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Late-time tails of a self-gravitating Einstein-Skyrme model
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We consider the long-time behaviour of spherically symmetric solutions in the Einstein-Skyrme
model. Using nonlinear perturbation analysis we obtain the leading order estimation of the tail in
the topologically trivial sector (B = 0) of the model. We showed that solutions starting from small
compactly supported initial data decay as t−4 at future timelike infinity and as u−2 at future null
infinity.

I. INTRODUCTION

This paper concerns the late-time asymptotic behaviour of a spherically symmetric self-gravitating Einstein-Skyrme
(ES) model. It is an extension of the paper [2] where we studied quasinormal modes in intermediate asymptotics. It
is also an extension of work done in [3] where the expression for the tail in flat space was obtained. The results of this
paper are closely connected to the results of paper [4] where the evolution of wave maps was studied. As we remarked
in paper [2], in gravitating Skyrme model the linear perturbation method predicts power-law index γ = 5 for the tail.
This estimation is in clear conflict with early numerical results on tails in ES [1] which were later confirmed by the
results of paper [2]. To explain this disagreement we have studied the expression for the tail in gravitating wave maps
[4] model where we expected similar long-time asymptotics as for the Skyrme model. In the current paper direct
calculations in gravitating Skyrme model are performed.

In self–gravitating Skyrme model the most interesting problem is certainly the description of the relaxation to the
static Skyrmion. Unfortunately, due to the lack of analytic formulae describing static Skyrme soliton, the description
of this problem is very tedious. To avoid these difficulties we follow [3] and study the relaxation to the vacuum in the
topologically trivial B = 0 sector. To estimate the parameters of the tail we apply perturbation techniques elaborated
in [5–8]. Using these techniques we will demonstrate that the third-order expression for the tail agrees perfectly with
numerical results for small initial data. The plan of this paper is as follows. In section II we remind the reader the field
equations of the model and shortly demonstrate the iterative scheme. Section III contains the details of perturbation
calculations. In the last section we demonstrate the numerical evidence confirming our analytical estimations for the
tails.

II. THEORETICAL BACKGROUND

We consider the Einstein–Skyrme model with dynamics given by the Lagrangian [9]:

L =
f2

4
Tr(∇a∇

aU−1) +
1

32e2
Tr[(∇aU)U−1, (∇bU)U−1]2 −

1

16πG
R. (1)

We assume spherical symmetry and parametrize the metric as follows:

ds2 = −e−2δ(r,t)N(r, t)dt2 + N−1(r, t)dr2 + r2dΩ2, (2)

where dΩ2 is a metric on the unit 2–sphere. Applying the standard hedgehog ansatz U = exp(i−→σ · r̂F (r, t)), where
−→σ is the vector of Pauli matrices and r̂ – unit radial vector, we obtain the following set of ES equations:

ṁ = αe−δN2PF ′, (3)

m′ =
α

2

(

2 sin2 F +
sin4 F

r2
+ uN(

P 2

u2
+ F ′2)

)

, (4)

δ′ = −
αu

r

(

P 2

u2
+ F ′2

)

, (5)

Ṗ = (e−δNuF ′)′ + sin(2F )e−δ

(

N(
P 2

u2
− F ′2) −

sin2 F

r2
− 1

)

. (6)
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Here P and u are auxiliary variables defined as: P = ueδN−1Ḟ and u = r2 + 2 sin2 F , m(t, r) is the mass function

defined as: m(t, r) = r(1−N)
2 and α = 4πGf2 is dimensionless coupling constant. The expression for the tail for α = 0

(flat space) was obtained in paper [3]; here we consider gravitating case α > 0.
To obtain the estimation of the tail we study the evolution of the system described by (3-6) starting with small,

smooth and compactly supported initial data

F (0, r) = εf(r), Ḟ (0, r) = εg(r) . (7)

Following [5–8] we postulate perturbation expansion

m(t, r) = m0(t, r) + εm1(t, r) + ε2m2(t, r) + . . . , (8)

δ(t, r) = δ0(t, r) + εδ1(t, r) + ε2δ2(t, r) + . . . , (9)

F (t, r) = F0(t, r) + εF1(t, r) + ε2F2(t, r) + ε3F3(t, r) + . . . . (10)

Collecting the terms with the same power of ε we obtain a set of equations for the expansion functions which we solve
recursively. We are studying the relaxation process to the Minkowski space-time, so m0 = δ0 = F0 = 0.

In the first order in ε the requirement of regularity of the metric function N at the origin and choice of gauge
δ(t, r = 0) = 0 require that m1 = δ1 = 0. In this perturbation order we obtain free ℓ = 1 radial wave equation for the
F1 function:

�F1 = 0 , � = ∂2
t − ∂2

r −
2

r
∂r +

2

r2
, (11)

with initial data F1(0, r) = f(r), Ḟ1(0, r) = g(r). The general regular solution of an equation of this kind has the form

F1(t, r) =
a′(t− r) + a′(t + r)

r
+

a(t− r) − a(t + r)

r2
. (12)

where the generating function a(r) is determined by initial data.
In the second perturbation order we obtain the free ℓ = 1 radial wave equation �F2 = 0; however, contrary to the

previous F1(t, r) case, the initial data for F2 are zero so F2 has to vanish. In this order of perturbation expansion,
the metric functions satisfy the following equations

m′
2 =

α

2
r2
(

Ḟ 2
1 + F ′2

1 +
2

r2
F 2
1

)

, (13)

ṁ2 = α r2 Ḟ1 F
′
1 , (14)

δ′2 = −α r ( Ḟ 2
1 + F ′2

1 ) . (15)

Finally in the third order in ε we get following equation for F3

�F3 = −2δ2F̈1 − δ̇2Ḟ1 − δ′2F
′
1 −

2

r

(

m′
2F

′
1 + ṁ2Ḟ1

)

+
m2

r

(

4

r2
F1 −

6

r
F ′
1 − 4F ′′

1

)

+
4

3r2
F 3
1 +

2

r4

(

F 3
1 − 2rF 2

1 F ′
1 + r2 F1 (F ′2

1 − Ḟ 2
1 )
)

(16)

To solve the above equation we use the Duhamel formula for the solution of the inhomogeneous wave equation
�lF = N(t, r) with zero initial data

F (t, r) =
1

2r

t
∫

0

dτ

t+r−τ
∫

|t−r−τ |

ρPℓ(µ)N(τ, ρ)dρ . (17)

Here Pℓ(µ) are Legendre polynomials of degree ℓ and µ = (r2 +ρ2− (t− τ)2)/2rρ. Using the abbreviation K(m, δ, F ):

K(m, δ, F ) = −2δF̈ − δ̇Ḟ − δ′F ′
−

2

r

(

m′F ′ + ṁḞ
)

+
m

r

(

4

r2
F −

6

r
F ′

− 4F ′′

)

+
4

3r2
F 3 +

2

r4

(

F 3
− 2rF 2 F ′ + r2 F (F ′2

− Ḟ 2)
)

, (18)

and introducing null coordinates: η = τ − ρ and ξ = τ + ρ, we obtain:

F3(t, r) =
1

8r

t+r
∫

|t−r|

dξ

t−r
∫

−ξ

(ξ − η)Pℓ(µ)K(m2(ξ, η), δ2(ξ, η), F1(ξ, η))dη , (19)

where µ = (r2 + (ξ − t)(t− η))/r(ξ − η).
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We have assumed that the initial data F1(t, r) are compactly supported, i.e. they vanish outside a ball of some
radius R. As a result, for t > r + R we may drop the advanced part of F1(t, r). Changing the order of integration in
(19) we get:

F3(t, r) =
1

8r

∞
∫

−∞

dη

t+r
∫

t−r

(ξ − η)Pℓ(µ)K(m2(ξ, η), δ2(ξ, η), F ret
1 (ξ, η)) dξ . (20)

We are interested in late–time behaviour of F3(t, r), so we need to know the behaviour of the metric function δ2 and
the mass function m2 along the light cones for large values of r. To calculate (20), we expand the function K in
inverse powers of ρ = (ξ − η)/2 and use the following identity (see paper [8]):

t+r
∫

t−r

dξ
Pℓ(µ)

(ξ − η)n
= (−1)l

2(n− 2)ℓ

(2ℓ + 1)!!

rℓ+1(t− η)n−ℓ−2

[(t− η)2 − r2]n−1
F

(

ℓ+2−n
2 , ℓ+3−n

2
ℓ + 3/2

∣

∣

∣

∣

(

r

t− η

)2
)

. (21)

III. NONLINEAR TAIL

To obtain the expression for the tail we have to solve the equations (13)–(15). Neglecting the advanced part of F1

and integrating (13), we get the following expression for m2 valid for large times

m2(t, r)
t>R
= α

r
∫

0

[

(a′′(t− ρ))
2
−

3

2
∂ρ

(a′(t− ρ))
2

ρ
− 2∂ρ

a(t− ρ)a′(t− ρ)

ρ2
+ O

(

1

ρ3

)

]

dρ. (22)

We need this expression for m2(t, r) along the light cone, so it is convenient to use the null coordinate u = t − r
instead of t. As a result we get:

m2(u, r)
r+u>R

= α





∞
∫

u

(a′′(s))
2
ds−

3

2r
(a′(u))

2
−

2

r2
a(u)a′(u) + O

(

1

r3

)



 . (23)

Using the same line of argument as in the text above and exploiting the gauge condition δ2(t, r = 0) = 0 we get the
formula for δ2

δ2(u, r)
r+u>R

= −α



2

∞
∫

u

(

(a′′(s))2

r
+

(s− u)(a′′(s))2

r2
+

(s− u)2(a′′(s))2

r3

)

ds− 3
(a′(u))2

r2

−
4

r3
(a(u)a′(u)) −

5

r3

∞
∫

u

(a′(s))2ds + O

(

1

r4

)



 . (24)

In order to get a compact formula for late-time asymptotics we define the following auxiliary symbol for the integrals
of the form (for non-negative integers a, b)

Iab (u) =

∞
∫

u

(s− u)a
(

a(b)(s)
)2

ds. (25)

Using this notation we get the following equation for m2 and it’s derivatives:

m2(u, r)
r+u>R

= α

[

I02 (u) −
3

2r
(a′(u))2 −

2

r2
(a(u)a′(u)) + O

(

1

r3

)]

, (26)

ṁ2(u, r)
r+u>R

= −α

[

(a′′(u))2 +
3

r
(a′(u)a′′(u)) +

2

r2
(

(a′(u))2 + a(u)a′′(u)
)

+ O

(

1

r3

)]

, (27)

m′
2(u, r)

r+u>R
= α

[

(a′′(u))2 +
3

r
(a′(u)a′′(u)) +

1

r2

(

7

2
(a′(u))2 + 2a(u)a′′(u)

)

+ O

(

1

r3

)]

. (28)
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Similary, from (24) we obtain:

δ2(u, r)
r+u>R

= −
α

r

[

2I02 (u) +
1

r

(

2I12 (u) − 3(a′(u))2
)

+
1

r2
(

2I22 (u) − 5I01 (u) − 4a′(u)a(u)
)

+ O

(

1

r3

)]

, (29)

δ̇2(u, r)
r+u>R

=
α

r

[

2(a′′(u))2 +
1

r

(

2I02 (u) + 6a′(u)a′′(u)
)

+
1

r2
(

4I12 (u) − (a′(u))2 + 4a(u)a′′(u)
)

+ O

(

1

r3

)]

,(30)

δ′2(u, r)
r+u>R

= −
α

r

[

2(a′′(u))2 +
6

r
(a′(u)a′′(u)) +

1

r2
(

5(a′(u))2 + 4a(u)a′′(u)
)

+ O

(

1

r3

)]

. (31)

Substituting (26-31) into (18) and using the equation (20) we get:

F3(t, r) =
4α

r

+∞
∫

−∞

dη

t+r
∫

t−r

dξ
P1(µ)

(ξ − η)2

[

d

dη

(

I12 (η)a′′(η)
)

−
1

ξ − η

(

(a′′(η))2a(η) −
d

dη
A1(η)

)

+ O

(

1

(ξ − η)2

)]

, (32)

where

A1(η) = 4I12 (η)a′(η) − I02 (η)a(η) + (2I22 (η) − 5I01 (η))a′′(η) . (33)

To obtain the final form of the expression for the tail we perform the inner integral over ξ in (32) and using the
identity (21) we get the asymptotic behavior which is valid for large retarded times u

F3(t, r) =
r

(t2 − r2)2

[

αC1 + O

(

1

t

)]

, (34)

where

C1 =
8

3

+∞
∫

−∞

(a′′(s))
2
a(s) ds . (35)

We would like to stress that if we compare the equations (32) and (34) with equations (34) and (36) obtained in the
paper [4] we immediately see that the leading order expressions for the tails obtained in both models are exactly the
same. This is the case even though nonlinear formulae for F3 are different. However, as we have expected, these
differences are not significant in the leading order.

Finally, from (34) we get the late–time tails at the future timelike infinity F3(t, r) ≃ αC1rt
−4 (for r = const and

t → ∞) and future null inifinity (rF3)(v = ∞, u) ≃ αC1(2u)−2 (for v = ∞ and u → ∞).

IV. NUMERICS

To verify analytical prediction for the tails obtained in the previous section we have performed numerical studies
of long-time asymptotics in Einstein-Skyrme model. To do that we have solved numerically the equations (3-6) with
initial data descibed below. For solving evolutional equations we have used method of lines with 5-point, fourth order
accurate spatial discretization. We have solved the resulting ODE’s with fourth order Runge-Kutta method. To solve
the costraints, i.e. hamiltonian constrain (4) and slicing condition (5) we have also used fourth order Runge-Kutta
method. Here we need the values of some functions out of the grid – we have obtained them using spline interpolation.
To ensure regularity at the origin we impose the boundary conditions F (t, r = 0) ∼ r and P (t, r = 0) ∼ r. To avoid
the contamination of results by parts of the solution reflected from outer boundary we have used the size of the grid
big enough, so the solution stops before the reflected signal reaches the observation point. Finally, to suppress the
acumulation of round-off errors in late times we have used quadrupole precision. In our calculations we have used the
initial data obtained from the following generating function (see(7-12)):

εa(x) = ε exp(−x2), (36)

with different values of ǫ. For initial data of this kind we get the value for C1 from the formula (35):

C1 =
64

9

√

π

3
≈ 7.2769, (37)
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In Fig.1 we plot F (t, r) in self–gravitating Skyrme model with α = 0.03 for three different values of ǫ. We see that
on log-log plots the late-time tails are clearly seen as straight lines.
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FIG. 1: Left panel: The log-log plot of F (t, r) for fixed r=5. Right panel: The log-log plot of F (t, r)/r for fixed large advanced
time v = t + r = 1000 as the function of retarded time u = t − r. In both panels (dotted line) we see that solutions starting
from small initial data decay as t−4 at future timelike infinity and as u−2 at future null infinity

To obtain the parameters of the tails i.e. the decay rate and the amplitude we fit numerical data with the formula:

F (t, r) = At−γ exp
(

B/t + C/t2
)

. (38)

In Table 1 we present the numerical results for the decay rate and the amplitude and their comparison with analytic
estimation.

Initial amplitude Theory (third order) Numerics : F data Numerics
ε A A γ

0.05 0.0001364 0.0001365 4.00
0.1 0.001091 0.001098 4.00
0.2 0.008732 0.008774 4.00
0.4 0.06985 0.06929 4.00
0.8 0.5589 0.5220 4.00
1.2 1.8862 1.5842 4.00
1.6 4.4709 3.1974 4.00
2.0 8.7324 4.9482 4.00
2.4 15.0896 6.3257 4.02
2.8 23.9617 6.9629 4.04

TABLE I: The analytic confirmation via numerics for the amplitudes of the tails at timelike infinity, where α = 0.03 and r = 5.

We see that for all values of the initial amplitudes ε the value of decay rate γ is very close to the theoretical value.
On the other hand, the analytical prediction for the amplitude is in excellent agreement with numerical data only
for small initial data. For larger data this agreement disappears - this means that subleading terms with different
dependance on the size of initial data are also important here.

For the comparison with numerical data it is convenient to define the local power index (hearafter LPI) defined as
follows [10]:

n(t, r) = −t
Ḟ (t, r)

F (t, r)
. (39)

For the assumed form parametrising the tail (38) we get the following expression for the LPI:

n(t, r) = γ +
B

t
+

2C

t2
. (40)

In Fig. 2 we plot LPI at r = 5 as a function of 1/t. All curves in this figure correspond to small initial data. We
see that all lines approach the same power-law index γ = 4 at the future timelike infinity, so numerical data confirm
analytical prediction for the decay rate.
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FIG. 2: The local power index n(t,5) as a function of 1/t.

In Fig 3 we plot ǫ−3F (t, r) as a function of initial amplitude. According to the analytical prediction the late–time
behaviour of this quantity does not depend on the magnitude of initial data. We may observe that for not-too-large
initial data this is really the case.
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FIG. 3: Left panel: The log-log plot of ǫ−3F (t, r) vs time for fixed r=5. Right panel: The log-log plot of ǫ−3F (t, r)/r for fixed
large advanced time v = t + r = 1000 as the function of retarded time u = t− r.

In Fig. 4 we plot the amplitude of the tail as a function of ǫ and α. For both panels the third-order estimation
(solid lines) predicts correctly the amplitude of the tail for small data and fails for large data.
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FIG. 4: Left panel: The log-log plot of the amplitude of the tail as a function of the amplitude of initial data for fixed α = 0.03
and r = 5. Right panel: The plot of the amplitude of the tail as a function of the coupling constant α for fixed ε = 0.08 and
r = 5.
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Summary: Using nonlinear perturbation method, we derived explicit formulae for the late-time tail: the decay
rate and the amplitude of a spherically symmetric, self-gravitating Einstein-Skyrme model. We showed that initial
data decay as t−4 at the timelike infinity and as u−2 at future null infinity. Using third-order approximation we
obtained analytical prediction for the amplitude that is in excellent agreement with numerics for sufficiently small
initial data. For large data lying near the threshold of the black hole formation third-order approximation fails – it is
seen in Fig. 4 in the deviation from the scaling A ∼ ε3 (left panel) and in the deviation from the linear dependence of
A on α (right panel). Finally, we showed that the expression (34) describing the late-time tails in ES has the same
form as the corresponding expression for the wave maps [4] .
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