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Abstract

It is shown by means of a simple analysis that the linearized system of
transport equations for a relativistic, single component ideal gas at rest
obeys the antecedence principle, which is often referred to as causality
principle. This task is accomplished by examining the roots of the dis-
persion relation for such a system. This result is important for recent
experiments performed in relativistic heavy ion colliders, since it suggests
that the Israel-Stewart like formalisms may be unnecessary in order to
describe relativistic fluids.

1 Introduction

In 1940 C. Eckart published three papers entitled The thermodynamics of ir-

reversible processes [1], the third one addressing the problem of a relativistic
simple (single component ideal gas) fluid. In that paper, Eckart proceeded fol-
lowing the basic ideas of classical irreversible thermodynamics [2], except for the
fact that he introduced relativistic terms in the energy-momentum tensor. As
part of his phenomenological approach, he proposed constitutive equations with
relativistic corrections. Since Eckart’s theory apparently leads to results that vi-
olate causality and involves undesirable unstable modes [3], it has been patched
up in several ways using formalisms introduced by Israel and coworkers [4] [5]
[6] and sometimes using extended irreversible thermodynamics [7] [8]. Recently,
it has been shown that the unphysical behavior of the unstable modes is due
to the coupling between heat an acceleration proposed by Eckart [9]. Indeed, it
has been shown that such a relation is not sustained by kinetic theory [10].

The so-called causality problem of heat conduction, which should be more
precisely stated as antecedence problem, remains still a controversial issue which
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suggests the need of extended theories. We wish to point out that eventhough
the term causality is the most favoured, the problem of faster that light propa-
gation of fluctuations is not striclty a cause-effect issue but rather the prediction
of an unphysical behavior concerning arrival times. However, as is shown in the
following sections, relativistic classical linear irreversible thermodynamics, as
obtained from relativistic kinetic theory features both stability for the equilib-
rium state [10] and satisfaction of the antecedence principle.

To accomplish this task we divide the rest of the paper as follows. In Sect.
1.2 we recall the Navier-Stokes equations for a simple relativistic fluid [11] and
introduce the appropriate constitutive equation for the heat flux. The linearized
set of transport equations is thoroughly analyzed in Sect. 1.3. Conclusions and
final remarks are included in Sect. 1.4.

2 Transport equations for the relativistic single

component ideal gas

The starting point are the balance equations for a relativistic fluid which are
obtained from the conservation of the particle density flow

Nν = nuν (1)

and the energy-momentum tensor which, following Eckart[1] reads

T µ
ν =

nε

c2
uµuν + phµ

ν + πµ
ν +

1

c2
qµuν +

1

c2
uµqν (2)

In Eqs. (1) and (2), n is the particle number density, uν the hydrodynamic
velocity four vector, c the speed of light, p the hydrostatic pressure and hµ

ν =
δµν +uµuν/c

2 the spatial projector. The internal energy per particle, ε , includes
the rest energy since it is given by [14]

ε = mc2

(

3z +
K1

(

1
z

)

K2

(

1
z

)

)

∼ mc2 +
3

2
kT + ... (3)

where z = kT
mc2

is the relativistic parameter and Kn

(

1
z

)

are the modified Bessel
function of the second kind. The dissipative fluxes are the Navier tensor πµ

ν and
the heat flux qν . The conservation equations Nν

;ν = 0 and T µ
ν;µ = 0 for the

quantities defined above yield the Navier-Stokes equations for the relativistic
simple fluid namely,

ṅ+ nθ = 0 (4)

(nε

c2
+

p

c2

)

u̇ν +

(

nε̇

c2
+

p

c2
θ

)

uν + p,µh
µ
ν + πµ

ν,µ

+
1

c2
(

qµ,µuν + qµuν,µ + θqν + uµqν,µ
)

= 0 (5)
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nCnṪ +

(

Tβ

κT

)

θ + uν
,µπ

µ
ν + qµ;µ +

1

c2
u̇νqν = 0 (6)

where κT is the isothermal compressibility, β the thermal expansion coefficient
and Cn the heat capacity at constant particle density. As it will be remarked
below, the tensor πµ

ν can be further decomposed in a traceless symmetric part
and the trace multiplied by the spatial projector.

In order to close the system of equations, constitutive relations for the heat
flux and Navier tensor must be introduced. The equation for the heat flux has
been recently established by means relativistic kinetic theory and reads

q
ℓ = −LT

T ,ℓ

T
+ Ln

n,ℓ

n
(7)

where LT and Ln are transport coefficients[10]. A detailed discussion on this equations
can be found elsewhere[10]. The equations for πµ

ν in Eq. (2) are well-known namely,

π
(s)
µν = −2ησµν (8)

tr (π) = −ξ∇ · ~u (9)

where π
(s)
µν is the symmetric and traceless part of πµ

ν , tr (π) its trace and σµν is the
symmetric and taceless part of the velocity gradient. The transport coefficients in Eqs.
(8) and (9) are the shear and bulk viscosities respectively.

3 Linearized relativistic hydrodynamics

In order to linearize the set of equations (4-6) we consider n = n0 + δn, T =
T0 + δT and uν = δuν where naught subscripts denote equilibrium quantities
and the δ prefix indicates small perturbations around it. With this hypothesis,
the linearized transport equations for a simple, relativistic fluid in the absence
of external fields are

δṅ+ n0δθ = 0 (10)

1

c2
(n0ε0 + p0) δu̇ν +

1

nκT

δn,ν +
β

κT

δT,ν

−ζδθ,ν − 2η (δσµ
ν ),µ − LT

c2
δṪ,ν −

Ln

c2
δṅ,ν = 0 (11)

nCnδṪ +

(

T0β

κT

)

δθ −
(

LT δT
,k + Lnδn

,k
)

;k
= 0 (12)

where we have defined θ = uν
;ν. It is important to point out that the transport

coefficients in general depend on the state variables. However, since they only
appear as factors of derivatives of the corresponding fluctuations, considering
fluctuations on them would induce higher order terms, which are neglected in
the linear approximation.

It is crucial at this point to make the following observation. The so-called
causality violation of the transport equations to first order in the gradients, given
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by linear irreversible thermodynamics, can be easily spotted by observing that,
considering uℓ

0 = 0 and linearizing, Eq. (6) leads to a parabolic equation for T .
This clearly admits arbitrary propagation speeds for the corresponding signals.
However, the hypothesis of a fluid at rest or the fact that calculations can be
performed in the comoving frame should not be translated into a vanishing
hydrodynamic velocity, but in uℓ

0 = 0 as considered above. That is, δuν should
not vanish even for the fluid at rest or in the comoving frame; only the mean or

equilibrium velocity can be zero. This fact has already been pointed out in the
analysis of the linearized relativistic Euler regime[12].

The analysis of the dynamics given the system of equations (10-12) can be
found in detail in Section 4 of Ref. [11] where we discussed the modifications
to the Rayleigh-Brillouin spectrum. Here we only quote the results needed in
order to address the problem at hand namely, the causality of the system. We
start by calculating the divergence of Eq. (11). The transverse mode is then
uncoupled from the system and a set of three scalar differential equations for δn,
δθ and δT is obtained. A Fourier-Laplace transform is then performed, leading
to a system of algebraic equations depending on the time and space variables,
s and q respectively, whose associated determinant reads

∣

∣

∣

∣

∣

∣

s n0 0

− 1
n0κT

q2 + Ln

c2
sq2 ρ̃0s+Aq2 LT

c2
q2s− β

κT

q2

Ln

n0cn
q2 T0β

n0cnκT

s+ LTT

n0cn
q2

∣

∣

∣

∣

∣

∣

= 0 (13)

where for convenience we have introduced the following notation[11]

ρ̃0 =
1

c2
(n0ε0 + p0) (14)

A = ζ + 4η/3 (15)

The dispersion relation is thus given by

s3 + d2s
2q2 + s

(

d3q
4 + d4q

2
)

+ d5q
4 = 0 (16)

where the coefficients d2 to d5 have been specified in an earlier work[11]. The
physical interpretation of the three roots of Eq. (16) is well known. The dy-
namics of the perturbations in the fluid are characterized by a strictly dissipa-
tive component which decays in time depending on the value of the real root
while the other wave-like component propagates at a speed given by the imagi-
nary parts of the conjugate roots, damped by a coefficient which depends on a
Stokes-Kirchhoff like factor. Moreover, a plot of the dynamic structure factor
as a function of s for a fixed ~q, will feature three peaks. In this work, we are
interested in the location of the symmetric Brillouin peaks[13], which are given
by the imaginary part of the conjugate roots, that is ω = ±

√
d4q. Thus, in this

case

ω = ±
√

γ

κT ρ̃0
q (17)
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such that, the distance between the peaks, i. e. the speed of propagation of the
wave-like component of the fluctuations, and the origin is bounded by

c

√

γ

κT (n0ε0 + p0)
(18)

Notice that, in the non-relativistic case, the fluctuations propagate at the speed
of sound, i. e.

c2s =
γ

κTρ0
(19)

As an example, for an ideal gas γ = 5/3 and κT = 1/p, such that

c2s =
5

3

kT

m
(20)

which is clearly unbounded and can be increasingly large for high temperatures.
However, the speed of propagation in the relativistic calculation reads

c2R =
γ

κT (n0ε0 + p0)
c2 (21)

Using the expression for the internal energy density given by Eq. (3) we now
obtain

c2R =















5

3

z
[

3z +
K1( 1

z )
K2( 1

z )

]

+ 1















c2 (22)

As can be seen in Fig. 1, the expression in curly brackets never exceeds the
unity which finally shows that the propagation speed for signals in the transport
equations for the relativistic fluid does not violate the antecedence principle.

4 Final remarks

The transport equations derived from Eckart’s modified theory show, in its linear
version, no problems regarding stability and causality features. This fact implies
that there is no real motivation to introduce the so-called second order theories,
which introduce non-fundamental adjustable parameters. A simple first order
formalism is desirable to describe the fluids which are formed in RHIC type
experiments[15].

In the non-linear case the relativistic Navier-Stokes equations here employed
are, by far, more complex. In this context, very little can be said regarding the
problems of stability and causality with the techniques included in this paper.
It is desirable to perform further work in this direction.
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Figure 1: The ratio of the speed of propagation to the speed of light, as a
function of the relativistic parameter z.
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