Stability of thin-shell wormholes supported by ordinary matter in Einstein-Maxwell-Gauss-Bonnet gravity

S. Habib Mazharimousavi,
* M. Halilsoy,
† and Z. Amirabi ‡

Department of Physics, Eastern Mediterranean University, G. Magusa, north Cyprus, Mersin 10, Turkey.

Abstract

Recently in (Phys. Rev. D 76, 087502 (2007) and Phys. Rev. D 77, 089903(E) (2008)) a thinshell wormhole has been introduced in 5-dimensional Einstein-Maxwell-Gauss-Bonnet (EMGB) gravity which was supported by ordinary matter. We wish to consider this solution and investigate its stability. Our analysis shows that for the Gauss-Bonnet (GB) parameter $\alpha < 0$, stability regions form for a narrow band of finely-tuned mass and charge. For the case $\alpha > 0$, we iterate once more that no stable, ordinary matter thin-shell wormhole exists.

[†]Electronic address: mustafa.halilsoy@emu.edu.tr

[‡]Electronic address: zahra.amirabi@emu.edu.tr

To construct a thin-shell wormhole by cutting and pasting we take two copies of the region $r \ge a$, $(a > r_{\min}$ to avoid singularities in the geometry of wormhole) to obtain a geodesically new manifold with a matter shell at the surface r = a, where the throat of the wormhole is located. The static, spherically symmetric 5D metric of space time is adapted by

$$ds^{2} = -f(r) dt^{2} + \frac{dr^{2}}{f(r)} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} + \sin^{2}\theta \sin^{2}\phi d\psi^{2} \right)$$
(1)

in which f(r) is a function of r to be determined appropriately. Following the Darmois-Israel formalism [1, 2], in terms of the original coordinates $x^{\gamma} = (t, r, \theta, \phi, \psi)$, we define $\xi^i = (\tau, \theta, \phi, \psi)$, with τ the proper time. The Gauss-Bonnet (GB) extension of the thin-shell Einstein-Maxwell (EM) theory requires further modification. For this purpose in the present study we adopt the generalized Darmois-Israel boundary conditions [3], where the surface energy momentum tensor is expressed by $S_i^j = \text{diag}(\sigma, p_{\theta}, p_{\phi}, p_{\psi})$. Through this formalism, Richarte and Simeone [4] have constructed such a thin shell wormhole in Einstein-Maxwell-Gauss-Bonnet (EMGB) gravity that is supported by ordinary matter, not exotic. For the exotic matter case the stability problem for the EMGB theory has been considered before [5]. Our strategy in this note is to analyze the stability and therefore explore the reality of such a thin-shell wormhole.

In order to study the radial perturbation of the wormhole we take the throat radius, a function of the proper time, i.e., $a = a(\tau)$ (note that we use $a(\tau)$ instead of $b(\tau)$ in Ref. [4]; our other notations follow those of Ref. [4]). Based on the generalized Birkhoff theorem, for $r > a(\tau)$ the geometry will be given by (1). For a metric function f(r) one finds the energy density and pressures as [4]

$$\sigma = -S_{\tau}^{\tau} = -\frac{1}{4\pi} \left[\frac{3\Delta}{a} - \frac{4\alpha}{a^3} \left(\Delta^3 - 3\left(1 + \dot{a}^2\right) \Delta \right) \right],\tag{2}$$

$$S_{\hat{\theta}\hat{\theta}} = S_{\hat{\phi}\hat{\phi}} = S_{\hat{\psi}\hat{\psi}} = p = \frac{1}{4\pi} \left[\frac{2\Delta}{a} + \frac{\ell}{\Delta} - \frac{4\alpha}{a^2} \left(\ell\Delta - \frac{\ell}{\Delta} \left(1 + \dot{a}^2 \right) - 2\ddot{a}\Delta \right) \right], \quad (3)$$

where $\ell = \ddot{a} + f'(a)/2$ and $\Delta = \sqrt{f(a) + \dot{a}^2}$ in which

$$f(a) = 1 + \frac{a^2}{4\alpha} \left(1 - \sqrt{1 + \frac{8\alpha}{a^4} \left(\frac{2M}{\pi} - \frac{Q^2}{3a^2}\right)} \right).$$
(4)

We note that in our notation a 'dot' denotes derivative with respect to the proper time τ and a 'prime' implies differentiation with respect to the argument of the function. For

simplicity, we set the cosmological constant to zero. By a simple substitution one can show that, the conservation equation

$$\frac{d}{d\tau}\left(\sigma a^{3}\right) + p\frac{d}{d\tau}\left(a^{3}\right) = 0.$$
(5)

is satisfied. The static configuration of radius a_0 reads

$$\sigma_0 = -\frac{\sqrt{f(a_0)}}{4\pi} \left[\frac{3}{a_0} - \frac{4\alpha}{a_0^3} \left(f(a_0) - 3 \right) \right], \tag{6}$$

$$p_0 = \frac{\sqrt{f(a_0)}}{4\pi} \left[\frac{2}{a_0} + \frac{f'(a_0)}{2f(a_0)} - \frac{2\alpha}{a_0^2} \frac{f'(a_0)}{f(a_0)} \left(f(a_0) - 1 \right) \right].$$
(7)

In what follows we shall study small radial perturbations around a radius of equilibrium a_0 . To this end we adapt a linear relation between p and σ as

$$p = p_0 + \beta^2 \left(\sigma - \sigma_0 \right). \tag{8}$$

Here since we are only interested in the wormholes which are supported by ordinary matter, β^2 is the speed of sound. By virtue of the Eq.s (5) and (8) we find the energy density in the form

$$\sigma(a) = \left(\frac{\sigma_{0+}p_0}{\beta^2 + 1}\right) \left(\frac{a_0}{a}\right)^{3(\beta^2 + 1)} + \frac{\beta^2 \sigma_{0-}p_0}{\beta^2 + 1}.$$
(9)

This, together with (2) lead us to the equation of motion for the radius of throat, which reads

$$-\frac{\sqrt{f(a)+\dot{a}^2}}{4\pi} \left[\frac{3}{a} - \frac{4\alpha}{a^3} \left(f(a) - 3 - 2\dot{a}^2\right)\right] = \left(\frac{\sigma_{0+}p_0}{\beta^2 + 1}\right) \left(\frac{a_0}{a}\right)^{3(\beta^2+1)} + \frac{\beta^2 \sigma_{0-}p_0}{\beta^2 + 1}.$$
 (10)

After some manipulations this can be cast into

$$\dot{a}^2 + V(a) = 0, \tag{11}$$

where

$$V(a) = f(a) - \left(\left[\sqrt{A^2 + B^3} - A \right]^{1/3} - \frac{B}{\left[\sqrt{A^2 + B^3} - A \right]^{1/3}} \right)^2$$
(12)

in which

$$A = \frac{\pi a^3}{4\alpha} \left[\left(\frac{\sigma_{0+} p_0}{\beta^2 + 1} \right) \left(\frac{a_0}{a} \right)^{3(\beta^2 + 1)} + \frac{\beta^2 \sigma_{0-} p_0}{\beta^2 + 1} \right],$$
(13)

$$B = \frac{a^2}{8\alpha} + \frac{1 - f(a)}{2}.$$
 (14)

We notice that V(a), and more tediously V'(a), both vanish at $a = a_0$. The stability requirement for equilibrium reduces therefore to the determination of $V''(a_0) > 0$. Of course, V(a) is complicated enough for an immediate analytical result. For this reason we shall proceed through numerical calculation to see whether stability regions/ islands develop or not. Since the hopes for obtaining thin-shell wormholes with ordinary matter when $\alpha > 0$, have already been dashed [4], we shall investigate only the case for $\alpha < 0$.

In order to analyze the behavior of V(a) (and its double derivative) we introduce new parameterization as follows

$$\tilde{a}^2 = -\frac{a^2}{\alpha}, \ m = -\frac{16M}{\pi\alpha}, \ q^2 = \frac{8Q^2}{3\alpha^2}, \ \tilde{\sigma}_0 = \sqrt{-\alpha}\sigma_0, \ p_0 = \sqrt{-\alpha}p_0$$
 (15)

Accordingly, our new variables $f(\tilde{a})$, $\tilde{\sigma}_0$, \tilde{p}_0 , A and B take the forms

$$f(\tilde{a}) = 1 - \frac{\tilde{a}^2}{4} + \frac{\tilde{a}^2}{4}\sqrt{1 - \frac{m}{\tilde{a}^4} + \frac{q^2}{\tilde{a}^6}}$$
(16)

and

$$\tilde{\sigma}_0 = -\frac{\sqrt{f(\tilde{a}_0)}}{4\pi} \left[\frac{3}{\tilde{a}_0} + \frac{4}{\tilde{a}_0^3} \left(f(\tilde{a}_0) - 3 \right) \right], \tag{17}$$

$$\tilde{p}_{0} = \frac{\sqrt{f(\tilde{a}_{0})}}{4\pi} \left[\frac{2}{\tilde{a}_{0}} + \frac{f'(\tilde{a}_{0})}{2f(\tilde{a}_{0})} + \frac{2}{\tilde{a}_{0}^{2}} \frac{f'(\tilde{a}_{0})}{f(\tilde{a}_{0})} \left(f(\tilde{a}_{0}) - 1 \right) \right],$$
(18)

$$A = -\frac{\pi \tilde{a}^3}{4} \left[\left(\frac{\tilde{\sigma}_{0+} \tilde{p}_0}{\beta^2 + 1} \right) \left(\frac{\tilde{a}_0}{\tilde{a}} \right)^{3(\beta^2 + 1)} + \frac{\beta^2 \tilde{\sigma}_{0-} \tilde{p}_0}{\beta^2 + 1} \right], \tag{19}$$

$$B = -\frac{\tilde{a}^2}{8} + \frac{1 - f(\tilde{a})}{2}.$$
(20)

Following this parametrization our Eq. (11) takes the form

$$\left(\frac{d\tilde{a}}{d\tau}\right)^2 + \tilde{V}\left(\tilde{a}\right) = 0,\tag{21}$$

where

$$\tilde{V}(\tilde{a}) = -\frac{V(\tilde{a})}{\alpha}.$$
(22)

We explore now all possible constraints on our parameters that they must satisfy.

i) Starting from the metric function we must have

$$1 - \frac{m}{\tilde{a}_0^4} + \frac{q^2}{\tilde{a}_0^6} \ge 0.$$
 (23)

ii) In the potential, the reality condition requires also that

$$A^2 + B^3 \ge 0. (24)$$

At the location of the throat this amounts to

$$\left(-\frac{\pi \tilde{a}_0^3}{4}\tilde{\sigma}_0\right)^2 + \left(-\frac{\tilde{a}_0^2}{8} + \frac{1 - f\left(\tilde{a}_0\right)}{2}\right)^3 \ge 0$$
(25)

or after some manipulations it yields

$$f(\tilde{a}_0) - 2 + \frac{\tilde{a}_0^2}{2} \le 0.$$
(26)

This is equivalent to

$$0 \le 1 - \frac{m}{\tilde{a}_0^4} + \frac{q^2}{\tilde{a}_0^6} \le \left(\frac{4}{\tilde{a}_0^2} - 1\right)^2.$$
(27)

iii) Our last constraint condition concerns, having a wormhole supported by ordinary matter, which means that

$$\tilde{\sigma}_0 > 0. \tag{28}$$

This implies, from (17) that

$$\left[\frac{3}{\tilde{a}_0} + \frac{4}{\tilde{a}_0^3} \left(f\left(\tilde{a}_0\right) - 3\right)\right] < 0 \tag{29}$$

or equivalently

$$0 \le 1 - \frac{m}{\tilde{a}_0^4} + \frac{q^2}{\tilde{a}_0^6} < 4\left(\frac{4}{\tilde{a}_0^2} - 1\right)^2.$$
(30)

It is remarkable to observe that the foregoing constraints (i - iii) on our parameters can all be expressed in a single constraint, namely

$$0 \le 1 - \frac{m}{\tilde{a}_0^4} + \frac{q^2}{\tilde{a}_0^6} \le \left(\frac{4}{\tilde{a}_0^2} - 1\right)^2.$$
(31)

We plot $\tilde{V}''(\tilde{a})$ from (12) for various fixed values of mass and charge, as a projection into the plane with coordinates β and \tilde{a}_0 . In other words, we search and identify the regions for which $\tilde{V}''(\tilde{a}) > 0$, in 3-dimensional figures considered as a projection in the (β, \tilde{a}_0) plane. The metric function f(r) and energy density $\tilde{\sigma}_0 > 0$, behavior also are given in Fig.s 1-4. It is evident from Fig.s 1-4 that for increasing charge the stability regions shrink to smaller domains and tends ultimately to disappear completely. For smaller \tilde{a}_0 bound we obtain fluctuations in $\tilde{V}''(\tilde{a})$, which is smooth otherwise. In conclusion, our numerical analysis reveals that for $\alpha < 0$, and specific ranges of mass and charge the 5-dimensional EMGB thin-shell wormholes can be made stable against linear, radial perturbations. Let us note that in the Gauss-Bonnet extension of Einstein's theory, $\alpha > 0$ has always been the prime choice, neglecting the $\alpha < 0$ branch as less significant. Now, it becomes clear, within the realm of stable, physically realistic thin-shell wormholes, that this class ($\alpha < 0$) finds application.

Another point of interest is that the magnitude of $\alpha < 0$ is irrelevant in the foregoing stability analysis. This reflects, as for the black holes, the universality of the thin-shell wormholes which arises at each scale.

 G. Darmois, Mémorial des Sciences Mathématiques, Fascicule XXV (Gauthier-Villars, Paris, 1927), Chap. V;

W. Israel, Nuovo Cimento B 44, 1 (1966); B 48, 463(E) (1967).

- [2] M. Visser, Lorantzian Wormholes (AIP Press, Newyork, 1996).
- [3] S. C. Davis, Phys. Rev. D, 67, 024030 (2003).
- [4] M. G. Richarte and C. Simeone, Phys. Rev. D 76, 087502 (2007); D 77, 089903(E) (2008).
- [5] M. Thibeault, C. Simeone, and E. F. Eiroa, Gen. Relativ. Gravit. 38, 1593 (2006).

Figure Caption:

Fig. 1: $\tilde{V}''(\tilde{a}) > 0$ region (m = 0.5, q = 1.0) for various ranges of β and \tilde{a}_0 . The lower and upper limits of the parameters are evident in the figure. The metric function $f(\tilde{r})$ and $\tilde{\sigma}_0 > 0$, are also indicated in the smaller figures.

Fig. 2: $\tilde{V}''(\tilde{a}) > 0$ plot for m = 1.0, q = 1.5. The stability region is seen clearly to shrink with the increasing charge. This effect reflects also to the $\tilde{\sigma}_0 > 0$, behavior.

Fig. 3: The stability region for m = 1.0, q = 2.0, is seen to shift outward and get smaller.

Fig. 4: For fixed mass m = 1.0 but increased charge q = 2.5 it is clearly seen that the stability region and the associated energy density both get further reduced.

This figure "Fig01.jpg" is available in "jpg" format from:

This figure "Fig02.jpg" is available in "jpg" format from:

This figure "Fig03.jpg" is available in "jpg" format from:

This figure "Fig04.jpg" is available in "jpg" format from: