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EXTREMES OF LÉVY PROCESSES WITH LIGHT TAILS

MICHAEL BRAVERMAN

Abstract. Let X(t) t ≥ 0 , X(0) = 0, be a Lévy process with spectral Lévy measure ρ. Assuming
that ρ((−∞, 0)) < ∞ and the right tail of ρ is light, we show that in the presence of Brownian
component

P

„

sup
0≤t≤1

X(t) > u

«

∼ P (X(1) > u)

as u → ∞. In the absence of Brownian component these tails are not always comparable. An
example of Lévy process of the type X(t) = B(t) + Z(t), where B(t) is a Brownian motion and
Z(t) is a compound Poisson process with positive jumps, for which these tails are incomparable
is also given.

1. Introduction

The problem of finding asymptotics of the probabilities P (supt∈T X(t) > u) as u→ ∞, where
X(t) is a stochastic process, is a classical one. It was intensively studied, but many unsolved
questions still remain.

In what follows T = [0, 1] and X(t) is a Lévy process, X(0) = 0. Its characteristic function is
given by the well known Lévy–Khintchin formula

E exp (isX(t)) = exp (tψ(s)) ,

where

ψ(s) = −ibt− σ2s2

2
+

∫ ∞

−∞

(
eisx − 1 − isx1(|x| ≤ 1)

)
ρ(dx) .(1.1)

Here b ∈ R, σ ≥ 0 and ρ is a Borel measure such that
∫∞
−∞ min{1, x2}ρ(dx) < ∞ (the Lévy

measure).
If σ is strictly positive, then the process can be represent as a sum of independent Brownian

motion B(t) and another Lévy process X1(t). In the case ρ(R) < ∞ the last process is a
compound Poisson. So, if the Lévy measure is finite, we can write

X(t) = σB(t) + Z(t) − bt, t ≥ 0,(1.2)

where Z(t) is a compound Poisson process with the parameter λ = ρ(R). It means that

Z(t) =

N(t)∑

k=1

Xk ,(1.3)

where N(t) is a Poisson process with parameter λ independent of iid random variables {Xk}∞k=1
(the jumps of the process).

Key words and phrases. Poisson process, Brownian motion, supremum.
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One of the approaches to the mentioned problem is to establish a relation

P

(
sup

0≤t≤1
X(t) > u

)
∼ aP (X(1) > u) as u→ ∞(1.4)

where a is a constant. Then Lévy-Khinchin formula allows to derive the asymptotics of the right
hand side probabilities by powerful analytical tools.

The first result of type (1.4) is Lévy theorem, which states that for Brownian motion B(t) , t ≥ 0
the following holds:

P

(
sup

0≤t≤1
B(t) > u

)
= 2P (B(1) > u)(1.5)

for all u > 0. During recent years (1.4) was established for various classes of Lévy processes (see
[1]–[6], [9], [11], [12]). One of the methods used in these studies is to represent the process in
the form X(t) = Y (t) +Z(t), where Y (t) and Z(t) are independent, Z(t) is a compound Poisson
process and Y (t) is a Lévy process for which E exp(c|Y (t)|) < ∞ for each c > 0. Assuming
the distribution of the jumps of Z(t) to be heavy, (subexponential or exponential), one first
establishes (1.4) for this process. Such distributions possess the following property: if X and
Y are independent random variables, the tail of X is heavy and P (Y > u) = o(P (X > u)) as
u → ∞, then P (X + Y > u) ∼ bP (X > u) as u → ∞, where b is a constant. Using it, on can
pass from Z(t) to X(t) (see, for example, [6] and [11] and references threin).

But such approach does not work if jumps have a light tail in the sense of [4]. So, other methods
are called for.

In what follows C denotes a generic constant which value may vary from line to line. As
usually, FY stands for the disrtibution of a random variable Y . Througout the paper {Xk}∞k=1
are iid random variables, Sk = X1 + · · · +Xk, k ≥ 1, S0 = 0.

2. Results

We say that the distribution of a random variable X has light right tail if one of the following
conditions holds:

P (X1 > u) > 0 for all u > 0 and lim
u→∞

P (X1 > u)

P (X1 +X2 > u)
= 0 ,(2.1)

where X1 and X2 are independent copies of X, or

X ≤ A a.s. and P (X > α) > 0(2.2)

for positive constants A and α.
It is known that X has a light tail if and only if X+ := max{X, 0} has it (see [4], Lemma 2).
In what follows we assume that

ρ((0,∞)) > 0(2.3)

and

ρ((−∞, 0)) <∞ .(2.4)

Clearly, (2.3) implies ρ((a,∞)) > 0 for some positive a. The third assumption is:

for some a > 0 the disribution function Fρ(x) = 1 − ρ((min{x, a},∞))

ρ((a,∞))
has light tail.(2.5)

Our main result is the following
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Theorem 2.1. Let σ > 0 and (2.3)–(2.5) hold. Then for each b ∈ R

lim
u→∞

P (sup0≤t≤1X(t) > u)

P (X(1) > u)
= 1 .(2.6)

It should be mentioned that under the additional condition:

lim
u→∞

1 − Fρ(x+ c)

1 − Fρ(x)
= e−αc for any real c and a constant α > 0,

and whithout assumption (2.4), this statement was proved in [5] and [1].
In the case σ = 0 and ρ(R) <∞ the process is compound Poisson with drift. It is known that

(2.6) holds for such processes with b ≤ 0, but this limit not always exists if b > 0 (see [4]). Our
next result gives a condition under which this relation holds for b > 0 in the absence of Brownian
component.

Assume that P (X > u) > 0 for all u > 0 and

lim
u→∞

P (X > u+ a)

P (X > u)
= 0 for a constant a > 0.(2.7)

For independent copies X1 and X2 of X we have P (X1 +X2 > u) ≥ P (X1 > u− a)P (X2 > a),
which implies (2.1). Hence the right tail of X is light.

If the tail of X is given in the form

1 − FX = exp

(
−
∫ u

0
h(v)dv

)
, u > u0 ,(2.8)

where u0 ≥ 0 is a constant and h is a positive function on (u0,∞) such that

h(v) → ∞ as v → ∞,(2.9)

then (2.7) holds and, therefore, X has a light tail.

Theorem 2.2. Assume (2.3)–(2.5) hold, σ = 0 and the function Fρ from (2.5) can be represented
in the form (2.8) with (2.9). Assume also that the function h is continuous, increasing and
satisfies the condition

h(v + b) ≤ exp

(
bh(v)

8

)
(2.10)

for v large enough. Then (2.6) holds for each b ∈ R.

Condition (2.10) means that the function h(v) cannot grow too fast as v → ∞. If h(v) =
exp(g(v)) and g(v+ a) ≤ C(a)g(v) for positive a and v, then (2.10) holds. Another examples are
h(v) = vc, and h(v) = [log(v + 1)]c, where c is a positive constant. In can be easily verified that
X1 with a normal distiribution satisfies the conditions of the theorem. Therefore, (2.6) holds for
compound Poisson processes with normal jumps and negative drifts.

As it was shown in [4], relation (1.4) does not hold if X(t) is a compound Poisson process with
negative drift and jumps having a lattice distribution bounded from above. The following result
shows that the condition of boundedness can be ommited.

Theorem 2.3. Let (1.2) hold with σ = 0, and jumps Xk having a lattice distribution with a
minimal step a. Assume that

P (X1 > na) > 0 for all n ∈ N and lim
n→∞

P (X1 > (n+ 1)a)

P (X1 > na)
= 0 .(2.11)
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Then for each b > 0

lim sup
u→∞

P
(
sup0≤t≤1X(t) > u

)

P (X(1) > u)
= ∞(2.12)

and

lim inf
u→∞

P
(
sup0≤t≤1 X(t) > u

)

P (X(1) > u)
= 1 .(2.13)

Remark 2.4. One can obtain a lattice distribution by a ”discretization”. Namely, for a random
variable X and a fixed a > 0 put

X(a) =

∞∑

n=−∞

naI(na≤X<(n+1)a) .

Assume now that the distribution of the jumps Xk satisfies (2.8)–(2.10). Denote by X
(a)
k the

discretizations of Xk, and by Z(a)(t) the corresponding compound Poisson process given by (1.3).

Let b > 0. Then for the process X(t) = Z(t) − bt we have (2.6), while for the process X(a)(t) =

Z(a)(t) − bt relations (2.14) and (2.15) hold. For example, it is true if the jumps Xk are normal.
The situation is different when the tail of jumps is ”heavy”, i.e. if

lim
u→∞

P (X1 > u+ a)

P (X1 > u)
= 1

for any a > 0. It is known that under this assumption (2.6) holds for the process X(t) (see [12]).

Because in this case the tail of ”discretized” jumps X
(a)
k is also heavy, (2.6) holds for the process

X(a)(t) = Z(a)(t) − bt also.

Theorems 2.1 and 2.3 show that sometimes the process Z(t) − bt does not satisfy (1.4), while
for the process (1.2) with σ > 0 relation (2.6) holds. Our last result states that a compound
Poisson process Z(t) may satisfy (2.6), while for the process X(t) = σB(t) + Z(t) relation (1.4)
does not hold. Clearly, if the jumps of Z(t) are positive, then its supremum over [0, 1] is Z(1).

Theorem 2.5. There is a compound Poisson process Z(t) with positive jumps such that for the
process (1.2) with σ > 0 and b = 0

lim sup
u→∞

P (sup0≤t≤1X(t) > u)

P (X(1) > u)
> 1(2.14)

and

lim inf
u→∞

P (sup0≤t≤1X(t) > u)

P (X(1) > u)
= 1 .(2.15)

3. Auxiliary statements

Here we prove some statements that are used later .

Lemma 3.1. Let Z and W be random variables, P (Z > u) > 0 and P (W > u) > 0 for all
positive u, and one of the following conditions holds:

lim
u→∞

P (Z > u)

P (W > u)
= 1 ,(3.1)
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or

lim
u→∞

P (Z > u)

P (W > u)
= 0 .(3.2)

Let a random variable Y satisfy condition (2.7). If Y is independent of Z and W , then

lim
u→∞

P (Y + Z > u)

P (Y +W > u)
= 1

if (3.1) holds, and

lim
u→∞

P (Y + Z > u)

P (Y +W > u)
= 0

if (3.2) holds.

Proof. If (3.1) holds, then for a fixed ǫ > 0 we can find u0 > 0 such that

P (Z > u) ≤ (1 + ǫ)P (W > u)

for all u ≥ u0. Hence

P (Y + Z > u) ≤ (1 + ǫ)

∫ u−u0

−∞
P (W > u− t)FY (dt) + P (Y > u− u0)

≤ (1 + ǫ)P (Y +W > u) + P (Y > u− u0) .

We also have P (Y +W > u) ≥ P (Y > u− u0 − a)P (W > u0 + a). From here and (2.7)

lim sup
u→∞

P (Y + Z > u)

P (Y +W > u)
≤ (1 + ǫ) .

But by the same way

lim sup
u→∞

P (Y +W > u)

P (Y + Z > u)
≤ (1 + ǫ) .

Letting ǫ→ 0 we get the first needed relation. The second one can be obtained similarly. �

It is known that for compound Poisson process with light tail relation (1.4) holds with a = 1
(see Theorem 1 from [4]). Because the random variable Y = B(1) satisfies (2.7), we come to the
following statement.

Corollary 3.2. If the jumps of a compound Poisson process Z(t) have a light tail, and B(1) is
independent of this process, then

lim
u→∞

P (B(1) + sup0≤t≤1 Z(t) > u)

P (B(1) + Z(1) > u)
= 1 .(3.3)

Lemma 3.3. Let random variables {Xk}∞k=1 and Y be independent. Assume that the tail of Xk

is light and Y satisfies (2.7). Assume also that a ≤ α in the case (2.2). Then

lim
u→∞

P (Y + Sk > u)

P (Y + Sk+1 > u)
= 0

for all k = 1, 2, . . . .
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Proof. Fist we consider case (2.1). Then, according to Lemma 4 from [4]

lim
u→∞

P (Sk > u)

P (Sk+1 > u)
= 0(3.4)

and Lemma 3.1 leads to the needed conclusion.
Turn to case (2.2). Then Sk ≤ Ak and

P (Y + Sk > u) =

∫ Ak

−∞
P (Y > u− t)FSk

(dt) ,

P (Y + Sk+1 > u) =

∫ Ak

−∞
P (Y +X1 > u− t)FSk

(dt).

We have P (Y +X1 > u− t) ≥ P (Y > u− t−a)P (X1 > a), and P (X1 > a) > 0 because a ≤ α. It
follows from this estimate and (2.7) that for a fixed ǫ > 0 there is u0 > 0 such that if u− t > u0,
then

P (Y > u− t)

P (Y +X1 > u− t)
≤ ǫ .

But in the last integrals t ≤ Ak < u− u0, i.e. u− t > u0 for u large enough. For such u

P (Y + Sk > u)

P (Y + Sk+1 > u)
≤ ǫ .

Letting u→ ∞ and then ǫ→ 0 we obtain the lemma. �

The next statement plays an important role in the proof of Theorem 2.1.

Lemma 3.4. Assume random variables X and Y are independent and Y is symmetric. Then

P (X + |Y | > u) = 2P (X + Y > u) − P (X > u+ |Y |) .
for all u > 0 .

Proof. We have

P (X + |Y | > u) = P (X + Y > u) + P (X + Y ≤ u , X + |Y | > u) = P (X + Y > u)

+P (X > u , X + Y ≤ u) + P (X ≤ u , X + Y ≤ u , X + |Y | > u) .

Because of symmetry and independence

P (X > u , X + Y ≤ u) = P (X > u , Y ≤ u−X) = P (X > u , Y ≥ X − u) .

By the same reasons

P (X ≤ u , X + Y ≤ u , X + |Y | > u) = P (X ≤ u , Y ≤ u−X , |Y | > u−X)

= P (X ≤ u , Y ≤ u−X , −Y > u−X) = P (X ≤ u , Y > u−X)

= P (X ≤ u , X + Y > u) = P (X + Y > u) − P (X > u , X + Y > u) .

Inserting the last two relation in the first one we get

P (X + |Y | > u) = 2P (X + Y > u) + P (X > u , Y ≥ X − u) − P (X > u , Y > u−X)

= 2P (X + Y > u) − P (X > u , u−X < Y < X − u) .

Since the last probability is

P (X > u, |Y | < X − u) = P (X > u+ |Y |) ,
the lemma follows. �
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The following lemma will allow us to reduce the proofs of Theorems 2.1 and 2.2 to the case of
processes of type (1.2).

Lemma 3.5. Let

X(t) = X1(t) +X2(t) ,(3.5)

where Lévy processes X1(t) and X2(t) are independent, X2(t) is a subordinator with Lévy measure
ρ2 such that ρ2((a2,∞)) = 0, where a2 > 0 is a constant. Assume that ρ1((a1,∞)) > 0 for
a1 > a2, where ρ1 is the Lévy measure of X1(t). Assume also that X1(t) satisfies (2.6). Then
this relation holds for the process X(t).

Proof. Since X2(t) is a subordinator, then

P

(
sup

0≤t≤1
X(t) > u

)
≤ P

(
sup

0≤t≤1
X1(t) +X2(1) > u

)
(3.6)

≤
∫ u−A

−∞
P

(
sup

0≤t≤1
X(t) > u− v

)
FX2(1)(dv) + P (X2(1) > u−A) ,

where A is a positive constant. Because X1(t) satisfies (2.6), for a fixed ǫ > 0 there is A such
that the integral does not exceed

(1 + ǫ)P (X1(1) +X2(1) > u) = (1 + ǫ)P (X(1) > u) .

It is well known that the conditions ρ1((a1,∞)) > 0 and ρ2((a2,∞)) = 0 for a1 > a2 implies

P (X2(1) > u−A) = o (P (X1(1) > u))

for any positive A as u→ ∞ (see [8]). From here and (3.6)

lim sup
u→∞

P (sup0≤t≤1X(t) > u)

P (X(1) > u)
≤ (1 + ǫ)

for each ǫ > 0, and the lemma follows. �

Let b > 0 and Z(t) be defined by (1.3). Denote by Γk , k ≥ 1, the arrival times of Z(t) and put
Γ0 = 0. Let

τ = max{k : Γk < 1} .(3.7)

Let

m = min{k : P (Sk > b) > 0} ,(3.8)

and

ak = max

{
1 − (m+ 1) log k

k
, 0

}
.(3.9)

Put

Q(u) = P (Z(1) > u+ bΓτ ,Γτ ≤ aτ )(3.10)

Lemma 3.6. If Xk have a light tail, then for any b > 0

lim
u→∞

Q(u)

P (Z(1) > u+ b)
= 0 .(3.11)
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Proof. It can be easily verified that

Q(u) = λe−λ
∞∑

k=1

∫ ak

0

(λt)k−1

(k − 1)!
P (Sk > u+ bt)dt .

Fix an index M and denote

QM (u) = λe−λ
M∑

k=1

∫ ak

0

(λt)k−1

(k − 1)!
P (Sk > u+ bt)dt , Q(M)(u) = Q(u) −QM (u) .

It is clear that

P (Z(1) > u+ b) = e−λ
∞∑

k=1

λk

k!
P (Sk > u+ b)

and, therefore, for each k

P (Z(1) > u+ b) >
λk+m

(k +m)!
P (Sk+m > u+ b) >

λk+m

(k +m)!
P (Sm > b)P (Sk > u) .(3.12)

Since

QM (u) ≤ e−λ
M∑

k=1

λk

k!
P (Sk > u),

the last estimate and (3.4) imply

lim
u→∞

QM (u)

P (Z(1) > u+ b)
= 0 .

Further, denoting

δ(k, u) =
λ
∫ ak

0
(λt)k−1

(k−1)! P (Sk > u+ bt)dt

λk+m

(k+m)!P (Sk+m > u+ b)
,

we see that
Q(M)(u)

P (X(1) > u)
≤ sup

k>M
δ(k, u) ,

and

δ(k, u) ≤
(λak)k

k! P (Sk > u)
λk+m

(k+m)!P (Sk > u)P (Sm > b)
=

(k + 1) · · · (k +m)ak
k

λmP (Sm > b)
.

Hence

lim sup
u→∞

Q(u)

P (X(1) > u)
= lim sup

u→∞

Q(M)(u)

P (X(1) > u)
≤ sup

k>M

(k + 1) · · · (k +m)ak
k

λmP (Sm > b)
.

According to (3.9) (k + 1) · · · (k + m)ak
k → 0 as k → ∞. Hence, letting M → ∞ we come to

(3.11). �

We also will use the following well known estimate for the normal distribution. If Y is normal
with mean zero and variance one, then for all x > 1

1√
2π

(
1

x
− 1

x3

)
exp

(
−x

2

2

)
≤ P (Y > x) ≤ 1√

2π

1

x
exp

(
−x

2

2

)
.(3.13)
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4. Proof of Theorem 2.1

According to (2.4) we can represent our process in the form (3.5), and Lemma 3.5 shows that
it is enough to prove the theorem for the process of type (1.2).

If b < 0, then

P

(
sup

0≤t≤1
X(t) > u

)
≤ P

(
sup

0≤t≤1
[B(t) + Z(t)] > u+ b

)
.

So, (2.6) for b = 0 implies the same relation for b < 0. Hence, we may assume b ≥ 0 in the sequel.
Without loss of generality σ = 1.

Let τ be given by (3.7). Then

P

(
sup

0≤t≤1
X(t) > u

)
≤ P

(
sup

0≤t<Γτ

X(t) > u

)
+ P

(
sup

Γτ≤t≤1
X(t) > u

)

= A(u) + C(u) .

The theorem will follow from the next two equalities:

lim
u→∞

C(u)

P (X(1) > u)
= 1(4.1)

and

lim
u→∞

A(u)

P (X(1) > u)
= 0 .(4.2)

4.1. Proof of (4.1). Let B̃(t) be a Brownian motion independent of X(t). We have

C(u) = P

(
sup

Γτ≤t≤1

[
B(Γτ ) + Sτ − bt+ B̃(1 − t)

]
> u

)

≤ P
(
B(Γτ ) + Sτ − bΓτ + |B̃(1 − Γτ )| > u

)

because Lévy formula (1.5) can be written in the form

sup
0≤t≤1

B(t)
d
= |B(1)| .(4.3)

Applying Lemma 3.4 conditionally on Γτ and taking into account the relations

B(Γτ ) + B̃(1 − Γτ )
d
= B(1) and Sτ = Z(Γτ ) = Z(1) ,

we conclude that

C(u) ≤ 2P (B(1) + Z(1) > u+ bΓτ ) − P
(
B(Γτ ) + Z(1) > u+ bΓτ + |B̃(1 − Γτ )|

)
.(4.4)

To obtain (4.1) it is enough to prove the following

Lemma 4.1. For each b ≥ 0:

lim inf
u→∞

P
(
B(Γτ ) + Z(1) > u+ bΓτ + |B̃(1 − Γτ )|

)

P (B(1) + Z(1) > u+ b)
≥ 1 ,(4.5)
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and

lim
u→∞

P (B(1) + Z(1) > u+ bΓτ )

P (B(1) + Z(1) > u+ b)
= 1 .(4.6)

Proof of (4.5). Because

P
(
B(Γτ ) + Z(1) > u+ bΓτ + |B̃(1 − Γτ )|

)
≥ P

(
B(Γτ ) + Z(1) > u+ b+ |B̃(1 − Γτ )|

)
,

it is enough to establish (4.5) for b = 0.
Step 1. Fix a δ ∈ (0, 1). There is a positive constant D such that

P (|B(1)| < D) > 1 − δ .

Since

B̃(1 − t)
d
=

√
1 − tB(1) , 0 < t < 1 ,

we get for each t ∈ (0, 1) and k ∈ N

P
(
B(t) + Sk > u+ |B̃(1 − t)|

)
≥ P

(
B(t) + Sk > u+D

√
1 − t

)
P
(
|B̃(1 − t)| < D

√
1 − t

)

≥ (1 − δ)P
(
B(t) + Sk > u+D

√
1 − t

)
.

Integrating with respect to Γ-densities and summing up over k’s we obtain

P (X(Γτ ) > u+ |B̃(1 − Γτ )|)(4.7)

≥ (1 − δ)e−λ
∞∑

k=1

λk

(k − 1)!

∫ 1

0
P
(
B(t) + Sk > u+D

√
1 − t

)
tk−1dt

= (1 − δ)P (X(Γτ ) > u+D
√

1 − Γτ ) := (1 − δ)H(u) .

To prove (4.5) for b = 0 it is enough to establish that for each D > 0

lim inf
u→∞

H(u)

P (X(1) > u)
≥ 1 .(4.8)

Step 2. From now on α is a positive constant for which

P (X1 > α) > 0 ,(4.9)

and a is a constant such that

a > max

{
1,

1

α

}
.(4.10)

For fixed T ∈ N and u > 0, where 2 ≤ T < au, we divide N into three parts:

N1(T, u) = {k : k ≤ T} , N2(T, u) = {k : T < k ≤ [au]},(4.11)

N3(T, u) = {k : k > [au]} .
Using (4.36) and denoting by Gi(u) , i = 1, 2, 3, the sums of summands over Ni(T, u) we may
write

P (X(1) > u) = e−λP (B(1) > u) +G1(u) +G2(u) +G3(u) .(4.12)

It follows from Lemma 3.3 that for each T ∈ N

lim
u→∞

e−λP (B(1) > u) +G1(u)

P (X(1) > u)
= 0 .(4.13)
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Now we show that

lim
u→∞

G3(u)

P (X(1) > u)
= 0 .(4.14)

Indeed, according to Stirling formula

G3(u) ≤
λ[au]+1

([au] + 1)!
= exp (−a(u log u)(1 + g(u))) ,

where g(u) → 1 as u→ ∞.
On the other hand, for

k(u) = max
{

[u] ,
[u
α

]}

we have, once again applying Stirling formula,

P (X(1) > u) ≥ e−λ λ
k(u)

k(u)!
P (B(1) + Sk(u) > u)

≥ e−λ λ
k(u)

k(u)!
P (B(1) > 0)P (Xj > α , 1 ≤ j ≤ k(u))

= exp (−k(u) log k(u)(1 + g1(u)) ,

where, as above, g1(u) → 1 as u→ ∞. According to (4.10)

k(u) ≤ umax

{
1 ,

1

α

}
< au ,

and (4.14) follows from here and the last two estimates.
So, for each T ∈ N

lim
u→∞

G2(u)

P (X(1) > u)
= 1 .(4.15)

Step 3. Here we represent G2(u) as a sum of two quantities, such that the first of them is small
relative to P (X(1) > u). Denote

ga(k, u) = u− a log(min{k, u})(4.16)

and

I(k, u) = P (B(1) + Sk > u ,Sk ≤ ga(k, u)) .(4.17)

Put

G21(u) = e−λ

[au]∑

k=T+1

λk

k!
I(k, u) , G22(u) = G2(u) −G21(u) .(4.18)

Proposition 4.2. For u > T the following inequality holds:

G21(u)

P (X(1) > u)
≤ 2aCeα

2/2

λP (X1 > α)
T 1−αa ,(4.19)

where C is an absolute constant.
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Proof. We have, using (4.36),

G21(u)

P (X(1) > u)
≤ max

T+1≤k≤au

λk

k! I(k, u)
λk+1

(k+1)!P (B(1) + Sk+1 > u)
(4.20)

= max
T+1≤k≤au

(k + 1)I(k, u)

λP (B(1) + Sk+1 > u)
.

Further,
P (B(1) + Sk+1 > u) ≥ P (B(1) + Sk > u− α)P (X1 > α) ,

which yields
I(k, u)

P (B(1) + Sk+1 > u)
≤ 1

P (X1 > α)

I(k, u)

P (B(1) + Sk > u− α)

≤ 1

P (X1 > α)

∫ ga(k,u)
−∞ P (B(1) > u− y)FSk

(dy)
∫ ga(k,u)
−∞ P (B(1) > u− y − α)FSk

(dy)

≤ 1

P (X1 > α)
max

y≤ga(k,u)

P (B(1) > u− y)

P (B(1) > u− y − α)
.

If y ≤ ga(k, u), then u− y ≥ u − ga(k, u) = amin{log k, log u}. Since k, u > T , we obtain using
(3.13) and elementary computations,

P (B(1) > u− y)

P (B(1) > u− y − α)
≤ C exp

(
−α(u− y) +

α2

2

)
≤ Ceα

2/2 exp (−αamin{log k, log u}) ,

where C is a constant independent of k and u. Because αa > 1, this inequality jointly with
previous ones give us (4.19). �

Step 4. Define

J(k, u) = e−λ λk

(k − 1)!

∫ 1

0
P
(
B(t) + Sk > u+D

√
1 − t , Sk > ga(k, u)

)
tk−1dt .(4.21)

The following statement is the main part of our proof.

Proposition 4.3. For each ǫ ∈ (0, 1) and D > 0 there are T0 ∈ N and u0 > 0 such that

γk(u) :=
J(k, u)eλk!

P (B(1) + Sk > u , Sk > ga(k, u))λk
> 1 − ǫ(4.22)

for all k > T0 and u > u0.

Proof. We can write

J(k, u) = e−λ λk

(k − 1)!

∫ ∞

ga(k,u)

∫ 1

0
P
(
B(t) > u− y +D

√
1 − t

)
tk−1dtFSk

(dy)

and

P (B(1) + Sk > u , Sk > ga(k, u)) =

∫ ∞

ga(k,u)
P (B(t) > u− y)FSk

(dy) ,

which yields that

γk(u) ≥ k min
y>ga(k,u)

∫ 1
0 P

(
B(t) > u− y +D

√
1 − t

)
tk−1dt

P (B(1) > u− y)
.(4.23)
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We estimate the expression in the right hand side dividing the area [ga(k, u),∞) into three
parts: [ga(k, u), u − β), [u − β, u + β1) and [u + β1,∞), where positive constants β and β1 will

be choosen later. We also denote by γ
(1)
k (u), γ

(2)
k (u) and γ

(3)
k (u) the minima over these parts

correspondingly.
Case 1: ga(k, u) ≤ y < u− β. We assume β > 1. Estimate (3.13) implies that

ν(t, u− y) :=
P
(
B(t) > u− y +D

√
1 − t

)

P (B(1) > u− y)

≥ β

β +D

(
1 − 1

β2

)
exp

(
(u− y)2

2
− (u− y +D

√
1 − t)2

2t

)

=
β2 − 1

β(β +D)
exp

(
−(u− y)2(1 − t)

2t
− (u− y)D

√
1 − t

t
− D2(1 − t)

2t

)
.

Fix b > 0. If 1 − b
k < t < 1, then

ν(t, u− y) ≥ β2 − 1

β(β +D)
exp

(
−(u− y)2b

2(k − b)
− D(u− y)

√
bk

k − b
− D2b

2(k − b)

)
.

Denoting

ξb(x) = exp

(
−a

2b(log x)2

2(x− b)
− a

√
bD

√
x log x

x− b
− bD2

2(x− b)

)
(4.24)

and taking into account that β < u− y < a log(min{k, u}), we obtain

ν(t, u− y) ≥ β2 − 1

β(β +D)
ξb (min{k, u}) .

Restriction of the area of integration in (4.23) to 1 − b
k ≤ t < 1 yields

γ
(1)
k (u) ≥

[
1 −

(
1 − b

k

)k
]

β2 − 1

β(β +D)
ξb (min{k, u}) .(4.25)

Case 2: u− β ≤ y < u+ β1. Now for 1 − b
k ≤ t < 1

∣∣∣∣
u− y +D

√
1 − t√

t
− (u− y)

∣∣∣∣ ≤ max{β , β1}
b

2k
(
1 − b

k

)3/2
+D

√
b

k
:= χb(k)(4.26)

Hence

ν(t, u− y) ≥ P (B(1) > u− y + χb(k))

P (B(1) > u− y)
= 1 −

∫ u−y+χb(k)
u−y e−t2/2dt
∫∞
u−y e

−t2/2dt

≥ 1 − χb(k)∫∞
β e−t2/2dt

= 1 − χb(k)√
2πP (B(1) > β)

.

because u− y < β. From here, as above

γ
(2)
k (u) ≥

[
1 −

(
1 − b

k

)k
](

1 − χb(k)√
2πP (B(1) > β)

)
.(4.27)
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Case 3: y ≥ u+ β1. Now

γ
(3)
k (u) ≥ k

∫ 1

0
P (B(t) > −β1 +D)tk−1dt .

Choose β1 > D. Then

P (B(t) > −β1 +D) = P

(
B(1) >

−β1 +D√
t

)
> P (B(1) > −β1 +D)

for all 0 < t < 1. Hence

γ
(3)
k (u) ≥ P (B(1) > −β1 +D) .(4.28)

Now we are able to finish the proof of the proposition. Fix δ ∈ (0, 1) and choose b > 0 such
that e−b < δ, and k0 ∈ N for which

1 −
(

1 − b

k

)k

> (1 − δ)2 for k > k0 .

Choose now β under the condition

β2

β(β +D)
> 1 − δ .

According to (4.24), ξb(x) → 1 as x → ∞ for each b > 0. Hence, for choosen b there is u0 > 0
such that ξb(min{k, u}) > 1 − δ if min{k, u} > u0. So, (4.25) implies

γ
(1)
k (u) > (1 − δ)4 for k > max{k0, u0} and u > u0 .

Further, (4.28) allows us to find β1 such that γ
(3)
k (u) > (1 − δ). According to (4.27) and (4.26)

for choosen b, β and β1 there exists k1 > k0 such that γ
(2)
k (u) > (1 − δ)3 for all k > k1. Finally,

γk(u) ≥ min
{
γ

(1)
k (u) , γ

(2)
k (u) , γ

(3)
k (u)

}
> (1 − δ)4

for k > T0 = max{k1, u0} and u > u0, and the needed statement follows. �

Corollary 4.4. Let

H22(u) =

[au]∑

k=T+1

J(k, u) .(4.29)

For each ǫ > 0 there are T0 ∈ N and u0 > T0/a such that

H22(u)

G22(u)
> 1 − ǫ

for all u > u0 and T0 ≤ T < [au].

Step 5. Now we can proof (4.8). Indeed, (4.12) allows us to write

H(u)

P (X(1) > u)
≥ H22(u)

P (X(1) > u)
=
H22(u)

G22(u)
× 1

G21(u)
G22(u) + 1

× 1
e−λP (B(1)>u)+G1(u)

G2(u) + 1 + G3(u)
G2(u)

.

Fix ǫ ∈ (0, 1). Applying Corollary 4.4 we see that the first fraction in the right hand side is
greater then 1 − ǫ for u > u0 and T0 ≤ T < [au], where u0 and T0 are constants. It follows from
(4.19), (4.18) and (4.15) that there is T1 ∈ N such that G21(u)/G22(u) < ǫ for u > T1. Choose
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now T > max{T0, T1}. For such T , according to (4.13) and (4.14), there is u1 > 0, au1 > T , such
that [e−λP (B(1) > u) +G1(u)]/G2(u) < ǫ and G3(u)/G2(u) < ǫ for u > u1. So,

H(u)

P (X(1) > u)
>

1 − ǫ

(1 + ǫ)(1 + 2ǫ)

for u > max{T, u0, u1}. Letting u→ ∞ and then ǫ→ 0 we get (4.8). �

Proof of (4.6). Put

Q̃(u) = P (B(1) + Z(1) > u+ bΓτ ,Γτ ≤ aτ ) ,(4.30)

R(u) = P (B(1) + Z(1) > u+ bΓτ )) − Q̃(u),

where the numbers ak are given by (3.9).
Let Q(u) be given by (3.10). Denote C = limu→−∞Q(u) and F (u) = 1−C−1Q(u). Let W be

a random variable with distribution function F , independent of B(1). It can be easily verified,

using formulas for Γ-densities, that P (B(1) +W > u) = C−1Q̃(u). Now (3.11) and Lemma 3.1
imply that

Q̃(u) = o (P (B(1) + Z(1) > u+ b))(4.31)

as u→ ∞.
Next we show that

lim sup
u→∞

R(u)

P (B(1) + Z(1) > u+ b)
≤ 1.(4.32)

Fix a constant a > 0 and denote

R1(u) = P (B(1) + Z(1) > u+ bΓτ , Γτ > aτ , Sτ > u− a log τ) ,(4.33)

R2(u) = R(u) −R1(u).

Estimate for R1(u). We show here that

lim sup
u→∞

R1(u)

P (B(1) + Z(1) > u+ b)
≤ 1.(4.34)

As above, one can easily check the formula

R1(u) = λe−λ
∞∑

k=1

∫ 1

ak

(λt)k−1

(k − 1)!
P (B(1) + Sk > u+ bt , Sk > u− a log k)dt ,(4.35)

and it is clear that

P (B(1) + Z(1)) = e−λP (B(1) > u) + e−λ
∞∑

k=1

λk

k!
P (B(1) + Sk > u) .(4.36)

Denote

γk(u) =
k
∫ 1
ak
P (B(1) + Sk > u+ bt , Sk > u− a log k)tk−1dt

P (B(1) + Sk > u+ b)
.

Representing the probabilities in this fraction as integrals with respect to FSk
, we obtain the

estimate

γk(u) ≤ sup
y>u−a log k

P (B(1) > u+ akb− y)

P (B(1) > u+ b− y)
.(4.37)
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Step 1. Fix ǫ > 0 and choose A > 0 such that

x−1

x−1 − x−2
=

x

x− 1
< 1 + ǫ

for x > A. Then, using (3.13) we see that if y < u−A, then

P (B(1) > u+ akb− y)

P (B(1) > u+ b− y)
≤ (1 + ǫ) exp

(
−(u+ akb− y)2

2
+

(u+ b− y)2

2

)

= (1 + ǫ) exp

(
b(1 − ak)(u− y) +

b2(1 − a2
k)

2

)

≤ (1 + ǫ) exp

(
b(1 − ak)a log k +

b2(1 − a2
k)

2

)
,

because u− y < a log k. Taking into account that 1− ak ≤ mk−1 log k, we conclude that there is
an index k0 such that

γ
(1)
k := sup

u−a log k<y<u−A

P (B(1) > u+ akb− y)

P (B(1) > u+ b− y)
≤ (1 + ǫ)2 .(4.38)

Step 2. If y > u−A, then

P (B(1) > u+ akb− y)

P (B(1) > u+ b− y)
= 1 +

∫ u+b−y
u+akb−y e

−x2/2dx
∫∞
u+b−y e

−x2/2dx
≤ b(1 − ak)∫∞

A+b e
−x2/2dx

.

So, we can find k1 such that for choosen A the last expression is less that 1 + ǫ for k > k1.
Therefore, for given ǫ > 0 there is an index k2 such that γk(u) < (1+ ǫ)2 for all k > k2 and u > 0.

Denote by R̃1(u) the sum of summands from (4.35) over k > k2. Then

lim sup
u→∞

R̃1(u)

P (B(1) + Z(1) > u+ b)
≤ (1 + ǫ)2.(4.39)

We have

R1(u) − R̃1(u) ≤ e−λ
k2∑

k=1

λk

k!
P (B(1) + Sk > u) .

On the other hand, for each j

P (B(1) + Z(1) > u+ b) > e−λ λk2+j+1

(k2 + j + 1)!
P (B(1) + Sk2+j+1 > u+ b)

≥ e−λ λk2+j+1

(k2 + j + 1)!
P (B(1) + Sk2+1 > u)P (Sj > b).

Choosing j under the condition P (Sj > b) > 0 and applying Lemma 3.3 we conclude that

lim
u→∞

R1(u) − R̃1(u)

P (B(1) + Z(1) > u+ b)
= 0.

Now (4.34) follows from here and (4.39).
Estimate for R2(u). We show here that

lim
u→∞

R2(u)

P (B(1) + Z(1) > u+ b)
= 0.(4.40)
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The probability R2(u) admittes a representation similar to (4.35). Denoting by gk(u) the
corresponding summands we get

gk(u) ≤ e−λλ
k

k!
P (B(1) + Sk > u , Sk ≤ u− a log k) .

Hence

δk(u) :=
gk(u)

e−λ λk+m

(k+m)!P (B(1) + Sk+m > u+ b)

≤ (k + 1) · · · (k +m)

λm

P (B(1) + Sk > u , Sk ≤ u− a log u)

P (B(1) + Sk > u− 1)P (Sm > b+ 1)
,

where m is choosen under the condition P (Sm > b + 1) > 0. Once again representing the
probabilities as integrals with respect to FSk

and using (3.13) we can find an index k1 such that

P (B(1) + Sk > u , Sk ≤ u− a log u)

P (B(1) + Sk > u− 1)
≤ 2 sup

y≤u−a log k
exp

(
−(u− y) +

1

4

)

≤ 2e
1

4 exp(−a log k) = 2e
1

4k−a

for k > k1 and u > 0, which yields δk(u) ≤ Ckm−a. So,
∑∞

k=kk+1 gk(u)

P (B(1) + Z(1) > u+ b)
≤ Ckm−a

1 .

As in previous case,

lim
u→∞

∑k1

k=1 gk(u)

P (B(1) + Z(1) > u+ b)
= 0 .

Therefore,

lim sup
u→∞

R2(u)

P (B(1) + Z(1) > u+ b)
≤ Ckm−a

1 .

Since m does not depend on a, we may choose a > m. Then letting k1 → ∞ we obtain (4.40).
Now (4.32) follows from (4.33), (4.34) and (4.40).

According (4.30)–(4.32)

lim sup
u→∞

P (B(1) + Z(1) > u+ bΓτ )

P (B(1) + Z(1) > u+ b)
≤ 1 .

Since P (B(1) + Z(1) > u+ bΓτ ) ≥ P (B(1) + Z(1) > u+ b), (4.6) follows. �

4.2. Proof of (4.2). Because

sup
0≤t<Γτ

X(t) ≤ sup
0≤t≤1

B(t) + sup
0≤t<Γτ

[Z(t) − bt] ,

we get, once again applying Lévy formula (4.3) and Lemma 3.4,

A(u) ≤ 2P

(
B(1) + sup

0≤t<Γτ

[Z(t) − bt] > u

)
.

It was shown in [4], pp. 149–151, that

P

(
sup

0≤t<Γτ

[Z(t) − bt] > u

)
= o (P (Z(Γτ ) − bΓτ > u))
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as u → ∞. Hence, according to Lemma 3.1 A(u) = o (P (B(1) + Z(Γτ ) − bΓτ > u)). Since
Z(Γτ ) = Z(1), (4.6) yields now (4.2). �

5. Proof of Theorem 2.2.

As above, (2.4) and Lemma 3.5 allow us to prove the theorem for processes of the type (1.2).
Relation (2.6) holds for compound Poisson processes with non-negative drifts and light tails (see
Theorem 1 from [4]). Hence we may assume that b > 0. The proof is divided into a series of
lemmas.

Lemma 5.1. Assume (2.7) holds for iid random variables Xk and put

G(u) =
∞∑

k=2

λkP (Sk−1 > u)

k!
.(5.1)

Let

Z =

N∑

k=1

Xk .(5.2)

where N is a Poisson random variable with parameter λ, independent of Xk. Then

lim
u→∞

G(u)

P (Z > u+ b)
= 0

for each b > 0.

Proof. Because P (X1 +X2 > u+ b) ≥ P (X1 > u− a)P (X2 > a+ b), relation (2.7) implies

lim
u→∞

P (X1 > u)

P (X1 +X2 > u+ b)
= 0 .(5.3)

Fix a constant A > 0. Then

G(u) ≤ λP (X1 > u) +

∞∑

k=2

λkP (Sk−1 > u , Sk−2 ≤ u−A)

k!
(5.4)

+
∞∑

k=2

λkP (Sk−2 > u−A)

k!
:= λP (X1 > u) +G1(u) +G2(u) .

Further,

h(A, k, u) :=
P (Sk−1 > u , Sk−2 ≤ u−A)

P (Sk > u+ b)

≤
∫ u−A
−∞ P (X1 > u− y)FSk−2

(dy)
∫ u−A
−∞ P (X1 +X2 > u− y + b)FSk−2

(dy)
≤ sup

y≤u−A

P (X1 > u− y)

P (X1 +X2 > u− y + b)
,

and it follows from (5.3), that for a fixed ǫ > 0 one can find A such that h(A, k, u) < ǫ for all
k ≥ 3 and positive u. This yields the estimate G1(u) < ǫP (Z > u+ b) , u > 0.

Turn now to G2(u). We have for a fixed index M > 2

G2(u) ≤
1

P (X1 > A+ b)

(
M∑

k=2

λkP (Sk−1 > u+ b)

k!
+

∞∑

k=M+1

λkP (Sk−1 > u+ b)

k!

)
,



EXTREMES OF LÉVY PROCESSES 19

and (3.4) implies that the first sum is o(P (Z > u+ b)) as u → ∞. The second sum is bounded
from above by

1

M + 1

∞∑

k=M+1

λkP (Sk−1 > u+ b)

(k − 1)!
≤ λeλ

M + 1
P (Z > u+ b) .

So, letting first u→ ∞ and then M → ∞ we conclude that G2(u) = o(P (Z > u+ b)) as u→ ∞
for each A > 0. From here and the previous

lim sup
u→∞

G(u)

P (Z > u+ b)
≤ ǫ

for each ǫ > 0, which yields the lemma. �

Because the function h is increasing and continuous, there exists the inverse function h−1. Put
for s > 1

ψ(s) = h−1

(
4

b
log s

)
(5.5)

and

g(k, u) = u− ψ(k) .(5.6)

Lemma 5.2. There is an index k0 such that

γ(k, u) :=
λk

k! P (Sk > u+ bak , Sk−1 ≤ g(k, u))
λk+1

(k+1)!P (Sk+1 > u+ b)
≤ C

λk

for all k > k0 and u > 0, where the constant C is independent of these parameters.

Proof. We have

γ(k, u) ≤ k + 1

λ

P (Sk > u+ bak , Sk−1 ≤ g(k, u))

P (Sk > u , Xk+1 > b)

≤ k + 1

λP (X1 > b)

∫ g(k,u)
−∞ P (X1 > u+ bak − y)FSk−1

(dy)
∫ g(k,u)
−∞ P (X1 > u− y)FSk−1

(dy)

≤ k + 1

λP (X1 > b)
sup

y≤g(k,u)

P (X1 > u+ bak − y)

P (X1 > u− y)
.

Because

u− y ≥ u− g(k, u) = ψ(k) > 0 ,(5.7)

we may apply (2.8). Hence for y ≤ g(k, u)

P (X1 > u+ bak − y)

P (X1 > u− y)
= exp

(
−
∫ u+bak−y

u−y
h(v)dv

)
≤ exp (−bakh(u− y)) .

Taking into account (5.7) and (5.5) we see that h(u − y) ≥ h(ψ(k)) = 4 log k/b. Formula (2.8)

implies m = 1 in (3.8). So ak = 1 − 2 log k
k > 1

2 for k large enough, and, therefore, bakh(u− y) ≥
2 log k . From here and the previous estimates

γ(k, u) ≤ k + 1

λP (X1 > b)

1

k2

for k large enough, and the lemma follows. �
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Denote

I(k, u) = λ

∫ 1

ak

(λt)k−1

(k − 1)!
P (Sk > u+ bt , Sk−1 ≤ g(k, u))dt .(5.8)

Since

I(k, u) ≤ λk

k!
P (Sk > u+ bak , Sk−1 ≤ g(k, u)) ,

we immediately obtain the following statement.

Corollary 5.3. There is an index k0 such that

I(k, u)
λk+1

(k+1)!P (Sk+1 > u+ b)
≤ C

λk

for all k > k0 and u > 0, where the constant C is independent of these parameters.

Denote

J(k, u) = λ

∫ 1

ak

(λt)k−1

(k − 1)!
P (Sk > u+ bt , g(k, u) < Sk−1 ≤ u)dt .(5.9)

Lemma 5.4. For each positive ǫ there is an index k1 such that

β(k, u) :=
J(k, u)

λk

k! P (Sk > u+ b)
≤ 1 + ǫ

for all k > k1 and u > 0.

Proof. We have

β(k, u) ≤
λ
∫ u
g(k,u)

∫ 1
ak

(λt)k−1

(k−1)! P (X1 > u+ bt− y)dtFSk−1
(dy)

λk

k!

∫ u
g(k,u) P (X1 > u+ b− y)FSk−1

(dy)
(5.10)

≤ sup
g(k,u)<y≤u

k
∫ 1
ak
P (X1 > u+ bt− y)tk−1dt

P (X1 > u+ b− y)
:= α(k, u) .

It follows from (2.8) that

ν(k, u, y) :=
k
∫ 1
ak
P (X1 > u+ bt− y)tk−1dt

P (X1 > u+ b− y)
(5.11)

= k

∫ 1

ak

exp

(∫ u+b−y

u+bt−y
h(v)dv

)
tk−1dt = k

∫ 1

ak

exp (b(1 − t)h(v(u, y, t)) tk−1dt ,

where
u+ bt− y < v(u, y, t) < u+ b− y .

Because u+ b− y < u+ b− g(k, u) = ψ(k) + b, we get, using (2.10),

h(v(u, y, t)) ≤ h(ψ(k) + b) = h

(
h−1

(
4 log k

b

)
+ b

)
≤ exp

(
b

8

4 log k

b

)
=

√
k

for k large enough. Since ak ≤ t < 1, we see, taking into account (3.9) that

b(1 − t)h(v(u, y, t)) ≤ 2b log k

k

√
k → 0
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as k → ∞. So, (5.11) and the last estimates imply that there is an index k′ such that ν(k, u, y) <
1 + ǫ for all k > k′ , u > 0 and g(k, u) < y < u, which yields α(k, u) < 1 + ǫ for k > k′ and u > 0,
and the lemma follows.

�

Proof of Theorem 2.2. According to Theorem 1 from [4] it is enough to show that

lim
u→∞

P (Z(1) > u+ bΓτ )

P (X(1) > u)
= 1 .(5.12)

Applying (3.10), (5.1), (5.8) and (5.9) we may write

P (Z(1) > u+ bΓτ ) ≤ Q(u) + e−λ
∞∑

k=1

I(k, u) + e−λ
∞∑

k=1

J(k, u) + e−λG(u) .(5.13)

We show first that

lim
u→∞

∑∞
k=1 I(k, u)

P (X(1) > u)
= 0 .(5.14)

Since I(k, u) ≤ λkP (Sk > u)/k!, relations (3.12) and (3.4) yield

lim
u→∞

∑M
k=1 I(k, u)

P (X(1) > u)
= 0

for each fixed index M . Choosing M > k0, where k0 is from Corollary 5.3, we conclude that
∑∞

k=M+1 I(k, u)

P (X(1) > u)
≤ C

λ(M + 1)

for all u > 0. Letting first u→ ∞ and then M → ∞ we come to (5.14).
Now we show that

lim sup
u→∞

e−λ
∑∞

k=1 J(k, u)

P (X(1) > u)
≤ 1.(5.15)

For a fixed ǫ > 0 Lemma 5.4 and (3.12) provide us with an index k1 such that

e−λ
∑∞

k=k1+1 J(k, u)

P (X(1) > u)
< 1 + ǫ

for all u > 0. As above, (3.12) and (3.4) lead to the equality

lim
u→∞

∑k1

k=1 J(k, u)

P (X(1) > u)
= 0.

The last two relations imply (5.15).
Now (5.13), (5.14) , (5.15) and Lemmas 3.6 and 5.1 give us

lim sup
u→∞

P (Z(1) > u+ bΓτ )

P (X(1) > u)
≤ 1 .(5.16)

Obviously, P (Z(1) > u+ bΓτ ) ≥ P (X(1) > u) for all u > 0, and we come to (5.12). �



22 M. BRAVERMAN

6. Proof of Theorem 2.3.

First we prove the following

Proposition 6.1. If for Xk the condition (2.7) holds, then it also holds for random variable
(5.2).

The proof is based on the next statement.

Lemma 6.2. Assume Xk satisfy (2.7). Then for each ǫ > 0 there is B > 0 such that

P (Sk > u+ a) ≤ ǫP (Sk > u) +
P (Sk−1 > u)

P (X1 > B)

for all k ≥ 3 and u > 0.

Proof. Fix A > 0. Then

P (Sk > u+ a) ≤
∫ u−A

−∞
P (X1 > u+ a− t)FSk−1

(dt) + P (Sk−1 > u−A) .

Because of (2.7), there is A0 > 0 such that P (X1 > u+ a− t)/P (X1 > u− t) < ǫ/2 for all A > A0

and t < u−A. Then

P (Sk > u+ a) ≤ ǫ

2
P (Sk > u) + P (Sk−1 > u−A) .(6.1)

Fix now A > A0. We have for a positive B:

P (Sk−1 > u−A) ≤
∫ u−B

−∞
P (X1 > u−A− t)FSk−2

(dt) + P (Sk−2 > u−B) .(6.2)

Further, P (X1 + X2 > u − t) ≥ P (X1 > u − t − 2A)P (X1 > 2A), and t ≤ u − B im-
plies u − A − t ≥ B − A. Hence, once again applying (2.7), we can choose B so large that
P (X1 > u−A− t)/P (X1 +X2 > u− t) < ǫ/2 if t ≤ u−B. Therefore,
∫ u−B

−∞
P (X1 > u−A− t)FSk−2

(dt) ≤ ǫ

2

∫ ∞

−∞
P (X1 +X2 > u− t)FSk−2

(dt) =
ǫ

2
P (Sk > u) .

Since P (Sk−2 > u − B) ≤ P (Sk−1 > u)/P (X1 > B) , the lemma follows from here, (6.2) and
(6.1). �

Proof of Proposition 6.1. According to Lemma 6.2, for a fixed ǫ > 0 there is B > 0 such that

P (Z > u+ a) ≤ e−λ

[
λP (S1 > u+ a) +

λ2P (S2 > u+ a)

2!

]
(6.3)

+ǫe−λ
∞∑

k=3

λkP (Sk > u)

k!
+

e−λ

P (X1 > B)

∞∑

k=3

λkP (Sk−1 > u)

k!
.

We show first the the last sum is o(P (Z > u)) as u→ ∞. To this end fix an index m > 3. Then

ψ(u) :=
∞∑

k=3

λkP (Sk−1 > u)

k!
≤

m∑

k=3

λkP (Sk−1 > u)

k!
+

1

m+ 1

∞∑

k=m+1

m+ 1

k

λkP (Sk−1 > u)

(k − 1)!
.

Taking into account (3.4) we see that

lim sup
u→∞

ψ(u)

P (Z > u)
≤ λeλ

m+ 1
,
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and letting m→ ∞ we come to the needed conclusion.
Now, (6.3) and (3.4) yield that

lim sup
u→∞

P (Z > u+ a)

P (Z > u)
≤ ǫ

for each ǫ > 0. So, the proposition follows. �

Proof of Theorem 2.3. The proof is a word for word repetition of the proof of Theorem 2 from
[4]. To obtain formula (32) from this paper one should use Proposition 6.1.

7. Proof of Theorem 2.5

Let {Xk}∞k=1 be iid random variables taking values n! , n = 1, 2, . . . , such that

P (X1 = n!) =
1

(e− 1)n!
.(7.1)

Denote by Z(t) a compound Poisson process with parameter λ = 1 and jumps Xk. It will
be shown below that (2.14) holds for the sequence un = n! and (2.15) holds for the sequence
un = n · n!.

7.1. Estimates for sums. Here we obtain asymptotics for probabilities P (Sk +B(1) > n!) and
P (Sk +B(1) > n · n!) as n→ ∞.

Lemma 7.1. For 2 ≤ k ≤ n

P (Sk +B(1) > n!) = kP (X1 = n!)

∫ ∞

−∞
P (Sk−1 > −t)φ(t)dt+

α(k, n)

(n+ 1)!
,

where φ is (0, 1)-normal density function and sup2≤k≤n |α(k, n)| <∞ .

Proof. We represent the considered probability as

P (Sk +B(1) > n!) =

(∫ 0

−∞
+

∫ n

0
+

∫ ∞

n

)
P (Sk > n! − t)φ(t)dt := I1 + I2 + I3 ,(7.2)

and start with the integral I1. Assume first that k = n. The condition

max{X1, . . . ,Xn} ≤ (n− 1)!

implies Sn ≤ n! − t for t ≤ 0. Hence,

P (Sn > n! − t) = P (Sn > n! − t , max{X1, . . . ,Xn} ≥ n!)

= P (Sn > n! − t , exactly one of X1, . . . ,Xn is non-less than n!)

+P (Sn > n! − t , at least two of X1, . . . ,Xn are non-less than n!) := p+ q.

Since Xk are iid random variables,

p = nP (Sn > n! − t , X1 ≥ n! ,max{X2, . . . ,Xn} ≤ (n− 1)!)

= nP (Sn > n! − t , X1 = n!) − nP (Sn > n! − t , X1 = n! ,max{X2, . . . ,Xn} ≥ n!)

+nP (Sn > n! − t , X1 ≥ (n + 1)! ,max{X2, . . . ,Xn} ≤ (n − 1)!) := n(p1 − p2 + p3) .

Obviously, p1 = P (X1 = n!)P (Sn−1 > −t) , and according to (7.1),

p2 ≤ P (X1 = n!)P (max{X2, . . . ,Xn} ≥ n!) ≤ C
1

n!

n− 1

n!
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and

p3 ≤ P (X1 ≥ (n+ 1)!) ≤ C1

(n+ 1)!
,

It is clear that

q ≤ n2 [P (X1 ≥ n!)]2 ≤ C2

[(n − 1)!]2
.

From here

I1 = nP (X1 = n!)

∫ 0

−∞
P (Sn−1 > −t)φ(t)dt +O

(
1

(n+ 1)!

)
.(7.3)

Turn now to the integral I2. For 0 < t < n

P (Sn > n! − t) = P (Sn > n! − t , max{X1, . . . ,Xn} ≥ n!)

+P (Sn > n! − t , max{X1, . . . ,Xn} ≤ (n− 1)!) := p̃+ q̃ ,

and by the same reasons as above p̃ = nP (X1 = n!)P (Sn−1 > −t) +O (1/(n + 1)!) . Further,

q̃ = P (Sn > n! − t ,X1 = · · · = Xn = (n− 1)!)

+P (Sn > n! − t ,max{X1, . . . ,Xn} = (n− 1)! , min{X1, . . . ,Xn} ≤ (n − 2)!)

+P (Sn > n! − t ,max{X1, . . . ,Xn} ≤ (n− 2)!) := q̃1 + q̃2 + q̃3 .

If max{X1, . . . ,Xn} = (n− 1)! and min{X1, . . . ,Xn} ≤ (n− 2)!, then

Sn ≤ (n− 1) · (n− 1)! + (n− 2)! = n! − (n− 2)(̇n− 2)! < n! − t

for t < n. So, q̃2 = 0. By similar reasons q̃3 = 0 and

q̃1 ≤ [P (X1 = (n− 1)!)]n .

Hence

I2 = nP (X1 = n!)

∫ n

0
P (Sn−1 > −t)φ(t)dt+O

(
1

(n+ 1)!

)
.

Since

I3 = O

(
exp

(
−n

2

2

))
= o

(
1

(n+ 2)!

)
(7.4)

the last relations and (7.2) yield the lemma for k = n.
The case 2 ≤ k < n is treated by the similar way. �

Remark 7.2. The same reasons give us

P (S1 +B(1) > n!) = O

(
1

(n+ 1)!

)
.(7.5)

Lemma 7.3. For 2 ≤ k ≤ n

P (Sk +B(1) > n · n!) = kP (X1 = (n+ 1)!) +
β(k, n)

(n + 2)!
,

where sup2≤k≤n |β(k, n)| <∞ .
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Proof. Since the conditions max{X1, . . . ,Xn} = n! and min{X1, . . . ,Xn} ≤ (n− 1)! imply Sn ≤
(n− 1)n! + (n− 1)! = n · n! − (n− 1)(n − 1)! < n · n! − n , then for t < n

P (Sn > n · n! − t) = P (Sn > n · n! − t , X1 = · · · = Xn = n!)

+P (Sn > n · n! − t , max{X1, . . . ,Xn} ≥ (n+ 1)!) .

From here, as in the proof of the previous lemma,

P (Sn > n · n! − t) = nP (X1 = (n+ 1)!)P (Sn−1 > −n!− t) +O

(
1

(n + 2)!

)
,

because n · n! − (n+ 1)! = −n!. In the case 2 ≤ k < n we get similarly for t < n

P (Sk > n · n! − t) = kP (X1 = (n+ 1)!)P (Sk−1 > −n!− t) +
µ(k, n, t)

(n+ 2)!
,(7.6)

where sup2≤k<n ;t<n |µ(k, n, t)| <∞ . These equalities and (7.4) give us

P (Sk +B(1) > n · n!) = kP (X1 = (n+ 1)!)

∫ ∞

−∞
P (Sk−1 > −n! − t)φ(t)dt(7.7)

+
µ̃(k, n)

(n+ 2)!

and sup2≤k≤n |µ̃(k, n)| <∞ . Since Xk are positive, we have for t > −n!

P (Sk−1 > −n! − t) = 1 .(7.8)

Hence, the last integral is
∫ −n!

−∞
P (Sk−1 > −n!− t)φ(t)dt + P (B(1) > −n!) = 1 + o

(
1

(n + 3)!

)
.

From here and the previous relations the lemma follows. �

Remark 7.4. By the same way we obtain

P (S1 +B(1) > n · n!) = P (X1 = (n + 1)!)P (B(1) > −n!) +O

(
1

(n+ 2)!

)
(7.9)

= P (X1 = (n+ 1)!) +O

(
1

(n+ 2)!

)

7.2. Estimates for X(1). Here we find asymptotics for the probabilities P (X(1) > n!) and
P (X(1) > n · n!).

Lemma 7.5. The following hold:

P (X(1) > n!) = P (X1 = n!)

n∑

k=2

Ik +O

(
1

(n+ 1)!

)
,(7.10)

where

Ik =
1

e(k − 1)!

∫ ∞

−∞
P (Sk−1 > −t)φ(t)dt .(7.11)
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Proof. We can write the considered probability as a sum of three sums:

P (X(1) > n!) = e−1 [P (B(1) > n!) + P (S1 +B(1)) > n!]

+e−1
n∑

k=2

P (Sk +B(1) > n!)

k!
+ e−1

∞∑

n+1

P (Sk +B(1) > n!)

k!
,

and (7.5) implies that the first sum is O (1/(n + 1)!). The same is true for the third sum. As for
the second one, Lemma 7.1 yields that it is

P (X1 = n!)

n∑

k=2

1

e(k − 1)!

∫ ∞

−∞
P (Sk−1 > −t)φ(t)dt +O

(
1

(n+ 1)!

)

and (7.10) follows. �

Lemma 7.6. The following relation holds:

P (X(1) > n · n!) = P (X1 = (n+ 1)!) +O

(
1

(n+ 2)!

)
.(7.12)

Proof. We can write, using (7.9) and Lemma 7.3,

P (X(1) > n · n!) = e−1P (B(1) > n · n!) + P (X1 = (n+ 1)!)e−1
n∑

k=1

1

(k − 1)!

+e−1P (Sn+1 > n · n!)

(n+ 1)!
+O

(
1

(n+ 2)!

)
.

Since the condition max{X1, . . . ,Xn+1} ≤ (n− 2)! implies Sn+1 ≤ (n+ 1)(n− 2)! < n ·n!, we see
that

P (Sn+1 > n · n!) = P (Sn+1 > n · n! , max{X1, . . . ,Xn+1} ≥ (n− 1)!) ≤ C(n+ 1)

(n− 1)!
.(7.13)

So, the needed relation follows. �

7.3. Proof of (2.14). We have

P

(
sup

0≤t≤1
X(t) > n!

)
≥ P (X(1) > n!) + P (X(1) ≤ n! , X(Γτ−1) > n!) ,(7.14)

where τ is given by (3.7). Further,

pk(n!) := P (τ = k , X(1) ≤ n! , X(Γk−1) > n!)

= P (τ = k , Sk +B(1) ≤ n! , Sk−1 +B(Γk−1) > n!)

Because B(t) is symmetric and independent of Z(t),

pk(n!) ≥ 1

2
P (τ = k , Sk +B(Γk−1) ≤ n! , Sk−1 +B(Γk−1) > n!) :=

1

2
qk(n!) .(7.15)

Elementary calculations give us

qk(n!) =
1

e(k − 2)!

∫ 1

0
P (Sk +B(y) ≤ n! , Sk−1 +B(y) > n!) yk−1(1 − y)dy .
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Assume now that 3 ≤ k ≤ n. The same reasons as above and the well known formula for the
density of B(y) imply

qk(n!) = (k − 1)P (X1 = n!)(7.16)

× 1

e(k − 2)!

∫ 1

0

[∫ ∞

−∞
P (Sk−1 ≤ −t , Sk−2 > −t) 1√

2πy
e
− t2

2y dt

]
yk−1(1 − y)dy

+
ν(k, n)

(n+ 1)!
:= (k − 1)P (X1 = n!)Jk +

ν(k, n)

(n + 1)!
,

where sup3≤k≤n |ν(k, n)| < ∞ . Because the jumps Xk are positive, the inner integral coinsides
with the integral over (−∞,−1), and it is positive. So,

Jk > 0 for all k ≥ 3(7.17)

and (7.14) and (7.15) imply

P

(
sup

0≤t≤1
X(t) > n!

)
≥ P (X(1) > n!) +

1

2
P (X1 = n!)

n∑

k=3

(k − 1)Jk +O

(
1

(n+ 1)!

)
.(7.18)

According to (7.11)
∑∞

k=2 Ik ≤ 1. From here, (7.18), (7.1), (7.10) and (7.17)

lim inf
n→∞

P
(
sup0≤t≤1X(t) > n!

)

P (X(1) > n!)
≥ 1 +

1
2

∑∞
k=3(k − 1)Jk∑∞

k=2 Ik
> 1 ,

and (2.14) follows. �

7.4. Proof of (2.15). Using (4.3) and the positivity of Z(t) we may write

P

(
sup

0≤t≤1
X(t) > n · n!

)
≤ P (Z(1) + |B(1)| > n · n!) .(7.19)

Applying (7.6) and (7.8) we see that for 2 ≤ k ≤ n and 0 < t < n

P (Sk > n · n! − t) = kP (X1 = (n+ 1)!) +
α̃(k, n, t)

(n+ 2)!

and sup2≤k≤n ; 0<t<n |α̃(k, n, t)| < ∞ . Integrating with respect to the distribution of |B(1)| and
using (7.4) imply for 1 ≤ k ≤ n:

P (Sk + |B(1)| > n · n!) = kP (X1 = (n+ 1)!) +O

(
1

(n+ 2)!

)
.(7.20)

The same reasons as in the proof of (7.13) yield P (Sn+1 > n · n! − t) ≤ C/(n− 2)! for 0 < t < n.
Applying (7.4) we conclude that

P (Sn+1 + |B(1)| > n · n!) = O

(
1

(n − 2)!

)
.

From here and (7.19)

P

(
sup

0≤t≤1
X(t) > n · n!

)
≤ P (X1 = (n+ 1)!)

n∑

k=1

1

e(k − 1)!
+O

(
1

(n+ 2)!

)
,
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and (7.12) and (7.1) imply that

lim sup
n→∞

P
(
sup0≤t≤1X(t) > n · n!

)

P (X(1) > n · n!)
≤ 1 .

So, (2.15) follows. �

Remark 7.7. According to (7.1), the jumps Xk of compound Poisson process Z have not mo-
ments of positive order. But one can consider jumps with the distribution

P (X1 = n!) =
C(v)

(n!)v
, n = 1, 2, . . . ,

where v is a positive constant and C(v) is the corresponding norming constant. Now jumps have
finite moments of order less than v, and almost the same proof gives Theorem 2.5.

8. Some comments

8.1. About the proof of Theorem 2.1. Looking on (3.3) one may assume that the relation

lim
u→∞

P
(
sup0≤t≤1B(t) + sup0≤t≤1 Z(t) > u

)

P (B(1) + Z(1) > u)
= 1

also holds, which might shorten the proof of (4.1). It is true if the tail of Xk is subexponential
(see, for example, Proposition 2.1 from [11] and references therein). Here we show that it is not
true for light tails.

Proposition 8.1. If (2.7) holds for Xk, then

lim
u→∞

P
(
sup0≤t≤1B(t) + sup0≤t≤1 Z(t) > u

)

P (B(1) + Z(1) > u)
= 2 .

Proof. Clearly that

P (B(1) + Z(1) > u) = P (B(1) + Z(1) > u , B(1) > 0) + P (B(1) + Z(1) > u , B(1) < 0) ,

and the last probability does not exceed P (Z(1) > u). On the other hand.

P (B(1) + Z(1) > u) ≥ P (Z(1) > u− a)P (B(1) > a)

for a > 0. From here and Proposition 6.1

lim
u→∞

P (B(1) + Z(1) > u , B(1) < 0)

P (B(1) + Z(1) > u)
= 0 ,

and , therefore,

lim
u→∞

P (B(1) + Z(1) > u , B(1) > 0)

P (B(1) + Z(1) > u)
= 1 .

Relation (4.3) implies

P (B(1) + Z(1) > u , B(1) > 0) =
1

2
P (|B(1)| + Z(1) > u) =

1

2
P

(
sup

0≤t≤1
B(t) + Z(1) > u

)
.

But, according to Theorem 1 from [4]

P

(
sup

0≤t≤1
Z(t) > u

)
∼ P (Z(1) > u)(8.1)
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as u→ ∞. So, Lemma 3.1 implies

lim
u→∞

P
(
|B(1)| + sup0≤t≤1 Z(t) > u

)

P (|B(1)| + Z(1) > u)
= 1 .

The last equalities yield the proposition. �

The limit considered in Proposition 8.1 can belong to the interval (1, 2). To show this, assume
that jumps Xk satisfy the condition

P (Xk > u) ∼ e−αuuγ as u→ ∞ ,

where α > 0 and γ > −1 are constants. Then (2.1) holds. For a random variable Y denote

m+
Y (α) =

∫ ∞

0
eαtFY (dt) , m−

Y (α) =

∫ 0

−∞
eαtFY (dt) ,

and mY (α) = m+
Y (α) +m−

Y (α). Lemma 4 from [5] gives us

lim
u→∞

P (|B(1)| + Z(1) > u)

P (Z(1) > u)
= m|B(1)|(α) = 2m+

B(1)(α)

and

lim
u→∞

P (B(1) + Z(1) > u)

P (Z(1) > u)
= mB(1)(α) .

As above, applying (8.1) and Lemma 3.1 we see that the limit under consideration is

l :=
2m+

B(1)(α)

m+
B(1)(α) +m−

B(1)(α)
.

Because m−
B(1)(α) < m+

B(1)(α), we conclude that 1 < l < 2.

8.2. A conjecture. It is well known that if X(t) is a symmetric Lévy process, then

P

(
sup

0≤t≤1
X(t) > u

)
≤ 2P (X(1) > u)(8.2)

for all u > 0. Comparing it with (1.5) and Theorem 2.1 naturally yields the following
Conjecture. Let X(t) be a symmetric Lévy process such that

lim sup
u→∞

P
(
sup0≤t≤1X(t) > u

)

P (X(1) > u)
= 2 .(8.3)

Then X(t) = σB(t) for a positive constant σ.
The following statement supports this conjecture.

Proposition 8.2. Let X(t) be a symmetric compound Poisson process. Then the strong inequality
holds:

lim sup
u→∞

P (sup0≤t≤1X(t) > u)

P (X(1) > u)
< 2.(8.4)

To show it we need the following
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Lemma 8.3. Let X(t) be a symmetric compound Poisson process with jumps Xk and parameter
λ. Then for all positive u:

P

(
sup

0≤t≤1
X(t) > u

)
≤ 2P (X(1) > u) −D(u) ,

where

D(u) = e−λ

[
λP (X1 > u) +

∞∑

n=2

λn

n!
P

(
max

1≤k≤n−1
Sk ≤ u, Sn > u

)]
.(8.5)

Proof. The proof is a modification of the proof of Levy inequality (see [10], p. 50). We have

P

(
sup

0≤t≤1
X(t) > u

)
= P (X(1) > u) + P

(
sup

0≤t≤1
X(t) > u, X(1) ≤ u

)
,

and

P

(
sup

0≤t≤1
X(t) > u, X(1) ≤ u

)
= e−λ

[
∞∑

n=2

λn

n!
P

(
max

1≤k≤n−1
Sk > u, Sn ≤ u

)]
.(8.6)

For any n > 2

P

(
max

1≤k≤n−1
Sk > u, Sn ≤ u

)

= P (S1 > u, Sn ≤ u) + · · · + P (S1 ≤ u, . . . , Sn−2 ≤ u, Sn−1 > u,Sn ≤ u)

≤ P (S1 > u, X2 + · · · +Xn ≤ 0) + · · · + P (S1 ≤ u, . . . , Sn−2 ≤ u, Sn−1 > u, Xn ≤ 0).

Since random variables Xk are independent and symmetric, the last line can be written as

P (S1 > u, X2 + · · · +Xn ≥ 0) + · · · + P (S1 ≤ u, . . . , Sn−2 ≤ u, Sn−1 > u,Xn ≥ 0)

≤ P (S1 > u, Sn > u) + · · · + P (S1 ≤ u, . . . , Sn−2 ≤ u, Sn−1 > u, Sn > u)

= P

(
max

1≤k≤n−1
Sk > u, Sn > u

)
= P (Sn > u) − P

(
max

1≤k≤n−1
Sk ≤ u, Sn > u

)
.

The same inequality holds for n = 2. Therefore,

P

(
sup

0≤t≤1
X(t) > u

)
≤ P (X(1) > u) + e−λ

∞∑

n=2

λn

n!
P (Sn > u)

−e−λ
∞∑

n=2

λn

n!
P

(
max

1≤k≤n−1
Sk ≤ u, Sn > u

)
= 2P (X(1) > u) −D(u) .

�

Proof of Proposition 8.2. If the upper limit in (8.4) is equal to 2, there is a sequence uj → ∞
such that

lim
j→∞

P (sup0≤t≤1X(t) > uj)

P (X(1) > uj)
= 2 .(8.7)

Then Lemma 8.3 yields

lim
j→∞

D(uj)

P (X(1) > uj)
= 0 ,(8.8)
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which implies, in particular,

lim
j→∞

P (X1 > uj)

P (X(1) > uj)
= 0 .

Applying Lévy inequality we get for n ≥ 2

P

(
max

1≤k≤n−1
Sk ≤ u, Sn > u

)
≥ P (Sn > u) − P

(
max

1≤k≤n−1
Sk > u

)

≥ P (Sn > u) − 2P (Sn−1 > u) .

Using (8.8), (8.5) and the induction one comes to the relation

lim
j→∞

P (Sn > uj)

P (X(1) > uj)
= 0(8.9)

for all n ≥ 2.
Further, once again using Lévy inequality we get from (8.6)

P

(
sup

0≤t≤1
X(t) > uj , X(1) ≤ uj

)
≤ 2e−λ

∞∑

n=2

λn

n!
P (Sn−1 > uj),

and the same reasons as in the proof of Proposition 6.1 show that this sum is o(P (X(1)) > uj)
as j → ∞. Hence,

lim
j→∞

P (sup0≤t≤1X(t) > uj)

P (X(1) > uj)
= 1 ,

which contradicts to (8.7). �
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