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A geometric invariant measuring the deviation from Kerr data
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A geometrical invariant for regular asymptotically Euclidean data for the vacuum Einstein field
equations is constructed. This invariant vanishes if and only if the data corresponds to a slice of
the Kerr black hole spacetime —thus, it provides a measure of the “non-Kerrness” of generic data.
In order to proceed with the construction of the geometric invariant, we introduce the notion of
approximate Killing spinors.
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Introduction.— It is widely expected that the late time
behaviour of a dynamical black hole spacetime will ap-
proach, in some suitable sense, the Kerr spacetime. Mak-
ing sense of this expectation is one of the outstanding
challenges of modern General Relativity. In particular,
clarifying what it means that a spacetime is close to the
Kerr spacetime is of great relevance for the problem of
the non-linear stability of the Kerr spacetime and for the
numerical evolution of black holes. Due to the coordi-
nate freedom in General Relativity it is, in general, dif-
ficult to measure how much two spacetimes differ from
each other. Nevertheless, invariant characterisations of
spacetimes provide a way of bridging this difficulty.

Most analytical and numerical studies of the Einstein
field equations make use of a 3+1 decomposition of the
equations and the unknowns. Thus, it is important to
have a characterisation of the Kerr solution which is
amenable to this type of splitting. Most known invariant
characterisations of the Kerr spacetime have problems in
this or other respects. For example, the characterisation
of the Kerr spacetime in terms of the so-called Mars-

Simon tensor —see [1, 2]— requires the a priori exis-
tence of a Killing vector in the spacetime —thus, it is of
more relevance for the problem of uniqueness of station-
ary black holes. An invariant characterisation in terms
of concomitants of the Weyl tensor —see [3]— produces
very involved expressions when performing a 3+1 split
—[4]. Furthermore, the above characterisations are local
by construction, and it is not clear how they could be
used to produce a global characterisation of initial data
sets. In this letter we discuss an alternative characterisa-
tion of the Kerr spacetime and show how it can be used
to obtain a global geometrical invariant of asymptotically
Euclidean slices of a spacetime. This geometric invariant
has the key property of vanishing if and only if the hyper-
surface is a slice of the Kerr spacetime. In this sense, our
invariant is analogous to the invariant characterising time
symmetric slices of static spacetimes discussed in [5].

Killing spinors and Petrov type D spacetimes.— Let
(M, gµν) be an orientable and time orientable globally
hyperbolic spacetime. A valence-2 Killing spinor is a

symmetric spinor κAB = κ(AB) satisfying the equation

∇A′(AκBC) = 0, (1)

where∇AA′ denotes the spinorial counterpart of the Levi-
Civita connection of the metric gµν . Here, and in what
follows, A, B, · · · denote abstract spinorial indices, while
A, B, · · · denote indices with respect to a specific frame.
The spinorial conventions of [6] are used. Killing spinors
offer a way of relating properties of the curvature with
properties of the symmetries of the spacetime. Given a
Killing spinor κAB, the concomitant ξAA′ = ∇B

A′κAB is
a complex Killing vector of the spacetime.
We note a local characterisation of the Kerr spacetime

in terms of valence-2 Killing spinors based on the follow-
ing results: (i) a vacuum spacetime admits a valence-2
Killing spinor, if and only if it is of Petrov type D, N or
O [7, 8]; (ii) the Killing vector ξAA′ is real only in the
case of the Kerr-NUT spacetime [9, 10]; (iii) The Petrov
type of Kerr is always D —there are no points where it
degenerates to N or O [1, 2]. Let ΨABCD denote the
Weyl spinor of the spacetime. One has:

Theorem 1.—Let N be an open subset of (M, gµν)
where ΨABCD 6= 0 and ΨABCDΨ

ABCD 6= 0. Then N
is a portion of the Kerr-NUT spacetime if and only if

there exists a Killing spinor in N such that the associ-

ated Killing vector is real.

Asymptotically Euclidean slices.— Let (S, hab,Kab)
denote a smooth initial data set for the vacuum Ein-
stein field equations —that is, (hab,Kab) satisfy the vac-
uum constraint equations on S. In what follows, the
3-manifold S will be assumed to be asymptotically Eu-
clidean with two asymptotic ends, i1, i2. An asymptotic
end is an open set diffeomorphic to the complement of
an open ball in R

3. The fall off conditions of the vari-
ous fields will be expressed in terms of weighted Sobolev
spaces Hs

β , where s is a non-negative integer and β is a
real number. We say that η ∈ H∞

β if η ∈ Hs
β for all s.

In what follows we use the theory for these spaces devel-
oped in [11] written in the conventions of [12]. Thus, the
functions in H∞

β are smooth over S and have a fall off
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at infinity such that ∂lη = o(rβ−|l|). We will often write
η = o∞(rβ) for η ∈ H∞

β at an asymptotic end.
We assume that on each end it is possible to introduce

asymptotically Cartesian coordinates xi
(k), k = 1, 2, with

r = ((x1
(k))

2+(x2
(k))

2+(x3
(k))

2)1/2, such that the intrinsic
metric and extrinsic curvature of S satisfy

hij = −
(

1 + 2m(k)r
−1

)

δij + o∞(r−3/2), (2)

Kij = o∞(r−5/2), (3)

where i, j are coordinate indices —in contrast to a, b

which are taken to be abstract ones. In view of the mass
positivity theorem [13, 14], we assume that m(k) > 0. For
simplicity we have excluded from our analysis boosted
slices —this will be discussed elsewhere. Note, however,
that the slices considered allow a non-vanishing ADM
angular momentum.

Killing spinor initial data.— A set of necessary and
sufficient conditions for the development (M, gµν) of the
data (S, hab,Kab) to be endowed with a Killing spinor
was obtained in [8]. Let τAA′ be the spinor counterpart of
the normal to S, with normalisation given by τAA′τAA′

=
2. The spinor τAA′ allows to introduce a space spinor
formalism —see e.g. [8, 15] for details. In particular,
the covariant derivative ∇AA′ can be split according to
∇AA′ = 1

2τAA′∇− τQA′∇AQ, where ∇ ≡ τAA′∇AA′ and

∇AB ≡ τ(A
A′∇B)A′ is the Sen connection. The Sen con-

nection is not intrinsic to the hypersurface S, however,
it can be expressed in terms of the spinorial Levi-Civita
connection of hab, DAB, and of the spinorial counter-
part of Kab, KABCD = K(AB)(CD) = KCDAB. One

has, for example, that ∇ABπC = DABπC + 1
2KABC

DπD.
Given a spinor πA, we define its Hermitian conjugate
via π̂A ≡ τA

E′

π̄E′ . The Hermitian conjugate can be ex-
tended to higher valence symmetric spinors in the obvi-
ous way. The spinors νAB and ξABCD are said to be real
if ν̂AB = −νAB and ξ̂ABCD = ξABCD. It can be veri-
fied that νAB ν̂

AB, ξABCD ξ̂ABCD ≥ 0. If the spinors are
real, then there exist real tensors νa, ξab such that νAB

and ξABCD are their spinorial counterparts. Notice that
D̂AB = −DAB. The Killing vector ξAA′ = ∇B

A′κAB can
be decomposed in terms of its lapse, ξ, and shift, ξAB,
according to ξAA′ = 1

2τAA′ξ − τQA′ξAQ, where

ξ ≡ τAA′

ξAA′ = ∇ABκAB, (4)

ξAB ≡ τ(A
A′

ξB)A′ = 3
2∇P

(AκB)P . (5)

Some extensive computer algebra calculations carried
out in the suite xAct [16] show that the conditions found
in [8] for the existence of a Killing spinor in the develop-
ment of (S, hab,Kab) are equivalent to:

∇(ABκCD) = 0, (6)

Ψ(ABC
FκD)F = 0, (7)

3κ(A
E∇B

FΨCD)EF +Ψ(ABC
F ξD)F = 0, (8)

where ξAB is used as a shorthand for 3
2∇P

(AκB)P . The
restriction of ΨABCD to the initial hypersurface S can
be expressed in terms of its electric and magnetic parts
as ΨABCD = EABCD + iBABCD, where

EABCD= 1
6ΩABCDK− 1

2Ω(AB
PQΩCD)PQ−r(ABCD),(9)

BABCD=iDQ
(AKBCD)Q, (10)

where ΩABCD ≡ K(ABCD) and K ≡ KAB
AB. The

spinor rABCD is the spinorial representation of the Ricci
tensor of hab. All these quantities can be computed from
the initial data. From the analysis in [8] one has the
following result:

Theorem 2.— The development (M, gµν) of an ini-

tial data set for the vacuum Einstein field equations,

(S, hab,Kab), has a Killing spinor if and only if there

exists a symmetric spinor κAB on S satisfying equations

(6)-(8).

Equations (6)-(8) will be collectively referred to as the
Killing spinor initial data equations. Equation (6) will be
called the spatial Killing spinor equation whereas (7) and
(8) will be known as the algebraic conditions. A solution
to equations (6)-(8) will be called a Killing spinor data,
while a solution to only equation (6) will be known as a
Killing spinor candidate.
As a consequence of the characterisation of the Kerr

spacetime discussed in Theorem 1, equations (6)-(8)
are known to have a non-trivial solution if and only
if the initial data set (S, hab,Kab) is data for the
Kerr/Schwarzschild spacetime. For Kerr initial data sat-
isfying the asymptotic conditions (2)-(3), one can always
choose asymptotically Cartesian coordinates (x1, x2, x3)
and orthonormal frames on the asymptotic ends such
that

κAB = ∓
√
2

3
xAB ∓ 2

√
2m

3r
xAB + o∞(r−1/2), (11)

with

xAB =
1√
2

Å −x1 + ix2 x3

x3 x1 + ix2

ã
. (12)

Using (11) one finds that ξ = ±
√
2 + o∞(r−1/2), ξAB =

o∞(r−1/2). In other words, the Killing spinor of the Kerr
spacetime gives rise to its stationary Killing vector.

Approximate Killing spinors.— Equation (6) consti-
tutes an overdetermined condition for the 3 complex com-
ponents of the spinor κAB. One would like to replace it
by an equation which always has a solution. For this,
one notes that the operator defined by the left hand side
of equation (6) sending valence-2 symmetric spinors to
valence-4 totally symmetric spinors has a formal adjoint
whose action on a valence-4 totally symmetric spinor,
ξABCD, is given by ∇ABξABCD − 2ΩABF

(CξD)ABF . The
composition of these two operators renders the equation
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L(κCD) ≡ ∇AB∇(ABκCD) − ΩABF
(C∇|AB|κD)F

− ΩABF
(C∇D)FκAB = 0. (13)

A calculation reveals that the operator defined by the left
hand side of this last equation is elliptic. Moreover, it
can be verified that under the asymptotic conditions (2)-
(3) the operator is asymptotically homogeneous [11, 17].
This is the standard assumption on the coefficients for
elliptic operators on weighted Sobolev spaces. It follows
that the operator is a linear bounded operator with finite
dimensional Kernel and closed range [11, 18].
Clearly, any solution to the spatial Killing equation (6)

is also a solution to equation (13). Equation (13) arises
as the Euler-Lagrange equation of the functional

J =

∫

S

∇(ABκCD)
Ÿ�∇ABκCDdµ, (14)

where dµ denotes the volume element of the metric hab.
We note the following identity:
∫

U

∇ABκCDξ̂ABCDdµ−
∫

U

κAB¤�∇CDξABCDdµ (15)

+

∫

U

2κABΩCDF
A
◊�ξBCDFdµ =

∫

∂U

nABκCD ξ̂ABCDdS,

with U ⊂ S, and where dS denotes the area element of
∂U , nAB its outward pointing normal, and ξABCD is a
symmetric spinor.
We shall call a solution, κAB, to equation (13) an

approximate Killing spinor. If one assumes the decay
ξ = ±

√
2 + o∞(r−1/2) (each sign is associated to a dif-

ferent end), ξAB = o∞(r−1/2), κAB = o∞(r3/2), and
∇(ABκCD) = o∞(r−3/2) at an asymptotic end, one can
always obtain a solution of the form (11) at that end.
This computation is lengthy and will be presented else-
where. The solution can then be smoothly cut off so
it is zero outside the asymptotic end. Repeating this
for the other asymptotic end and adding the solutions
yields a real spinor κ̊AB on the entire slice such that
∇(ABκ̊CD) ∈ H∞

−3/2 with asymptotic behaviour (11) at
both ends.
We write the following Ansatz for the solution to equa-

tion (13):

κAB = κ̊AB + θAB, θAB ∈ H∞
−1/2. (16)

One has the following result:

Theorem 3. Given an asymptotically Euclidean ini-

tial data set (S, hab,Kab) satisfying the asymptotic con-

ditions (2) and (3), there exists a smooth unique solution

to equation (13) with asymptotic behaviour given by (16).

Proof of Theorem 3.— Substitution of Ansatz (16)
into equation (13) renders the following equation for the
spinor θAB:

L(θCD) = −L(̊κCD). (17)

First, it is noticed that due to elliptic regularity, any
H2

−1/2 solution to the previous equation is in fact aH∞
−1/2

solution, so that if θAB exists, then it must be smooth —
see e.g. [11]. By construction it follows that ∇(ABκ̊CD) ∈
H∞

−3/2, so that FCD ≡ −L(̊κCD) ∈ H∞
−5/2.

We make use of the Fredholm alternative for weighted
Sobolev spaces to discuss the existence of solutions to
equation (17) —see e.g. [17, 18]. In the particular case
of equation (17) there exists a unique H2

−1/2 solution if

∫

S

FAB ν̂
ABdµ = 0 (18)

for all νAB satisfying

νAB ∈ H2
−1/2, L(νCD) = 0. (19)

It will be shown in the sequel that such νAB must be
trivial. Using the identity (15) with ξABCD = ∇(ABνCD)

and assuming that L(νCD) = 0, one obtains

∫

S

∇ABνCD⁄�∇(ABνCD)dµ

=

∫

∂S∞

nABνCD⁄�∇(ABνCD)dS, (20)

where ∂S∞ denotes the sphere at infinity. As νAB ∈
H2

−1/2 by assumption, it follows that ∇(ABνCD) ∈ H∞
−3/2

and furthermore that nABνCD⁄�∇(ABνCD) = o(r−2). An
integral over a finite sphere will then be of type o(1).
Thus, the integral over ∂S∞ vanishes. Consequently,

∫

S

∇ABνCD⁄�∇(ABνCD)dµ = 0. (21)

Therefore one concludes that ∇(ABνCD) = 0. That is,
νAB has to be a Killing spinor candidate. Using the
methods devised in [19] to prove that there are no non-
trivial Killing vectors of a 3-dimensional manifold that go
to zero at infinity, one can prove that if νAB ∈ H∞

−1/2 is

a solution to the spatial Killing spinor equation (6) then
νAB ≡ 0 on S. The proof of this last result relies on the
fact that

∇AB∇CD∇EF νGH = HABCDEFGH , (22)

whereHABCDEFGH is a homogeneous expression of νAB,
∇ABνCD and∇AB∇CDνEF —this expression is obtained
out of a lengthy computer algebra calculation. Conse-
quently, the Kernel of equation (13) with decay in H2

−1/2

is trivial. Accordingly, the Fredholm alternative imposes
no restriction. Thus, there exists a unique solution to
equation (13) with asymptotic decay given by (16). This
completes the proof of Theorem 3.

The geometric invariant.— We use the functional
(14) and the algebraic conditions (7) and (8) to con-
struct the geometric invariant measuring the deviation
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of (S, hab,Kab) from Kerr initial data. To this end, let
κAB be a solution to equation (13) as given by Theorem
3, and furthermore, let ξAB ≡ 3

2∇P
(AκB)P . Define

I1 ≡
∫

S

Ψ(ABC
FκD)F Ψ̂

ABC
Gκ̂

DGdµ, (23)

I2 ≡
∫

S

(

3κ(A
E∇B

FΨCD)EF +Ψ(ABC
F ξD)F

)

×
(

3κ̂A
P
¤�∇B

QΨCDPQ + Ψ̂ABC
P ξ̂

DP
)

dµ. (24)

The geometric invariant is then defined by

I ≡ J + I1 + I2. (25)

By construction I is coordinate independent. We have
that ∇(ABκCD) ∈ H∞

−3/2, which because of our con-

ventions means that ∇(ABκCD) ∈ L2. Consequently,
J < ∞. From the form of the metric (2) we have
ΨABCD ∈ H∞

−3+ε, ε > 0. By the multiplication lemma
in [11] and κAB ∈ H∞

1+ε we have Ψ(ABC
FκD)F ∈ H∞

−3/2.
Thus, again one finds that I1 < ∞. A similar argument
shows I2 < ∞. Hence, the invariant (25) is finite and
well defined. Clearly I ≥ 0.
Due to our smoothness assumptions, if I = 0 it fol-

lows that equations (6)-(8) are satisfied on the whole
of S. Thus, the development of (S, hab,Kab) is, at
least in a slab, of Petrov type D, N or O. The types
N and O can be excluded by requiring ΨABCD 6= 0,
ΨABCDΨ

ABCD 6= 0 everywhere on S. Finally, if I = 0
one has that the pair (ξ, ξAB) gives rise to a (possibly
complex) spacetime Killing vector, ξAA′ . As a conse-

quence of our decay assumptions, ξ− ξ̂ = o∞(r−1/2) and

ξAB + ξ̂AB = o∞(r−1/2), corresponding to the imaginary
part of the Killing data (ξ, ξAB), give rise to a Killing
vector that goes to zero at infinity. However, there are
no non-trivial Killing vectors of this type [19, 20]. Thus,
ξAA′ , is a real Killing vector. Hence, one has our main
result:

Theorem 4.— Let (S, hab,Kab) be an asymptotically

Euclidean initial data set for the Einstein vacuum field

equations satisfying in every asymptotic end the decay

conditions (2) and (3), and such that ΨABCD 6= 0 and

ΨABCDΨ
ABCD 6= 0 everywhere on S. Let I be the in-

variant defined by equations (14), (23), (24) and (25),
where κAB is given as the only solution to equation (13)
with asymptotic behaviour given by (16). The invariant

I vanishes if and only if (S, hab,Kab) is an initial data

set for the Kerr spacetime.

Applications and generalisations.— Given the invari-
ant of theorem 4, a natural question to be asked is how
it behaves under time evolution. Addressing this ques-
tion requires an analysis of the spinor ∇κAB, which can
be seen to satisfy an elliptic equation of the form (13). In
this letter we have restricted our attention to asymptoti-
cally Euclidean slices, however, a similar analysis can be

carried out on hyperboloidal and asymptotically cylin-
drical slices. If some type of constancy or monotonic-
ity property could be established, this would be a useful
tool for studying non-linear stability of the Kerr space-
time and also in the numerical evolutions of black hole
spacetimes. For example, it could be the case that the
invariant I remains constant along the leaves of a folia-
tion of asymptotically Euclidean slices, while monotonic-
ity holds only if one considers a foliation intersecting null
infinity —like in the case of the ADM and Bondi masses.

The decay and regularity assumptions used are cer-
tainly not optimal —we have used these for the ease of
the presentation. Full arguments and generalisations, in-
cluding the discussion of boosted slices will be discussed
elsewhere.
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