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Unruh radiation is the thermal flux seen by an accelerated observer moving through Minkowski
spacetime. In this article we study Unruh radiation as tunneling through a barrier. We use a
WKB–like method to obtain the tunneling rate and the temperature of the Unruh radiation. This
derivation brings together many topics into a single problem – classical mechanics, relativity, rel-
ativistic field theory, quantum mechanics, thermodynamics and mathematical physics. Moreover,
this gravitational WKB method helps to highlight the following subtle points: (i) the tunneling rate
strictly should be written as the closed path integral of the canonical momentum; (ii) for the case of
the gravitational WKB problem, there is a time–like contribution to the tunneling rate arising from
an imaginary change of the time coordinate upon crossing the horizon. This temporal contribution
to the tunneling rate has no analog in the ordinary quantum mechanical WKB calculation.

I. INTRODUCTION

The radiation that arises from placing a quantum field
in a background metric with a horizon is a well known
phenomenon at the boundary between field theory and
general relativity. The first example of this effect was
Hawking radiation1, where a Schwarzschild black hole
radiates with a thermal spectrum at the expense of the
black hole’s mass. Another example is Hawking–Gibbons
radiation2, i.e., the thermal radiation seen by an observer
in de Sitter spacetime. In this paper we focus on Unruh
radiation3 – the radiation seen by an observer moving
with a constant acceleration through vacuum. The orig-
inal methods used to calculate these effects used quan-
tum field theory at a level which is beyond most under-
graduates or beginning graduate students. In reference
1, Hawking gave a heuristic picture for the radiation in
terms of “tunneling” of virtual particles across the hori-
zon. After a span of twenty five years, mathematical
details were added to this picture4–7. In these works, the
action for a particle which crosses the horizon of some
spacetime (e.g., the Schwarzschild spacetime for the case
of Hawking radiation) was calculated and found to have
an imaginary part coming from a contour integration.
The exponential of this imaginary piece was compared
to a Boltzmann distribution, which allowed one to deter-
mine the temperature of the radiation. The simplicity of
this gravitational WKB method makes it easy to calcu-
late Hawking like radiation for the case of other metrics

(e.g. Reissner–Nordstrom6, de Sitter8–11, Kerr and Kerr–
Newmann12,13, Unruh14). Additionally, one could easily
incorporate tunneling particles with different spins15 and
one could (in a simplified way) begin to take into account
back reaction effects on the metric6,7,16.

In reference 17, Unruh radiation is derived using purely
quantum mechanical arguments. However, the reader
needs to know the quantized radiation field, and the
mathematical steps in the derivation are more involved as
compared to the approach presented here. In comparison
with reference 17, the gravitational WKB–like method is
mathematically simple while at the same time it provides
a clear physical picture for the origins of the radiation.
In this article, this WKB–like method is presented in a
pedagogical manner for the case of the Rindler spacetime
(the metric seen by an observer who undergoes constant
proper acceleration) and Unruh radiation. The reason
for choosing Rindler spacetime is that it is the simplest
spacetime in which this effect occurs. Furthermore, be-
cause of the strong equivalence principle (i.e., locally, a
constant acceleration and a gravitational field are obser-
vationally equivalent), the Unruh radiation from Rindler
spacetime is the prototype of this type of effect. Also, of
all these effects – Hawking radiation, Hawking–Gibbons
radiation – Unruh radiation has the best prospects for
being observed experimentally18–21.

This derivation of Unruh radiation draws together
many different areas of study: (i) classical mechanics via
the Hamilton–Jacobi equations; (ii) relativity via the use
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of the Rindler metric; (iii) relativistic field theory through
the Klein–Gordon equation in curved backgrounds; (iv)
quantum mechanics via the use of the WKB–like method
applied to gravitational backgrounds; (v) thermodynam-
ics via the use of the Boltzmann distribution to ex-
tract the temperature of the radiation; (vi) mathematical
methods in physics via the use of contour integrations to
evaluate the imaginary part of the action of the particle
that crosses the horizon. Thus this single problem serves
to show students how the different areas of physics are
interconnected.

Also, through this example we will highlight some sub-
tle features of the Rindler metric and the WKB method
which are usually overlooked. In particular, we show
that the gravitational WKB amplitude has a contribution
coming from a change of the time coordinate from cross-
ing the horizon11. This temporal contribution is never
encountered in ordinary quantum mechanics, where time
acts as a parameter rather than a coordinate.

II. RINDLER SPACETIMES

In this section we introduce and discuss some relevant
features of Rindler spacetime – the spacetime seen by
an observer moving with constant proper acceleration
through Minkowski spacetime. The Rindler metric can
be obtained by starting with the Minkowski metric, i.e.,
ds2 = −dt2 + dx2 + dy2 + dz2, where we have set c = 1,
and transforming to the coordinates of the accelerating
observer. We take the acceleration to be along the x–
direction, thus we only need to consider a 1+1 dimen-
sional Minkowski spacetime

ds2 = −dt2 + dx2 . (1)

Using the Lorentz transformations (LT) of special rela-
tivity, the worldlines of an accelerated observer moving
along the x–axis in empty spacetime can be related to
Minkowski coordinates t, x according to the following
transformations

t = (a−1 + xR) sinh(atR)

x = (a−1 + xR) cosh(atR) ,
(2)

where a is the constant, proper acceleration of the
Rindler observer measured in his instantaneous rest
frame. One can show that the acceleration associated
with the trajectory of (2) is constant since aµa

µ =
(d2xµ/dt

2
R)2 = a2 with xR = 0. The trajectory of (2)

can be obtained using the definitions of four–velocity and
four–acceleration of the accelerated observer in his in-
stantaneous inertial rest frame22. Another derivation of
(2) uses a LT to relate the proper acceleration of the
non–inertial observer to the acceleration of the inertial
observer23. The text by Taylor and Wheeler24 also pro-
vides a discussion of the Rindler observer.

The coordinates xR and tR, when parametrized and
plotted in a spacetime diagram whose axes are the

Minkowski coordinates x and t, result in the familiar hy-
perbolic trajectories (i.e., x2 − t2 = a−2) that represent
the worldlines of the Rindler observer.

Differentiating each coordinate in (2) and substituting
the result into (1) yields the standard Rindler metric

ds2 = −(1 + axR)2dt2R + dx2
R . (3)

When xR = − 1
a , the determinant of the metric given by

(3), det(gab) ≡ g = −(1+axR)2, vanishes. This indicates
the presence of a coordinate singularity at xR = − 1

a ,
which can not be a real singularity since (3) is the result
of a global coordinate transformation from Minkowski
spacetime. The horizon of the Rindler spacetime is given
by xR = − 1

a .
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FIG. 1: Trajectory of the Rindler observer as seen by the
observer at rest.

In the spacetime diagram shown above, the horizon for
this metric is represented by the null asymptotes, x = ±t,
that the hyperbola given by (2) approaches as x and t
tend to infinity25. Note that this horizon is a particle
horizon, since the Rindler observer is not influenced by
the whole spacetime, and the horizon’s location is ob-
server dependent26.

One can also see that the transformations (2) that
lead to the Rindler metric in (3) only cover a quarter
of the full Minkowski spacetime, given by x− t > 0 and
x + t > 0. This portion of Minkowski is usually labeled
Right wedge. To recover the Left wedge, one can mod-
ify the second equation of (2) with a minus sign in front
of the transformation of the x coordinate, thus recover-
ing the trajectory of an observer moving with a negative
acceleration. In fact, we will show below that the coor-
dinates xR and tR double cover the region in front of the
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horizon, xR = − 1
a . In this sense, the metric in (3) is

similar to the Schwarzschild metric written in isotropic
coordinates. For further details, see reference 26.

There is an alternative form of the Rindler metric that
can be obtained from (3) by the following transformation:

(1 + a xR) =
√
|1 + 2 a xR′ | . (4)

Using the coordinate transformation given by (4) in
(3), we get the following Schwarzschild–like form of the
Rindler metric

ds2 = −(1 + 2 a xR′)dt2R′ + (1 + 2 a xR′)−1dx2
R′ . (5)

If one makes the substitution a → GM/x2
R′ one can see

the similarity to the usual Schwarzschild metric. The
horizon is now at xR′ = −1/2a and the time coordinate,
tR′ , does change sign as one crosses xR′ = −1/2a. In ad-
dition, from (4) one can see explicitly that as xR′ ranges
from +∞ to −∞ the standard Rindler coordinate will go
from +∞ down to xR = −1/a and then back out to +∞.

The Schwarzschild–like form of the Rindler metric
given by (5) can also be obtained directly from the 2–
dimensional Minkowski metric (1) via the transforma-
tions

t =

√
1 + 2axR′

a
sinh(atR′)

x =

√
1 + 2axR′

a
cosh(atR′)

(6)

for xR′ ≥ − 1
2a , and

t =

√
|1 + 2axR′ |

a
cosh(atR′)

x =

√
|1 + 2axR′ |

a
sinh(atR′)

(7)

for xR′ ≤ − 1
2a . Note that imposing the above conditions

on the coordinate xR′ fixes the signature of the metric,
since for xR′ ≤ − 1

2a or 1 + 2axR′ ≤ 0 the metric signa-
ture changes to (+,−), while for 1+2axR′ ≥ 0 the metric
has signature (−,+). Thus one sees that the crossing of
the horizon is achieved by the crossing of the coordinate
singularity, which is precisely the tunneling barrier that
causes the radiation in this formalism. As a final com-
ment, we note that the determinant of the metric for (3)
is zero at the horizon xR = −1/a, while the determinant
of the metric given by (5) is 1 everywhere.

III. THE WKB/TUNNELING METHOD

In this section we study a scalar field placed in a back-
ground metric. Physically, these fields come from the
quantum fields, i.e., vacuum fluctuations, that permeate
the spacetime given by the metric. In addition, as shown
in reference 27, the vacuum field fluctuations obey the
principle of equivalence, which supports this approach.

By applying the WKB method to this scalar field, we
find that the phase of the scalar field develops imaginary
contributions upon crossing the horizon. The exponen-
tial of these imaginary contributions is interpreted as a
tunneling amplitude through the horizon. By assuming a
Boltzmann distribution and associating it with the tun-
neling amplitude, we obtain the temperature of the radi-
ation.

Writing the scalar field in terms of a phase factor as

φ = φ0e
i
~S(t,~x), the Hamilton–Jacobi equations for the

action S of the field φ in the gravitational background
given by the metric gµν are (see Appendix I for details)

gµν∂ν(S)∂µ(S) +m2 = 0 . (8)

Now for stationary spacetimes (technically spacetimes
for which one can define a time–like Killing vector that
yields a conserved energy, E) the action S can be split
into a time and space part, i.e., S(t, ~x) = Et+ S0(~x).

If S0 has an imaginary part, this then gives the tun-
neling rate, ΓQM , via the standard WKB formula. The
WKB approximation tells us how to find the transmis-
sion probability in terms of the incident wave and trans-
mitted wave amplitudes. The transition probability is in
turn given by the exponentially decaying part of the wave
function over the non–classical (tunneling) region29

ΓQM ∝ e−Im 1
~
∮
pxdx . (9)

The tunneling rate given by (9) is just the lowest order,
quasiclassical approximation to the full non–perturbative
Schwinger30 rate.37

In most cases (with an important exception that we
will discuss in appendix II), pout and pin have the same
magnitude but opposite signs. Thus ΓQM will receive
equal contributions from the ingoing and outgoing parti-
cles, since the sign difference between pout and pin will be
compensated for by the minus sign that is picked up in
the pin integration due to the fact that the path is being
traversed in the backward x-direction. In all quantum
mechanical tunneling problems that we are aware of this
is the case: the tunneling rate across a barrier is the same
for particles going right to left or left to right. For this
reason, the tunneling rate (9) is usually written as29

ΓQM ∝ e∓2Im 1
~
∫
pout,inx dx , (10)

In (10) the − sign goes with poutx and the + sign with
pinx .

There is a technical reason to prefer (9) over (10).
As was remarked in references 32–34, equation (9) is
invariant under canonical transformations, whereas the
form given by (10) is not. Thus the form given by (10)
is not a proper observable. Moreover, in appendix II,
we will show an example of the WKB method for the
Schwarzschild spacetime in Painlevé-Gulstrand coordi-
nates, and we will find that the two formulas, (9) and
(10), are not numerically equivalent.

However, for the case of the gravitational WKB prob-
lem, equation (10) only gives the imaginary contribution
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to the total action coming from the spatial part of the
action. In addition, there is a temporal piece, E∆t, that
must be added to the total imaginary part of the action to
obtain the tunneling rate. This temporal piece originates
from an imaginary change of the time coordinate as the
horizon is crossed. We will explicitly show how to account
for this temporal piece in the next section, where we ap-
ply the WKB method to the Rindler spacetime. This
imaginary part of the total action coming from the time
piece is a unique feature of the gravitational WKB prob-
lem. Therefore, for the case of the gravitational WKB
problem, the tunneling rate is given by

Γ ∝ e− 1
~ [Im(

∮
pxdx)−EIm(∆t)] . (11)

In order to obtain the temperature of the radiation, we
assume a Boltzmann distribution for the emitted parti-
cles

Γ ∝ e−ET , (12)

where E is the energy of the emitted particle, T is the
temperature associated with the radiation, and we have
set Boltzmann’s constant, kB , equal to 1. Eq. (12) gives
the probability that a system at temperature T occupies
a quantum state with energy E. One weak point of this
derivation is that we had to assume a Boltzmann distri-
bution for the radiation while the original derivations1,3

obtain the thermal spectrum without any assumptions.
Recently, this shortcoming of the tunneling method has
been addressed in reference 35, where the thermal spec-
trum was obtained within the tunneling method using
density matrix techniques of quantum mechanics.

By equating (12) and (11), we obtain the following
formula for the temperature T

T =
E~

Im
(∮

pxdx
)
− EIm(∆t)

. (13)

IV. UNRUH RADIATION VIA
WKB/TUNNELING

We now apply the above method to the alternative
Rindler metric previously introduced. For the 1 + 1
Rindler spacetimes, the Hamilton–Jacobi equations (H–
J) reduce to gtt∂tS∂tS + gxx∂xS∂xS + m2 = 0. For the
Schwarzschild–like form of Rindler given in (5) the H–J
equations are

− 1

(1 + 2 a xR′)
(∂tS)2 + (1 + 2 a xR′)(∂xS)2 +m2 = 0 .

(14)
Now splitting up the action S as S(t, ~x) = Et+ S0(~x)

in (14) gives

− E

(1 + 2 a xR′)2
+(∂xS0(xR′))2 +

m2

1 + 2 a xR′
= 0 . (15)

From (15), S0 is found to be

S±0 = ±
∫ ∞
−∞

√
E2 −m2(1 + 2 a xR′)

1 + 2 a xR′
dxR′ . (16)

In (16), the + sign corresponds to the ingoing particles
(i.e., particles that move from right to left) and the− sign
to the outgoing particles (i.e., particles that move left to
right). Note also that (16) is of the form S0 =

∫
px dx,

where px is the canonical momentum of the field in the
Rindler background. The Minkowski spacetime expres-
sion for the momentum is easily recovered by setting
a = 0, in which case one sees that px =

√
E2 −m2.

From (16), one can see that this integral has a pole
along the path of integration at xR′ = − 1

2a . Using a
contour integration gives an imaginary contribution to
the action. We will give explicit details of the contour
integration since this will be important when we try to
apply this method to the standard form of the Rindler
metric (3) (see Appendix III for the details of this cal-
culation). We go around the pole at xR′ = − 1

2a us-
ing a semi–circular contour which we parameterize as
xR′ = − 1

2a + εeiθ, where ε � 1 and θ goes from 0 to
π for the ingoing path and π to 0 for the outgoing path.
These contours are illustrated in the figure below. With
this parameterization of the path, and taking the limit
ε→ 0, we find that the imaginary part of (16) for ingoing
(+) particles is

S+
0 =

∫ π

0

√
E2 −m2εeiθ

2aεeiθ
iεeiθdθ =

i π E

2a
, (17)

and for outgoing (−) particles, we get

S−0 = −
∫ 0

π

√
E2 −m2εeiθ

2aεeiθ
iεeiθdθ =

i π E

2a
. (18)

 

 

 

 

 

 

   

   

   

 

 

(i) 

(ii) 

FIG. 2: Contours of integration for (i) the ingoing and (ii)
the outgoing particles.

In order to recover the Unruh temperature, we need to
take into account the contribution from the time piece
of the total action S(t, ~x) = Et+ S0(~x), as indicated by
the formula of the temperature, (13), found in the previ-
ous section. The transformation of (6) into (7) indicates
that the time coordinate has a discrete imaginary jump
as one crosses the horizon at xR′ = − 1

2a , since the two
time coordinate transformations are connected across the
horizon by the change tR′ → tR′ − iπ

2a , that is,

sinh(atR′)→ sinh

(
atR′ − iπ

2

)
= −i cosh(atR′) .
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Note that as the horizon is crossed, a factor of i comes
from the term in front of the hyperbolic function in (6),
i.e.,

√
1 + 2axR′ → i

√
|1 + 2axR′ | ,

so that (7) is recovered.
Therefore every time the horizon is crossed, the to-

tal action S(t, ~x) = S0(~x) + Et picks up a factor of
E∆t = − iπE2a . For the temporal contribution, the direc-
tion in which the horizon is crossed does not affect the
sign. This is different from the situation for the spatial
contribution. When the horizon is crossed once, the total
action S(t, ~x) gets a contribution of E∆t = − iEπ2a , and

for a round trip, as implied by the spatial part
∮
pxdx,

the total contribution is E∆ttotal = − iEπa . So using the
equation for the temperature (13) developed in the pre-
vious section, we obtain

TUnruh =
E~

πE
a + πE

a

=
~a
2π

, (19)

which is the Unruh temperature. The interesting feature
of this result is that the gravitational WKB problem has
contributions from both spatial and temporal parts of the
wave function, whereas the ordinary quantum mechani-
cal WKB problem has only a spatial contribution. This
is natural since time in quantum mechanics is treated as
a distinct parameter, separate in character from the spa-
tial coordinates. However, in relativity time is on equal
footing with the spatial coordinates.

V. CONCLUSION

We have given a derivation of Unruh radiation in terms
of the original heuristic explanation as tunneling of vir-
tual particles tunneling through the horizon1. This tun-
neling method can easily be applied to different space-
times and to different types of virtual particles. We chose
the Rindler metric and Unruh radiation since, because
of the local equivalence of acceleration and gravitational
fields, it represents the prototype of all similar effects
(e.g. Hawking radiation, Hawking–Gibbons radiation).

Since this derivation touches on many different ar-
eas – classical mechanics (through the H–J equations),
relativity (via the Rindler metric), relativistic field the-
ory (through the Klein–Gordon equation in curved back-
grounds), quantum mechanics (via the WKB method
for gravitational fields), thermodynamics (via the Boltz-
mann distribution to extract the temperature), and
mathematical methods (via the contour integration to
obtain the imaginary part of the action) – this single
problem serves as a reminder of the connections between
the different areas of physics.

This derivation also highlights several subtle points
regarding the Rindler metric and the WKB tunneling
method. In terms of the Rindler metric, we found that
the different forms of the metric (3) and (5) do not cover

the same parts of the full spacetime diagram. Also, as
one crosses the horizon, there is an imaginary jump of
the Rindler time coordinate as given by comparing (6)
and (7).

In addition, for the gravitational WKB problem, Γ has
contributions from both the spatial and temporal parts
of the action. Both these features are not found in the
ordinary quantum mechanical WKB problem.

As a final comment, note that one can define an ab-
sorption probability (i.e., Pabs ∝ |φin|2) and an emission
probability (i.e., Pemit ∝ |φout|2). These probabilities
can also be used to obtain the temperature of the radia-
tion via the “detailed balance method”5

Pemit
Pabs

= e−E/T .

Using the expression of the field φ = φ0e
i
~S(t,~x), the

Schwarzschild–like form of the Rindler metric given in
(5), and taking into account the spatial and temporal
contributions gives an an absorption probability of

Pabs ∝ e
πE
a −

πE
a = 1

and an emission probability of

Pemit ∝ e−
πE
a −

πE
a = e−

2πE
a .

The first term in the exponents of the above probabili-
ties corresponds to the spatial contribution of the action
S, while the second term is the time piece. When using
this method, we are not dealing with a directed line inte-
gral as in (9), so the spatial parts of the absorption and
emission probability have opposite signs. In addition,
the absorption probability is 1, which physically makes
sense – particles should be able to fall into the horizon
with unit probability. If the time part were not included
in Pabs, then for some given E and a one would have

Pabs ∝ e
πE
a > 1, i.e., the probability of absorption would

exceed 1 for some energy. Thus for the detailed balance
method the temporal piece is crucial to ensure that one
has a physically reasonable absorption probability.
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Appendix I: The Hamilton–Jacobi equations

The Hamilton–Jacobi equations may be derived from the
Klein–Gordon equation in the following manner. The
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Klein–Gordon (KG) equation for a scalar field φ of mass
m, placed in a background metric gµν is(

1√
−g

∂µ(
√
−ggµν∂ν)− m2c2

~2

)
φ = 0 , (20)

where c is the speed of light and ~ is Planck’s con-
stant. For Minkowski spacetime, the above reduces to
the free Klein–Gordon equation, i.e., (�−m2c2/~2)φ =
(−∂2/c2∂t2 +∇2 −m2c2/~2)φ = 0.

In using a scalar field, we are following the original
works1,3. Despite the fact that, absent the hypotheti-
cal Higgs boson, there are no known fundamental scalar
fields, the derivation with spinor or vector particles would
only add the complication of having to carry around
spinor or Lorentz indices without adding to the basic
understanding of the phenomenon. Using the WKB ap-
proach presented here it is straightforward to do the cal-
culation using spinor15 or vector particles.

Setting the speed of light c equal to 1, multiplying (20)
by −~ and using the product rule, (20) becomes

−~2

√
−g

[
(∂µ
√
−g)gµν∂νφ+

√
−g(∂µg

µν)∂νφ+

√
−ggµν∂µ∂νφ

]
+m2φ = 0 .

(21)

The above equation can be simplified using the fact that
the covariant derivative of any metric g vanishes

∇αgµν = ∂αg
µν + Γµαβg

βν + Γναβg
µβ = 0 , (22)

where Γµαβ is the Christoffel connection. All the metrics

that we consider here are diagonal so Γµαβ = 0, for µ 6=
α 6= β. It can also be shown that

Γµµγ = ∂γ(ln
√
−g) =

∂γ
√
−g√
−g

. (23)

Using (22) and (23), the term ∂µg
µν in (21) can be rewrit-

ten as

∂µg
µν = −Γµµγg

γν − Γνµρg
µρ = −∂γ

√
−g√
−g

gγν , (24)

since the harmonic condition is imposed on the metric
gµν , i.e., Γνµρg

µρ = 0. Thus (21) becomes

− ~2gµν∂µ∂νφ+m2φ = 0 . (25)

We now express the scalar field φ in terms of its action
S = S(t, ~x)

φ = φ0e
i
~S(t,~x) , (26)

where φ0 is an amplitude28 not relevant for calculating
the tunneling rate. Plugging this expression for φ into
(25), we get

− ~gµν(∂µ(∂ν(iS))) + gµν∂ν(S)∂µ(S) +m2 = 0 . (27)

Taking the classical limit, i.e., letting ~ → 0, we obtain
the Hamilton–Jacobi equations for the action S of the
field φ in the gravitational background given by the met-
ric gµν ,

gµν∂ν(S)∂µ(S) +m2 = 0 . (28)

Appendix II: Hawking radiation from the
Painlevé–Gulstrand form of the Schwarzschild

spacetime

The Painlevé–Gulstrand form of the Schwarzschild space-
time is obtained by transforming the Schwarzschild time
t to the Painlevé–Gulstrand time t′

dt = dt′ −

√
2M
r dr

1− 2M
r

. (29)

Applying the above transformation to the Schwarzshild
metric gives the Painlevé–Gulstrand form of the
Schwarzschild spacetime

ds2 = −
(

1− 2M

r

)
dt′

2
+ 2

√
2M

r
dr dt′ + dr2 . (30)

The time is transformed, but all the other coordinates
(r, θ, φ) are the same as the Schwarzschild coordinates.
If we use the metric in (30) to calculate the spatial part
of the action as in (35) and (16), we obtain

S0 = −
∫ ∞
−∞

dr

1− 2M
r

√
2M

r
E (31)

±
∫ ∞
−∞

dr

1− 2M
r

√
E2 −m2

(
1− 2M

r

)
. (32)

Each of these two integrals has an imaginary contribu-
tion of equal magnitude, as can be seen by performing a
contour integration. Thus one finds that for the ingoing
particle (the + sign in the second integral) one has a zero
net imaginary contribution, while from for the outgoing
particle (the − sign in the second integral) there is a non–
zero net imaginary contribution. Therefore in this case
there is clearly a difference by a factor of two between
using (9) and (10) which comes exactly because the tun-
neling rates from the spatial contributions in this case
do depend upon the direction in which the barrier (i.e.,
the horizon) is crossed. The Schwarzcshild metric has a
similar temporal contribution as for the Rindler metric36.
The Painlevé–Gulstrand form of the Schwarzschild met-
ric actually has two temporal contributions: (i) one com-
ing from the jump in the Schwarzschild time coordinate
similar to what occurs with the Rindler metric in (6)
and (7); (ii) the second temporal contribution coming
from the transformation between the Schwarzschild and
Painlevé–Gulstrand time coordinates in (29). If one in-
tegrates equation (29), one can see that there is a pole
coming from the second term. One needs to take into
account both of these time contributions in addition to
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the spatial contribution, to recover the Hawking tem-
perature. Only by adding the temporal contribution to
the spatial part from (9), does one recover the Hawking
temperature36 T = ~

8πM . Thus for both reasons – canon-
ical invariance and to recover the temperature – it is (9)
which should be used over (10), when calculating ΓQM .
In ordinary quantum mechanics, there is never a case –
as far as we know – where it makes a difference whether
one uses (9) or (10). This feature – dependence of the
tunneling rate on the direction in which the barrier is tra-
verse – appears to be a unique feature of the gravitational
WKB problem. So in terms of the WKB method as ap-
plied to the gravitational field, we have found that there
are situations (e.g. Schwarzschild spacetime in Painlevé–
Gulstrand coordinates) where the tunneling rate depends
on the direction in which barrier is traversed so that (9)
over (10) are not equivalent and will thus yield different
tunneling rates, Γ.

Appendix III: Unruh radiation from the
standard Rindler metric

For the standard form of the Rindler metric given by (3),
the Hamilton–Jacobi equations become

− 1

(1 + a xR)2
(∂tS)2 + (∂xS)2 +m2 = 0 . (33)

After splitting up the action as S(t, ~x) = Et+ S0(~x), we
get

− E

(1 + a xR)2
+ (∂xS0(xR))2 +m2 = 0 . (34)

The above yields the following solution for S0

S±0 = ±
∫ ∞
−∞

√
E2 −m2 (1 + a xR)2

1 + a xR
dxR , (35)

where the +(−) sign corresponds to the ingoing (outgo-
ing) particles.

Looking at (35), we see that the pole is now at xR =
−1/a and a naive application of contour integration ap-
pears to give the results ± i π Ea . However, this cannot
be justified since the two forms of the Rindler metric
– (3) and (5) – are related by the simple coordinate
transformation (4), and one should not change the value
of an integral by a change of variables. The resolu-
tion to this puzzle is that one needs to transform not
only the integrand but the path of integration, so apply-
ing the transformation (4) to the semi–circular contour

xR′ = − 1
2a+εeiθ gives xR = − 1

a+
√
ε
a e

iθ/2. Because eiθ is

replaced by eiθ/2 due to the square root in the transfor-
mation (4), the semi–circular contour of (17) is replaced
by a quarter–circle, which then leads to a contour inte-
gral of iπ2 ×Residue instead of iπ ×Residue. Thus both
forms of Rindler yield the same spatial contribution to
the total imaginary part of the action.
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