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Abstract
Recently in ( Phys. Rev. D 76, 087502 (2007) and Phys. Rev. D 77, 089903(E) (2008)) a thin-
shell wormhole has been introduced in 5-dimensional Einstein-Maxwell-Gauss-Bonnet (EMGB)
gravity which was supported by ordinary matter. We wish to consider this solution and investigate
its stability. Our analysis shows that for the Gauss-Bonnet (GB) parameter a < 0, stability regions
form for a narrow band of finely-tuned mass and charge. For the case a > 0, we iterate once more

that no stable, ordinary matter thin-shell wormhole exists.
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To construct a thin-shell wormhole by cutting and pasting we take two copies of the
region r > a, (@ > Ty, to avoid singularities in the geometry of wormhole) to obtain a
geodesically new manifold with a matter shell at the surface r = a, where the throat of the

wormhole is located. The static, spherically symmetric 5D metric of space time is adapted

by ,
2 ) di? ar”
ds* = ()dt+f(r)

in which f(r) is a function of r to be determined appropriately. Following the Darmois-
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Israel formalism [1, 2], in terms of the original coordinates =7 = (¢,r,0,$,1), we define
¢ = (1,0,¢,v), with 7 the proper time. The Gauss-Bonnet (GB) extension of the thin-shell
Einstein-Maxwell (EM) theory requires further modification. For this purpose in the present
study we adopt the generalized Darmois-Israel boundary conditions [3], where the surface
energy momentum tensor is expressed by Sij =diag(c, pg, Py, Py) . Through this formalism,
Richarte and Simeone [4] have constructed such a thin shell wormhole in Einstein-Maxwell-
Gauss-Bonnet (EMGB) gravity that is supported by ordinary matter, not exotic. For the
exotic matter case the stability problem for the EMGB theory has been considered before
[5]. Our strategy in this note is to analyze the stability and therefore explore the reality of
such a thin-shell wormhole.

In order to study the radial perturbation of the wormhole we take the throat radius, a
function of the proper time, i.e., a = a(7) (note that we use a(7) instead of b(7) in Ref. [4];
our other notations follow those of Ref. [4]). Based on the generalized Birkhoff theorem, for
r > a(7) the geometry will be given by (1). For a metric function f (r) one finds the energy

density and pressures as [4]
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where { = d+ f'(a) /2 and A =/ f (a) + @? in which

f(a):1+£<1—\/1+i—?<¥—§2—;)>. (4)

We note that in our notation a ’dot’ denotes derivative with respect to the proper time

7 and a ’prime’ implies differentiation with respect to the argument of the function. For



simplicity, we set the cosmological constant to zero. By a simple substitution one can show

that, the conservation equation
— (aa3) +p— (a3) = 0. (5)

is satisfied. The static configuration of radius ay reads
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In what follows we shall study small radial perturbations around a radius of equilibrium
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ag. To this end we adapt a linear relation between p and o as

p=po+ 5 (c—00). (8)

Here since we are only interested in the wormholes which are supported by ordinary matter,

3% is the speed of sound. By virtue of the Eq.s (5) and (8) we find the energy density in the
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This, together with (2) lead us to the equation of motion for the radius of throat, which

form

reads
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After some manipulations this can be cast into

Q%+ V (a) =0, (11)
where )
V(a):f(a)—<[\/A2+B3—A]1/3— B 13> (12)
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We notice that V (a), and more tediously V' (a), both vanish at a = ag. The stability
requirement for equilibrium reduces therefore to the determination of V”(ag) > 0. Of
course, V (a) is complicated enough for an immediate analytical result. For this reason we
shall proceed through numerical calculation to see whether stability regions/ islands develop
or not. Since the hopes for obtaining thin-shell wormholes with ordinary matter when av > 0,
have already been dashed [4], we shall investigate only the case for ao < 0.

In order to analyze the behavior of V' (a) (and its double derivative) we introduce new

parameterization as follows
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09 = V—aog, pp=V—apg (15)

Accordingly, our new variables f (a), 6o, po, A and B take the forms

fa=1-t e hom L (16

and
do =~ 2 2 (ra-3) (1
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(%) +V(a) =0, (21)
where
V(a) = —V(ia). (22)

We explore now all possible constraints on our parameters that they must satisfy.

i) Starting from the metric function we must have

2
m . q
1— =+ = >0. (23)
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i1) In the potential, the reality condition requires also that
A2+ B> 0. (24)

At the location of the throat this amounts to
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This is equivalent to
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i71) Our last constraint condition concerns, having a wormhole supported by ordinary

matter, which means that

a0 > 0. (28)
This implies, from (17) that
[C%+%(f(ao>—3>} <0 (29)
or equivalently
m ¢ 4 2
0g1—d—é+d—8<4<d—%—1>. (30)

It is remarkable to observe that the foregoing constraints (i — i) on our parameters can all

be expressed in a single constraint, namely
2 4 2
ogl—ﬂ+q—§(~—2—1). (31)

We plot V" (a) from (12) for various fixed values of mass and charge, as a projection into
the plane with coordinates 8 and ag. In other words, we search and identify the regions for
which V" (@) > 0, in 3—dimensional figures considered as a projection in the (3, ) plane.
The metric function f (r) and energy density o > 0, behavior also are given in Fig.s 1-4.
It is evident from Fig.s 1-4 that for increasing charge the stability regions shrink to smaller
domains and tends ultimately to disappear completely. For smaller @y bound we obtain

fluctuations in V” (&), which is smooth otherwise.



In conclusion, our numerical analysis reveals that for a < 0, and specific ranges of mass
and charge the 5—dimensional EMGB thin-shell wormholes can be made stable against
linear, radial perturbations. Let us note that in the Gauss-Bonnet extension of Einstein’s
theory, a > 0 has always been the prime choice, neglecting the o < 0 branch as less
significant. Now, it becomes clear, within the realm of stable, physically realistic thin-shell
wormbholes; that this class (a < 0) finds application.

Another point of interest is that the magnitude of o < 0 is irrelevant in the foregoing
stability analysis. This reflects, as for the black holes, the universality of the thin-shell

wormholes which arises at each scale.
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Figure Caption:

Fig. 1: V" (a) > 0 region (m = 0.5, ¢ = 1.0) for various ranges of 3 and @,. The lower
and upper limits of the parameters are evident in the figure. The metric function f (7) and
oo > 0, are also indicated in the smaller figures.

Fig. 2: V" (@) > 0 plot for m = 1.0, ¢ = 1.5. The stability region is seen clearly to shrink
with the increasing charge. This effect reflects also to the 6y > 0, behavior.

Fig. 3: The stability region for m = 1.0, ¢ = 2.0, is seen to shift outward and get smaller.

Fig. 4: For fixed mass m = 1.0 but increased charge ¢ = 2.5 it is clearly seen that the
stability region and the associated energy density both get further reduced.



Thisfigure"Fig0l.jpg" isavailablein "jpg" format from:

http://arxiv.org/ps/1001.4384v2



http://arxiv.org/ps/1001.4384v2

Thisfigure"Fig02.jpg" isavailablein "jpg" format from:

http://arxiv.org/ps/1001.4384v2



http://arxiv.org/ps/1001.4384v2

Thisfigure"Fig03.jpg" isavailablein "jpg" format from:

http://arxiv.org/ps/1001.4384v2



http://arxiv.org/ps/1001.4384v2

Thisfigure"Fig04.jpg" isavailablein "jpg" format from:

http://arxiv.org/ps/1001.4384v2



http://arxiv.org/ps/1001.4384v2

	 References

