possible in these
models: the universe is inevitably singular.

V. DISCUSSION

What is important to underscore is the absolutely crucial role played by decoherence in
this analysis. A naive assessment of the behavior of |Ψ(φ)〉 alone (as in Eq. (4.3)) seems
to imply that a quantum bounce is possible. This, however, is critically misleading. The
more careful analysis that recognizes that a quantum bounce is fundamentally a question
concerning properties of the universe at a sequence of values of φ shows that it is inevitably
a quantum question, and must have a quantum answer. Such an answer is only available if
the corresponding histories decohere. We have shown that, in a certain limit, they indeed
do,8 and that the quantum bounce suggested by Eq. (4.3) cannot in fact occur.

Put another way, ignoring the fundamental role played by quantum decoherence would
tend to lead one to an utterly incorrect conclusion. Quantum mechanics matters, even when
applied to the universe as a whole.
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