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Abstract

Recently in ( Phys. Rev. D 76, 087502 (2007) and Phys. Rev. D 77, 089903(E) (2008)) a thin-

shell wormhole has been introduced in 5-dimensional Einstein-Maxwell-Gauss-Bonnet (EMGB)

gravity which was supported by ordinary matter. We wish to consider this solution and investigate

its stability. Our analysis shows that for the Gauss-Bonnet (GB) parameter α < 0, stability regions

form for a narrow band of finely-tuned mass and charge. For the case α > 0, we iterate once more

that no stable, ordinary matter thin-shell wormhole exists.
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To construct a thin-shell wormhole by cutting and pasting we take two copies of the

region r ≥ a, (a > rmin to avoid singularities in the geometry of wormhole) to obtain a

geodesically new manifold with a matter shell at the surface r = a, where the throat of the

wormhole is located. The static, spherically symmetric 5D metric of space time is adapted

by

ds2 = −f (r) dt2 +
dr2

f (r)
+ r2

(

dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2
)

(1)

in which f (r) is a function of r to be determined appropriately. Following the Darmois-

Israel formalism [1, 2], in terms of the original coordinates xγ = (t, r, θ, φ, ψ) , we define

ξi = (τ , θ, φ, ψ) , with τ the proper time. The Gauss-Bonnet (GB) extension of the thin-shell

Einstein-Maxwell (EM) theory requires further modification. For this purpose in the present

study we adopt the generalized Darmois-Israel boundary conditions [3], where the surface

energy momentum tensor is expressed by Sji =diag(σ, pθ, pφ, pψ) . Through this formalism,

Richarte and Simeone [4] have constructed such a thin shell wormhole in Einstein-Maxwell-

Gauss-Bonnet (EMGB) gravity that is supported by ordinary matter, not exotic. For the

exotic matter case the stability problem for the EMGB theory has been considered before

[5]. Our strategy in this note is to analyze the stability and therefore explore the reality of

such a thin-shell wormhole.

In order to study the radial perturbation of the wormhole we take the throat radius, a

function of the proper time, i.e., a = a(τ ) (note that we use a(τ ) instead of b(τ ) in Ref. [4];

our other notations follow those of Ref. [4]). Based on the generalized Birkhoff theorem, for

r > a(τ) the geometry will be given by (1). For a metric function f (r) one finds the energy

density and pressures as [4]

σ = −Sττ = −
1

4π

[

3∆

a
−

4α

a3
(

∆3 − 3
(

1 + ȧ2
)

∆
)

]

, (2)

Sθ̂θ̂ = Sφ̂φ̂ = Sψ̂ψ̂ = p =
1

4π

[

2∆

a
+

ℓ

∆
−

4α

a2

(

ℓ∆−
ℓ

∆

(

1 + ȧ2
)

− 2ä∆

)]

, (3)

where ℓ = ä+ f ′ (a) /2 and ∆ =
√

f (a) + ȧ2 in which

f (a) = 1 +
a2

4α

(

1−

√

1 +
8α

a4

(

2M

π
−
Q2

3a2

)

)

. (4)

We note that in our notation a ’dot’ denotes derivative with respect to the proper time

τ and a ’prime’ implies differentiation with respect to the argument of the function. For

2



simplicity, we set the cosmological constant to zero. By a simple substitution one can show

that, the conservation equation

d

dτ

(

σa3
)

+ p
d

dτ

(

a3
)

= 0. (5)

is satisfied. The static configuration of radius a0 reads

σ0 = −
√

f (a0)

4π

[

3

a0
−

4α

a30
(f (a0)− 3)

]

, (6)

p0 =

√

f (a0)

4π

[

2

a0
+
f ′ (a0)

2f (a0)
−

2α

a20

f ′ (a0)

f (a0)
(f (a0)− 1)

]

. (7)

In what follows we shall study small radial perturbations around a radius of equilibrium

a0. To this end we adapt a linear relation between p and σ as

p = p0 + β2 (σ − σ0) . (8)

Here since we are only interested in the wormholes which are supported by ordinary matter,

β2 is the speed of sound. By virtue of the Eq.s (5) and (8) we find the energy density in the

form

σ (a) =

(

σ0+p0

β2 + 1

)

(a0
a

)3(β2+1)
+
β2σ0−p0

β2 + 1
. (9)

This, together with (2) lead us to the equation of motion for the radius of throat, which

reads

−
√

f (a) + ȧ2

4π

[

3

a
−

4α

a3
(

f (a)− 3− 2ȧ2
)

]

=

(

σ0+p0

β2 + 1

)

(a0
a

)3(β2
+1)

+
β2σ0−p0

β2 + 1
. (10)

After some manipulations this can be cast into

ȧ2 + V (a) = 0, (11)

where

V (a) = f (a)−

(

[√
A2 +B3 −A

]1/3

−
B

[√
A2 +B3 − A

]1/3

)2

(12)

in which

A =
πa3

4α

[(

σ0+p0

β2 + 1

)

(a0
a

)3(β2+1)
+
β2σ0−p0

β2 + 1

]

, (13)

B =
a2

8α
+

1− f (a)

2
. (14)

3



We notice that V (a) , and more tediously V ′ (a) , both vanish at a = a0. The stability

requirement for equilibrium reduces therefore to the determination of V ′′(a0) > 0. Of

course, V (a) is complicated enough for an immediate analytical result. For this reason we

shall proceed through numerical calculation to see whether stability regions/ islands develop

or not. Since the hopes for obtaining thin-shell wormholes with ordinary matter when α > 0,

have already been dashed [4], we shall investigate only the case for α < 0.

In order to analyze the behavior of V (a) (and its double derivative) we introduce new

parameterization as follows

ã2 = −
a2

α
, m = −

16M

πα
, q2 =

8Q2

3α2
, σ̃0 =

√
−ασ0, p0 =

√
−αp0 (15)

Accordingly, our new variables f (ã) , σ̃0, p̃0, A and B take the forms

f (ã) = 1−
ã2

4
+
ã2

4

√

1−
m

ã4
+
q2

ã6
(16)

and

σ̃0 = −
√

f (ã0)

4π

[

3

ã0
+

4

ã30
(f (ã0)− 3)

]

, (17)

p̃0 =

√

f (ã0)

4π

[

2

ã0
+
f ′ (ã0)

2f (ã0)
+

2

ã20

f ′ (ã0)

f (ã0)
(f (ã0)− 1)

]

, (18)

A = −
πã3

4

[

(

σ̃0+p̃0

β2 + 1

)(

ã0
ã

)3(β2+1)
+
β2σ̃0−p̃0

β2 + 1

]

, (19)

B = −
ã2

8
+

1− f (ã)

2
. (20)

Following this parametrization our Eq. (11) takes the form

(

dã

dτ

)2

+ Ṽ (ã) = 0, (21)

where

Ṽ (ã) = −
V (ã)

α
. (22)

We explore now all possible constraints on our parameters that they must satisfy.

i) Starting from the metric function we must have

1−
m

ã40
+
q2

ã60
≥ 0. (23)
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ii) In the potential, the reality condition requires also that

A2 +B3 ≥ 0. (24)

At the location of the throat this amounts to

(

−
πã30
4
σ̃0

)2

+

(

−
ã20
8

+
1− f (ã0)

2

)3

≥ 0 (25)

or after some manipulations it yields

f (ã0)− 2 +
ã20
2

≤ 0. (26)

This is equivalent to

0 ≤ 1−
m

ã40
+
q2

ã60
≤
(

4

ã20
− 1

)2

. (27)

iii) Our last constraint condition concerns, having a wormhole supported by ordinary

matter, which means that

σ̃0 > 0. (28)

This implies, from (17) that

[

3

ã0
+

4

ã30
(f (ã0)− 3)

]

< 0 (29)

or equivalently

0 ≤ 1−
m

ã40
+
q2

ã60
< 4

(

4

ã20
− 1

)2

. (30)

It is remarkable to observe that the foregoing constraints (i− iii) on our parameters can all

be expressed in a single constraint, namely

0 ≤ 1−
m

ã40
+
q2

ã60
≤
(

4

ã20
− 1

)2

. (31)

We plot Ṽ ′′ (ã) from (12) for various fixed values of mass and charge, as a projection into

the plane with coordinates β and ã0. In other words, we search and identify the regions for

which Ṽ ′′ (ã) > 0, in 3−dimensional figures considered as a projection in the (β, ã0) plane.

The metric function f (r) and energy density σ̃0 > 0, behavior also are given in Fig.s 1-4.

It is evident from Fig.s 1-4 that for increasing charge the stability regions shrink to smaller

domains and tends ultimately to disappear completely. For smaller ã0 bound we obtain

fluctuations in Ṽ ′′ (ã) , which is smooth otherwise.
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In conclusion, our numerical analysis reveals that for α < 0, and specific ranges of mass

and charge the 5−dimensional EMGB thin-shell wormholes can be made stable against

linear, radial perturbations. Let us note that in the Gauss-Bonnet extension of Einstein’s

theory, α > 0 has always been the prime choice, neglecting the α < 0 branch as less

significant. Now, it becomes clear, within the realm of stable, physically realistic thin-shell

wormholes, that this class (α < 0) finds application.

Another point of interest is that the magnitude of α < 0 is irrelevant in the foregoing

stability analysis. This reflects, as for the black holes, the universality of the thin-shell

wormholes which arises at each scale.
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Figure Caption:

Fig. 1: Ṽ ′′ (ã) > 0 region (m = 0.5, q = 1.0) for various ranges of β and ã0. The lower

and upper limits of the parameters are evident in the figure. The metric function f (r̃) and

σ̃0 > 0, are also indicated in the smaller figures.

Fig. 2: Ṽ ′′ (ã) > 0 plot for m = 1.0, q = 1.5. The stability region is seen clearly to shrink

with the increasing charge. This effect reflects also to the σ̃0 > 0, behavior.

Fig. 3: The stability region for m = 1.0, q = 2.0, is seen to shift outward and get smaller.

Fig. 4: For fixed mass m = 1.0 but increased charge q = 2.5 it is clearly seen that the

stability region and the associated energy density both get further reduced.
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