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We introduce a new time-domain method for computing the self-force acting on a scalar

particle in a Schwarzschild geometry. The principal feature of our method consists in the

division of the spatial domain into several subdomains and locating the particle at the

interface betweem two them. In this way, we avoid the need of resolving a small length

scale associated with the presence of a particle in the computational domain and, at the

same time, we avoid numerical problems due to the low differentiability of solutions of

equations with point-like singular behaviour.
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1. Motivation

One of the main sources of gravitational radiation for the future space-based

gravitational-wave observatory LISA1 are the capture, and posterior inspiral, of

stellar-mass compact objects (SCOs) into massive black holes (MBH) located at

galactic centers. Since the masses of interest for the SCO are aroundm = 1−102M⊙,

and for the MBH are in the rangeM = 104−107M⊙, the mass-ratio for these systems

is µ = m/M ∼ 10−7
− 10−2. For this reason, they are called Extreme-Mass-Ratio

Inspirals (EMRIs). During the inspiral phase, an EMRI losses energy and angular

momentum via the emission of gravitational waves (GWs). LISA will be able to

detect GW signals of 10− 103 EMRI/yr up to distances with z . 1.2 These signals

will be hidden in the LISA instrumental noise and in the GW foreground produced

mainly by compact binaries in the LISA band. Thus, in order to extract the EMRI

signals we need a very accurate theoretical knowledge of the gravitational wave-

forms. The main difficulty in producing those waveforms is the description of the

gravitational effects of the SCO on its own trajectory. These effects produce devia-

tions in the motion of SCO, which is not longer a geodesic around the MBH, which

can be pictured as the action of a local force, the self-force. Here, we review the

results of recent work3,4 where a new time-domain technique for the computation

of the self-force has been proposed.

http://arxiv.org/abs/1001.4697v1
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2. Top tips for an efficient time-domain self-force computation

Due to the complexity of the gravitational EMRI problem5,6 we have developed our

new techniques for self-forse computations using a simplified model that contains

all the ingredients of the gravitational case. It consists of a charged scalar particle

(the SCO) in a circular motion around a non-rotating MBH. This provides a good

test bed to test our techniques before extending them to the gravitational case.

The equations of a (scalar, electromagnetic, gravitational) field on a

Schwarzschild background inherit the spherical symmetry of the geometry. There-

fore, we can decompose the field in harmonic modes, eliminating the angular de-

pendence, so that each of them satisfies a decoupled 1+1 wave-type equation. In

contrast with the behavior of the full field, each harmonic mode turns out to be

finite at the particle location, which is very useful to regularize the field mode by

mode using the mode-sum regularization scheme.7–9 Then, we can obtain a regular

field by adding all the regularized harmonic modes, from which we can compute

the self-force acting on the particle. It is then very important to develop efficient

techniques to compute precisely the harmonic modes near or at the particle location

so that we can estimate very precisely the self-force via the mode-sum scheme.

Recently, we presented3,4 a new time-domain technique to solve the wave equa-

tions for the harmonic modes in an efficient and precise way. It consists in a multi-

domain framework where the particle is always located at the interface between two

subdomains. This setup has two important advantages: (i) We do not need to re-

solve a small scale associated with the presence of a point-like singularity inside the

computational domain and (ii) to avoid the negative effects in the numerical com-

putations of the low differentiability of the solution. The main idea is that the wave

equations in the different domains are source-free and then do not see point-like

singularities, which ensure good differentiability properties and hence, good numer-

ical convergence properties. The way the different domains are communicated is

through analytical junction conditions dictated by the field equations themselves.10

Regarding the numerical implementation, we perform the spatial discretiza-

tion using a Chebyschev-Lobatto Pseudospectral Collocation Method11 (PCM). We

evolve a first-order system of equations, obtained from the reduction of the wave-

type equations, that allow us to impose the junction conditions on the characteristic

fields of this system. In practice, this is imposed via the penalty method ,12 which

drives the system dynamically to satisfy the junction conditions.3,4 The convergence

properties of the PCM are very sensitive to the smoothness properties of the so-

lution, which gives more importance to the multi-domain techniques we are using.

In this sense, it has been shown3,4 that our methods are able to resolve with pre-

cision the field on the particle location with a reasonably low computational cost,

showing that indeed the method is well suited for time-domain computations of the

self-force. Up to now, we have done calculations for circular orbits. Comparing our

results with others in the literature,13,14 we have found that they agree with a high

degree of precision even when we use a relatively low number of collocation points.
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For instance, at the last stable circular orbit (r
p
= 6M), our computation of the

radial derivative of the field, the only one that requires regularization in the circular

case, coincides with the values obtained in other time-domain and frequency-domain

calculations with a relative error of the order of 0.2%. Our calculations use between

12 and 24 subdomains (for the discretization of the radial direction in terms of the

tortoise coordinate) and 50 collocation points per domain. The average time for a

full self-force calculation (which involves the calculation of 231 harmonic modes) in

a computer with two Quad-Core Intel Xeon processors at 2.8 GHz is always in the

range 20-30 minutes.3,4 These calculations can be further optimized by distribut-

ing the subdomains and collocation points so that the resolution is adapted to the

physical problem. The calculations can be easily parallelized, either by spreading

the work of the harmonic modes or that of the subdomains.

Looking at the future, we are currently extending these techniques to eccentric

orbits. This has required some modifications to keep the particle fixed at a node

between subdomains, and results of the calculations will be published elsewhere.15

The next step will be the gravitational case, where the challenge comes from the fact

that each harmonic mode is described by a set of coupled 1+1 wave type equations.

Acknowledgments

PCM is supported by a predoctoral FPU fellowship of the Spanish Ministry of

Science and Innovation (MICINN). CFS acknowledges support from the Ramón y

Cajal Programme of the Ministry of Education and Science of Spain and by a Marie

Curie International Reintegration Grant (MIRG-CT-2007-205005/PHY) within the

7th European Community Framework Programme.

References

1. LISA: http://www.esa.int, http://lisa.jpl.nasa.gov.
2. P. Amaro-Seoane et al., Class. Quant. Grav. 24, R113 (2007).
3. P. Canizares and C. F. Sopuerta, J. Phys. Conf. Ser. 154, 012053 (2009).
4. P. Canizares and C. F. Sopuerta, Phys. Rev. D79, 084020 (2009).
5. Y. Mino, M. Sasaki and T. Tanaka, Phys. Rev. D55, 3457 (1997).
6. T. C. Quinn and R. M. Wald, Phys. Rev. D56, 3381 (1997).
7. L. Barack and A. Ori, Phys. Rev. D61, 061502 (2000).
8. L. Barack, Y. Mino, H. Nakano, A. Ori and M. Sasaki, Phys. Rev. Lett. 88, 091101

(2002).
9. L. Barack and A. Ori, Phys. Rev. D66, 084022 (2002).

10. C. F. Sopuerta and P. Laguna, Phys. Rev. D73, 044028 (2006).
11. J. P. Boyd, Chebyshev and Fourier Spectral Methods (Dover, New York, 2001).
12. J. S. Hesthaven, Appl. Numer. Math. 33, 23 (2000).
13. R. Haas and E. Poisson, Phys. Rev. D74, 044009 (2006).
14. L. M. Diaz-Rivera, E. Messaritaki, B. F. Whiting and S. Detweiler, Phys. Rev. D70,

124018 (2004).
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