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Abstract

Precise definitions of singularities in General Relativity rely on a
set of curves. Many boundary constructions force a particular set of
curves by virtue of the construction. The abstract boundary, however,
allows the set of curves to be chosen. This set, therefore, plays a very
important role in the use of the abstract boundary as the definition of a
singularity or point at infinity depends on it. The sets of curves used in
the abstract boundary must satisfy the boundary parameter property.
This property obfuscates the construction of and relationships between
these sets of curves. In this paper we lay the ground work for an
analysis of these sets of curves by showing that they are in one-to-
one correspondence with certain sets of inextendible curves. As an
application of this result we show how the usual set operations can
be extended to boundary parameter property satisfying sets of curves,
allowing for their comparison. These results provide an interpretation
of what information boundary parameter property satisfying sets give
us, provide tools to analyse their use and allow for easier physical
interpretation of the abstract boundary classification.
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1 Introduction

Boundary constructions in General Relativity provide rigorous definitions of
singularities, points at infinity, regular boundary points and so on. To do
this most boundary constructions use, implicitly or explicitly, certain sets of
curves. For example the g-boundary, [1], relies on incomplete geodesics with
affine parameter, the b-boundary, [2], on incomplete curves with generalised
affine parameter and the c-boundary, [3], on endless causal curves.

The abstract boundary, [4], does not use sets of curves in it’s construc-
tion but does need such a set for it’s classification. Which set of curves
to use is thus left to choice. With a set of curves it is possible to provide
a complete, detailed, physically relevant classification of abstract boundary
points (see [4] for the details) that complements the classification in terms
of polynomials of the Riemann tensor, see [5]. That one has to choose a set
of curves begs the question of what happens when the set of curves changes.

The sets of curves used in the abstract boundary must satisfy what is
called the boundary parameter property or b.p.p. This property ensures that
the curves have, mutually compatible, physically relevant interpretations.
That is it prevents bad choices of sets of curves. Unfortunately the b.p.p.
obfuscates the structure of b.p.p. satisfying sets of curves and prevents easy
analysis of them and their relationships. For example, it is not clear how to
construct a b.p.p. satisfying set of curves that has particular properties.

Clearly these are important, physically relevant, questions. Another such
question asks what is the “correct” set of curves to use? It is possible to
argue that the topological problems of the g-, b- and c-boundaries relate to
their corresponding sets of curves being too big, including to many curves.
Papers such as [6] reiterate the point that careful consideration of the set of
curves is needed to get a correct definition of singularity.

This paper is the first step to answering all these questions. It lays the
ground work for analysis of these sets of curves by describing, in detail,
their structure. In particular we show that sets of curves with the b.p.p. are
in one-to-one correspondence with sets of inextendible curves that are not
contained in a compact set and which satisfy a technical condition which
ensures that the set is chosen sensibly. This technical condition is in some
sense equivalent to the b.p.p. , but is much easier to work this. Note we use
various equivalence relations to build the one-to-one correspondence. Once
the correspondence is demonstrated we show how to use it to define set-like
operations, ⊂, ∪, ∩, and \ (or −), that respect the b.p.p. This immediately
allows certain relationships, between b.p.p. satisfying sets of curves, to be
analysed.
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For the reader, we give a few of the results from [4] that are needed for
this paper.

Definition 1 (Manifold). We shall only consider manifolds, M, that are
paracompact, Hausdorff, connected, C∞-manifolds.

Definition 2. An embedding, φ : M → Mφ of M is an envelopment if Mφ

has the same dimension as M. Let Φ(M) be the set of all envelopments of
M.

Following the lead of [4] we work only with C1 piecewise curves. Note,
however, that since it is only accumulation points of images of curves that
are used in [4], it is possible to define the a-boundary using C0 curves. Since
the same is true of this paper, all results below will hold for C0 curves.

Definition 3 (Curves). A parametrised curve (or just curve) γ in the man-
ifold M is a C1 map γ : [a, b) → M where [a, b) ⊂ R, a < b ≤ ∞ and such
that its tangent vector γ′ : [a, b) → TγM vanishes nowhere on the interval
[a, b). We shall say that γ starts at γ(a) and is bounded if b <∞ otherwise
γ is unbounded.

A curve δ : [a′, b′) → M is a subcurve of γ if a ≤ a′ < b′ ≤ b and
δ = γ|[a′,b′). That is a curve δ is a subcurve of γ if δ is the restriction of γ
to some right-half open interval of [a, b). We shall denote this by δ < γ. If
a′ = a and b′ < b we shall say that γ is an extension of δ.

A change of parameter is a monotone increasing surjective C1 function,
s : [a, b) → [a′, b′). A curve δ is obtained from the curve γ if δ = γ ◦ s.

Note that our definition of < considers the parameterisation chosen for
γ. That is if δ(t) < γ(t) then we know that δ(t) 6< γ(2t). Another way to
say this is that we draw a distinction between reparameterisations of the
same image of ‘a curve’. Hence the relation < is very fine.

Definition 4 (Bounded parameter property). A set C of parameterised
curves is said to have the bounded parameter property (or b.p.p.) if the
following properties are satisfied;

1. For all p ∈ M there exits γ : [a, b) → M ∈ C so that p ∈ γ([a, b)).

2. If γ ∈ C and δ < γ then δ ∈ C.

3. For all γ, δ ∈ C, if δ is obtained from γ by a change of parameter then
either both curves are bounded or both are unbounded.
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Only the relative bounded or unboundedness of curves is important in
definition 4. Indeed from definitions 28, 31 and 37 of [4] it is clear that
we need not pay close attention to the domain of any curve. We only need
know the curve’s image and whether it is bounded or unbounded. Thus the
relation < is, in this sense, too fine for the a-boundary. In most uses of the
a-boundary classification the b.p.p. satisfying set is fixed and nuanced points
about distinctions between the domains of curves and their images is unim-
portant. It is, however, an important point when considering relationships
between b.p.p. satisfying sets, as we shall see below.

The following definitions are inspired from [4]. They simplify the results
that follow.

Definition 5. Let φ ∈ Φ and C be a set of curves with the b.p.p. Define
App(φ, C) to be the the set of points p ∈ ∂φ(M) = φ(M) − φ(M) so that
there exists γ : [a, b) → M ∈ C such that p is an accumulation point of
φ(γ[a, b)). The set App(φ, C) is the set of points that are approached by at
least one curve in C. Define Nonapp(φ, C) by Nonapp(φ, C) = ∂φ(M) −
App(φ, C). This is the set of points that are not the accumulation point of
any curve in C.

Definition 6. Let φ ∈ Φ and C be a set of curves with the b.p.p. De-
fine AppSing(φ, C) to be the set of points p ∈ ∂φ(M) so that p ∈ App(φ, C)
and there exists γ : [a, b) → M ∈ C, b ∈ R so that p is an accumula-
tion point of φ(γ([a, b))). That is p ∈ AppSing(φ, C) if and only if p is
approached by a bounded curve. We use the symbol AppSing(φ, C) as ele-
ments of AppSing(φ, C) can be either regular or singular boundary points, see
definition 37 of [4]. Let AppInf(φ, C) = App(φ, C)−AppSing(φ, C). Elements
of AppInf(φ, C) are either regular boundary points or points at infinity, see
definition 31 of [4].

It is the sets App(φ, C), Nonapp(φ, C), AppSing(φ, C) and AppInf(φ, C)
that are used to give the classification. See definitions 28, 31 and 37 of [4]
for more detail on this. Hence when working with b.p.p. satisfying sets we
really only care about the boundedness of curves and their limit points.

2 Inextendible curves and boundary parameter prop-

erty satisfying sets

As mentioned, we shall show that every b.p.p. satisfying set of curves corre-
sponds to a set of inextendible curves that are not contained in a compact
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set and satisfy a technical condition equivalent to condition 3 of definition
4. This demonstrates that the structure of b.p.p. satisfying sets of curves is,
in fact, very simple. Just pick your favorite collection of inextendible curves
that travel to infinity and, with a little work, you have a b.p.p. satisfying set
of curves. When choosing particular inextendible curves it is easy to choose
them so that the necessary technical condition is true. That is, you have a
set of curves that can be used to classify the a-boundary of a spacetime.

The basic idea is that once you have some collection of inextendible
curves that are not contained in a compact region, it is possible to fill in the
“gaps” so as to ensure that the set satisfies the b.p.p. Since the way in which
the “gaps” are filled makes no difference to the a-boundary classification this
method ensures that all b.p.p. satisfying sets can be constructed in this way.
At least, all b.p.p. satisfying sets can be constructed up to an equivalence
relation that removes the dependence on how the “gaps” are filled.

We start by defining how to construct a particular b.p.p. satisfying set
of curves. Given any p ∈ M there exists a normal neighbourhood Vp so that
p ∈ Vp and Vp is compact. Choose any v ∈ TpM and let γp : [−ǫ, ǫ) → M
be the unique geodesic lying in Vp so that γp(0) = p and γ′p(0) = v. Let
CNorm = {δ a curve : ∃γp so that δ < γp}.

For future reference let CNorm(U) = {δ a curve : ∃p ∈ U ∃γp so that
δ < γp}. That is CNorm(U) is the restriction of our construction to include
only curves γp for the points in some U ⊂ M.

Definition 7. Let CNorm and CNorm(U) be defined as above.

Proposition 8. The set CNorm satisfies the b.p.p. In addition all curves
δ ∈ CNorm have bounded parameter.

Proof. 1. For all p ∈ M the curve γp ∈ CNorm is such that p ∈ γp.

2. Let δ ∈ CNorm and let β < δ. Since δ ∈ CNorm there exists γp ∈ C so
that δ < γp. We know that β < δ < γp and therefore, by construction,
β ∈ CNorm.

3. Let δ : [a, b) → M ∈ CNorm then there must exist γp : [−ǫ, ǫ) → M ∈
CNorm so that δ < γp. By definition, this implies that [a, b) ⊂ [−ǫ, ǫ)
and therefore that δ has bounded parameter. Suppose that there exists
µ : [p, q) → M ∈ CNorm so that δ and µ are obtained from each other
by a change of parameter. Since δ, µ ∈ CNorm we know that both must
be bounded.

Therefore CNorm satisfies the b.p.p. and all curves in CNorm are bounded.
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Sets of curves with the b.p.p. such as above are not useful for the abstract
boundary classification as they make no distinction between approachable
and non-approachable boundary points for envelopments of M.

Proposition 9. The set Nonapp(φ, CNorm) is equal to ∂φ(M) for all φ ∈
Φ(M).

Proof. By definition we know that Nonapp(φ, CNorm) ⊂ ∂φ(M) so we need
only show that ∂φ(M) ⊂ Nonapp(φ, CNorm).

Let p ∈ ∂φ(M) if p 6∈ Nonapp(φ, CNorm) then p ∈ App(φ, CNorm). Thus
there exists δ : [a, b) → M ∈ CNorm so that p is a limit point of the curve
φ ◦ δ. We may choose {ti} ⊂ [a, b) so that φ ◦ δ(ti) → p. By construction
the sequence {δ(ti)} cannot have any limit points. Since δ ∈ CNorm there
exists γq : [−ǫ, ǫ) → M, for some q so that γq([−ǫ, ǫ)) ⊂ Vq and δ < γq.
We can conclude that {δ(ti)} ⊂ γq([−ǫ, ǫ)) ⊂ Vq which is compact. Hence
{δ(ti)} must have a limit point. Since this is a contradiction we know that
p ∈ Nonapp(φ, CNorm) as required.

Thus from the point of view of the a-boundary CNorm provides no infor-
mation. Hence given a set of inextendible curves S that are not contained
in a compact set we can add curves from CNorm(U), for some suitable U , to
S to get a set which satisfies conditions 1 and 2 of definition 4 and which
gives the same a-boundary information as S. We will use this latter, for the
moment we prove a more useful result than proposition 9.

Proposition 10. Let γ be a curve in M then γ is compact if and only if
for all φ ∈ Φ, ∂φ(M) ∩ φ ◦ γ = ∅.

Proof. Let γ : [a, b) → M be a curve. Suppose that γ is compact and
let p ∈ ∂φ(M) ∩ φ ◦ γ, from some φ ∈ Φ. The same argument used in
the proof of proposition 9 can be used to derive a contradiction. Hence
∂φ(M) ∩ φ ◦ γ = ∅.

Suppose that for all φ ∈ Φ, ∂φ(M) ∩ φ(γ) = ∅ and that γ([a, b)) is
not compact. Then there exists a sequence {xi} ⊂ γ([a, b)) with no limit
points in M. By the Endpoint Theorem (see [7]) there exists ψ ∈ Φ(M)
and x ∈ ∂ψ(M) so that {ψ(xi)} → x. Then x ∈ ∂ψ(M) ∩ ψ ◦ γ which is a
contradiction. Thus γ([a, b)) is compact.

Corollary 11. Let C be a set of b.p.p. curves so that for all γ ∈ C, γ is
extendible, then Nonapp(φ, C) = ∂φ(M) for all φ ∈ Φ(M).
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Proof. If γ : [a, b) → M is extendible then there exists δ : [a, b′) → M,
b < b′, so that γ = δ|[a,b). Then γ = δ([a, b]) and thus must be compact.
Therefore for all γ ∈ C we know that γ is compact. This implies that for all
γ ∈ C and for all φ ∈ Φ we know that ∂φ(M) ∩ φ ◦ γ = ∅, by proposition
10. By definition this implies that App(φ, C) = ∅. Hence Nonapp(φ, C) =
∂φ(M).

Proposition 10 and corollary 11 prove our claim that the a-boundary is
only interested in b.p.p. sets that contain inextendible curves, γ, that are
not contained in a compact set. This is an important point as we use this
to show that b.p.p. satisfying sets are in some sense the same as sets of
inextendible curves that are not contained in a compact set.

Definition 12. Let BPP (M) be the set of all sets of curves with the b.p.p.
That is BPP (M) = {C : C is a set of curves with the b.p.p.}.

Remember that we draw a distinction between curves that may have
the same image, yet different domains. Therefore the set BPP (M) will
contain multiple sets with curves that have the same images but different
domains. For example given C ∈ BPP (M). We can define a new b.p.p.
satisfying set of curves by C′ = {γ(t − 1) : γ ∈ C}. Since we have not
changed the “boundedness” of any curve in C, from the point of view of
the a-boundary the sets C and C′ are considered to be the same. That
is App(φ, C) = App(φ, C′) and AppSing(φ, C) = AppSing(φ, C

′) for all φ ∈ Φ.
Thus BPP (M) will contain multiple copies of each b.p.p. satisfying set that
from the view point of the a-boundary are redundant. We deal with this
issue below.

Definition 13. Let X(M) be the set of inextendible curves that are not
contained in a compact set. Let Xb.p.p. (M) be the set of subsets of X(M)
such that for all S ∈ Xb.p.p. (M) and for all γ : [a, b) → M, δ : [p, q) →
M ∈ S, if there exists c, r ∈ R and a change of parameter s : [c, b) → [r, q)
so that γ|[r,q) ◦ s = δ|[c,b) then either both γ and δ are bounded or both are
unbounded.

The technical condition in the above definition is to prevent us from
choosing subsets of X(M) which are inappropriate from the point of view
of the a-boundary. It is a translation of part 3 of definition 4 to subsets of
X(M). Hence the subscript b.p.p. Note that in order to accommodate our
distinction between curves with the same image but different domains, given
by the relation <, we need to include many more sets of curves in X(M)
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than strictly necessary. In effect this is the same problem with BPP (M),
mentioned above.

Proposition 14. There exists a function f : BPP (M) → Xb.p.p. (M),
given by f(C) = X(M) ∩ C.

Proof. The function is certainly well defined and by definition of C we know
that X(M) ∩ C ∈ Xb.p.p. (M).

The function f takes a b.p.p. satisfying set and extracts the inextendible
curves that are not contained in a compact set. That is it extracts the curves
that are important with regards to the a-boundary classification using C.
We now show how to construct a b.p.p. satisfying set from an element of
Xb.p.p. (M).

Definition 15. Given a set of curves S let Sp = {p ∈ M : ∃γ : [a, b) →
M ∈ S so that p ∈ γ([a, b))}.

Thus Sp is the set of all points in the manifold that are contained in the
image of some curve in S.

Proposition 16. Let S ∈ Xb.p.p. (M), then we can define a function g :
Xb.p.p. (M) → BPP (M) by letting

g(S) = {δ : ∃γ ∈ S δ < γ} ∪ CNorm(M− Sp).

Proof. As before, it is clear that g is well defined, so we must only check that
g(S) satisfies the b.p.p. We must check the three conditions of definition 4.

1. Let p ∈ M. If p ∈ Sp then there exists α : [a, b) → M ∈ S so
that p ∈ α([a, b)). Since α < α we know that α ∈ g(S). If p 6∈ Sp
then p ∈ M− Sp then by definition of CNorm(M− Sp) we know that
there must exist some γp : [−ǫ, ǫ) → M ∈ CNorm(M − Sp) so that
p ∈ γp([−ǫ, ǫ)), as required.

2. Let α ∈ g(S) and β < α. We know that either α ∈ {δ : ∃γ ∈ S δ < γ}
or α ∈ CNorm(M− Sp). If α ∈ {δ : ∃γ ∈ S δ < γ}, then by definition
β ∈ {δ : ∃γ ∈ S δ < γ}. Likewise if α ∈ CNorm(M − Sp) then by
the definition of CNorm(M− Sp) we know that β ∈ CNorm(M− Sp) as
required.

3. Let α : [a, b) → M, β : [p, q) → M ∈ g(S) be such that β and α are
obtained from each other by a change of parameter s : [a, b) → [p, q),
that is α ◦ s = β.
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Suppose that β, α ∈ CNorm(M− Sp) then from corollary 11 we know
that both must be bounded.

Suppose that β ∈ {δ : ∃γ ∈ S δ < γ}, α ∈ CNorm(M − Sp). Since
β ∈ {δ : ∃γ ∈ S δ < γ} there exists γx : [p′, q′) → M ∈ S so that
β < γx, that is [p, q) ⊂ [p′, q′) and β = γx|[p,q). Since γx ∈ S it must

be the case that γx([p′, q′)) is not compact. As α ∈ CNorm(M − Sp)

we know that α([a, b)) is necessarily compact. Hence as α([a, b)) =
α ◦ s([p, q)) = β([p, q)) we know that β([p, q)) must be compact. Since
β([p, q)) ⊂ γx([p′, q′)) and γx([p′, q′)) is not compact we can conclude
that [p, q) is a proper subset of [p′, q′) and in particular that q < q′.
Hence q ∈ R and therefore β must be bounded.

Now suppose β, α ∈ {δ : ∃γ ∈ S δ < γ}. As α ∈ {δ : ∃γ ∈ S δ <

γ} there must exist γy : [a′, b′) → M ∈ S so that γy([a′, b′)) is not
compact, [a, b) ⊂ [a′, b′) and α = γy|[a,b). Let γx : [p′, q′) → M be as
above.

If q < q′ then β([p, q)) is compact and β([p, q)) = α ◦ s([p, q)) =
α([a, b)) must also be compact. Therefore b < b′ and α is bounded.
Applying the same argument for α shows that q < q′ if and only if
b < b′. Thus, in this case, both β and α are bounded.

Thus we need only now consider the case when q = q′ and b = b′. We
see that γx|[p,q′) = β = α ◦ s = γy|[a,b′) ◦ s. Since γx, γy ∈ S from
the technical condition in definition 13 we know that γx and γy are
either both bounded or both unbounded. Since q = q′ and b = b′ the
same applies to α and β. That is either both are bounded or both are
unbounded, as required.

We have the following lemma which implies that f ◦ g(S) = S.

Lemma 17. Let S ⊂ X(M) then
(

{δ : ∃γ ∈ S δ < γ} ∪ CNorm(M− Sp)
)

∩X(M) = S

Proof. The intersection CNorm(M−Sp)∩X(M) must be empty by corollary
11. Let δ ∈ {δ : ∃γ ∈ S δ < γ} then there exists γ ∈ S so that δ < γ. If
δ 6= γ then δ is extendible and δ is contained in a compact set. Thus we
know that δ 6∈ X(M). If, however, δ = γ then γ ∈ S and as S ⊂ X(M) by
definition, we can conclude that S = S ∩X(M). Therefore

(

{δ : ∃γ ∈ S δ < γ} ∪ CNorm(M− Sp)
)

∩X(M) = S,
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as required.

Corollary 18. Let S ∈ Xb.p.p. (M) then f ◦ g(S) = S.

Proof. We can calculate that,

f ◦ g(S) = f ({δ : ∃γ ∈ S δ < γ} ∪ CNorm(M− Sp))

=
(

{δ : ∃γ ∈ S δ < γ} ∪ CNorm(M− Sp)
)

∩X(M)

= S,

by lemma 17 as required.

We have demonstrated that only the curves in an b.p.p. satisfying set
that are also in X(M) provide information regarding the classification of
a-boundary points. We have also shown how sets of curves in Xb.p.p. (M)
correspond to b.p.p. satisfying sets of curves. We have not shown that there
is a one-to-one correspondence between the sets BPP (M) and Xb.p.p. (M),
however. There are two problems preventing this. The first comes from the
fineness of <. The second because given an element of Xb.p.p. (M) there
are multiple ways to add additional extendible curves so that definition 4 is
satisfied. From above, however, we know that the choices related to these
problems are immaterial, therefore it makes sense to define an equivalence
relations on BPP (M) and Xb.p.p. (M), which remove these choices. The
result will be the desired one-to-one correspondence.

3 Formalising the one-to-one correspondence

3.1 The obvious equivalence relation

The obvious choice, from the point of view of the a-boundary, is to say that
two b.p.p. satisfying sets of curves, C and D, are equivalent if App(φ, C) =
App(φ,D) and AppSing(φ, C) = AppSing(φ,D) for all φ ∈ Φ. This ensures
that C and D give the same classification of boundary points.

Unfortunately under this equivalence relation g is not guaranteed to re-
main injective. The necessary example is, predictably, given by the Misner
spacetime, [8]. The reason why is very interesting and highlights an im-
portant area of research for the Abstract Boundary. We don’t go into the
details here. We do, however, have the following result, which provides some
guidance.
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Lemma 19. Let C ∈ BPP (M) and let D = g ◦ f(C). Then App(φ, C) =
App(φ,D) and AppSing(φ, C) = AppSing(φ,D) for all φ ∈ Φ.

Proof. Let p ∈ App(φ, C) then there exists γ ∈ C so that p is an accumulation
point of φ ◦ γ. Since p ∈ ∂φ(M) we know that γ must be inextendible and
not contained in a compact region. That is γ ∈ f(C). By definition we then
know that γ ∈ g ◦ f(C). That is γ ∈ D so that p ∈ App(φ,D). We note that
if p ∈ AppSing(φ, C) then there exists γ ∈ C so that γ is bounded and p is
an accumulation point of φ ◦ γ. By the same argument γ ∈ D and therefore
p ∈ AppSing(φ,D) as required.

This suggests that to solve the failure of g to remain injective we should
define an equivalence relation on X(M) as well. Hence we make the follow-
ing definitions.

Definition 20. Let ≈1 be the equivalence relation on BPP (M) given by
C ≈1 D if and only if for all φ ∈ Φ, App(φ, C) = App(φ,D) and AppSing(φ, C) =
AppSing(φ,D). We denote the equivalence class of C by [C]1.

Definition 21. Let ≡1 be the equivalence relation on X(M) given by S ≡1

P if and only if g(S) ≈1 g(P ). We denote the equivalence class of S by [S]1.

Both equivalence relations are clearly well defined, so we can now show
that the induced functions are bijective and mutually inverse.

Theorem 22. The induced functions f1 : BPP (M)
≈1

→ X(M)
≡1

and g1 :
X(M)
≡1

→ BPP (M)
≈1

are bijective and mutually inverse.

Proof. We need to show that f1 and g1 are well-defined. Suppose that
C ≈1 D we need to show that f(C) ≡1 f(D). That is we need to show that
g ◦ f(C) ≈1 g ◦ f(D). From lemma 19, however, we know that g ◦ f(C) ≈1

C ≈1 D ≈1 g ◦ f(D) as required. Likewise suppose that S ≡1 P we need to
show that g(S) ≈1 g(P ), but this follows directly from definition 21. Hence
f1 and g1 are well defined.

We now show that f1 ◦ g1([S]1) = [S]1 and g1 ◦ f1([C]1) = [C]1. Let
S ∈ Xb.p.p. (M), then we can calculate that

f1 ◦ g1([S]1) = [f ◦ g(S)]1

=
[(

{δ : ∃γ ∈ S δ < γ} ∪ CNorm(M− Sp)
)

∩X(M)
]

1

= [S]1,
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by lemma 17 as required. Let [C]1 ∈
BPP (M)

≈1
, from lemma 19 we know that

g ◦ f(C) ≈1 C so that

g1 ◦ f1([C]1) = [g ◦ f(C)]1

= [C]1,

as required. Therefore f1 and g1 are both bijective are mutually inverse.

One of the reasons for investigating the link between BPP (M) and
Xb.p.p. (M) is to derive a simple description of b.p.p. satisfying sets. It
is therefore unfortunate that we have been forced to use ≡1. The defi-
nition of ≡1, definition 21, prevents easy computation of the equivalence
classes of Xb.p.p. (M). This almost defeats the purpose of using elements of
Xb.p.p. (M).

We have been put into this situation by defining ≈1 as we have. While
this is the most sensible equivalence relation it may not be the best. At it’s
most base level the reason for this difficulty boils down to having no easy
way to distinguish classes of curves based on their limit points in any envel-
opment. Fortunately there is another alternative which gives us better tools
for when using elements of Xb.p.p. (M), but is not quite as mathematically
nice as ≈1.

3.2 The computationally nice equivalence relation

If we are willing to forgo the insistence that b.p.p. satisfying sets C and D
must be identified if

App(φ, C) = App(φ,D)

and
AppSing(φ, C) = AppSing(φ,D).

Then another pair of equivalence relations can be investigated.
Rather than identifying b.p.p. satisfying sets based on limit points we

can identify them based on images of curves. The result is clearer and
allows us to work with elements of BPP (M) via elements of Xb.p.p. (M).
This will still remove the unnecessary fineness of <. Since we would also
like to remove the distinction between different ways of adding extendible
curves to elements of Xb.p.p. (M), it makes sense to start with the following
definition.

Definition 23. Define an equivalence relation ≡2 on the set Xb.p.p. (M) by
S ≡2 P if and only if

∀γ : [a, b) → M ∈ S ∃δ : [p, q) → M ∈ P, c, r ∈ R
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so that γ([c, b)) = δ([r, q)) and either both γ, δ are bounded or unbounded,
and,

∀δ : [p, q) → M ∈ P ∃γ : [a, b) → M ∈ S, c, r ∈ R

so that γ([c, b)) = δ([r, q)) and either both γ, δ are bounded or unbounded.
That is S ≡2 P if and only if the images of all curves in S is equal to

the images of all curves in P and that the boundedness and unboundedness
of curves that have the same image, excluding some finite length portion of
the domains of each curves, are the same.

We shall write the equivalence class of S by [S]2.

Lemma 24. The equivalence relation ≡2 on Xb.p.p. (M) is well defined.

Proof. Let S ∈ Xb.p.p. (M) then as γ < γ for all γ ∈ S we can see that
S ≡2 S.

It is clear that the symmetry of ≡2 is satisfied by definition.
Suppose that S,P,Q ∈ Xb.p.p. (M) are such that S ≡2 P and P ≡2 Q.

Let γ : [a, b) → M ∈ S then there exists δ : [p, q) → M ∈ P and c, r ∈ R so
that γ([c, b)) = δ([r, q)) and either both γ and δ are bounded or unbounded.
Likewise as δ ∈ P there exists µ : [u, v) → M ∈ Q and s,w ∈ R so that
δ([s, q)) = µ([w, v)) and either both are bounded or unbounded. Without
loss of generality assume that r < s, then as γ([c, b)) = δ([r, q)) there must
exist d ∈ R so that γ([d, b)) = δ([s, q)) = µ([w, v)). If γ is bounded then
δ must be bounded and therefore µ must also be bounded. Likewise, if
γ is unbounded then µ must be unbounded. The reverse direction follows
similarly.

Therefore ≡2 is well defined.

Definition 25. Define C,D ∈ BPP (M) to be equivalent, denoted C ≈2 D,
if and only if f(C) ≡2 f(D). It is clear from the definition that this provides
a well-defined equivalence relation. Denote the equivalence class of C by [C]2.

In effect we are saying that two b.p.p. satisfying sets of curves are equiv-
alent if the subset of inextendible non-compact curves contained in each are
equivalent. This makes sense as we know from proposition 10 that only the
inextendible curves that are not contained in a compact set tell us anything
about the a-boundary and the set of these curves is precisely the set f(C).
The following two results tell us how to interpret the equivalence relation
≈2 and therefore also the equivalence relation ≡2.

Proposition 26. Let C,D ∈ BPP (M) then C ≈2 D implies that C ≈1 D.

13



Proof. Suppose that C ≈2 D and let p ∈ App(φ, C). Then there exists γ ∈ C
so that p is an accumulation point of φ ◦ γ. Since p ∈ ∂φ(M) it must be the
case that γ ∈ f(C). Since C ≈2 D we know that f(C) ≡2 f(D). Hence there
must exist δ ∈ f(D) so that the images of γ and δ agree, except on some
compact portion. Thus pmust be an accumulation point of φ◦δ and therefore
p ∈ App(φ,D). Moreover, if γ is bounded by definition 23 δ must also
be bounded. Therefore p ∈ AppSing(φ, C) implies that p ∈ AppSing(φ,D).
Therefore C ≈1 D as required.

Thus ≈2⊂≈1, so that if C ≈2 D then

App(φ, C) = App(φ,D)

and
AppSing(φ, C) = AppSing(φ,D)

for all φ ∈ Φ. The Misner spacetime gives an example showing that this
inclusion is proper. We now show that the functions f2 and g2 induced by
≈2 and ≡2 are bijective and mutually inverse.

Proposition 27. The functions

f2 :
BPP (M)

≈2
→

Xb.p.p. (M)

≡2

and

g2 :
Xb.p.p. (M)

≡2
→

BPP (M)

≈2

are bijective and mutually inverse.

Proof. We first show that f2 and g2 are well defined. Let C ≈2 D, we must
show that f(C) ≡2 f(D). This is true by definition and therefore f2 is well-
defined. Now let S ≡2 P , then we know that f ◦ g(S) = S from corollary
18. Hence f(g(S)) = S ≡2 P = f(g(P )) so by definition g(S) ≈2 g(P ) as
required. Thus the function g2 is well-defined.

We now show that f2 ◦ g2([S]2) = [S]2 and g2 ◦ f2([C]2) = [C]2. Let

[C]2 ∈ BPP (M)
≈2

and note that f ◦ g ◦ f(C) = f(C) by corollary 18. By
definition 25 we know that g ◦ f(C) ≈2 C or rather that g2 ◦ f2([C]2) = [C]2.
Let S ∈ Xb.p.p. (M) then,

f2 ◦ g2([S]2) = f2

(

[{δ : ∃γ ∈ S δ < γ} ∪ CNorm(M− Sp)]2

)

=
[

(

{δ : ∃γ ∈ S δ < γ} ∪ CNorm(M− Sp)
)

∩X(M)
]

2

= [S]2.
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Thus we see that f2◦g2([S]2) = [S]2 and g2◦f2([C]2) = [C]2. This is sufficient
to prove that f2 and g2 are bijective and mutually inverse as required.

Thus using ≈2 and ≡2, rather than ≈1 and ≡1, we still get a one-to-one
correspondence. It is, however, easier to work with ≡2 and therefore easier
to exploit the structure of elements of BPP (M) outlined here.

The downside of ≈2 is that there might be sets C,D ∈ BPP (M) so that
C ≈1 D but C 6≈2 D. The two classes of null geodesics and two maximal
embeddings of the Misner space discussed in [9, page 171] give an explicit
example of this. That is there might exist sets C and D so that the classi-
fication of a-boundary points is the same, but ≈2 fails to encode this. The
existence of C and D will depend on the manifold M and its metric. Because
of how ≈2 is defined this can only occur when the curves in C and D do not
have the same images, but do have the same limit points.

4 Set-like operations that respect the b.p.p.

Using the structures given above it is now possible to define set-like oper-
ations on BPP (M) so that the b.p.p. is preserved. For example we can
now define C ∪ D. Under the usual set operation the result of C ∪ D is not
guaranteed to satisfy the b.p.p. Since the normal set operations are easier
to use on Xb.p.p. (M), the basic idea is to exploit this by defining the new
operations on BPP (M) by using f and g.

Let ≈ and ≡ be either of the two pairs of equivalence relations ≈1 and
≡1 or ≈2 and ≡2. Let [C] be either [C]1 or [C]2 and let f∗ and g∗ be either
f1 and g1 or f2 and g2, respectively.

An important point is that it does not make sense to define the set-
like operations on BPP (M) on all elements of BPP (M). For example if
γ : [0,∞) → M ∈ C and γ ◦ arctan(t) ∈ D and γ ∈ X(M) then it makes no
sense to define C ∪ D. Should γ or γ ◦ arctan be in C ∪ D? We can’t have
both as they are reparametrisations of each other and one is bounded while
the other in unbounded. Thus we give the following definition, which allows
for this situation.

Definition 28. Let C,D ∈ BPP (M) we make the following definitions.

Subset We say that C is a subset of D, denoted C ⊂≈ D, if and only if
f∗([C]) ⊂ f∗([D]).

Union A union of the sets C and D, is defined as g∗(S), where S is a
maximal element of Xb.p.p. (M) so that [S] ⊂ f∗([C])∪ f∗([D]). Where
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there exists a maximum S we shall refer to g∗(S) as the union of
the sets C and D and denote it by C ∪≈ D. In this case C ∪≈ D =
g∗ (f∗([C]) ∪ f∗([D])).

Intersection An intersection of the sets C and D, is defined as g∗(S), where
S is a maximal element of Xb.p.p. (M) so that S ⊂ f∗([C]) ∩ f∗([D]).
Where there exists a maximum S we shall refer to g∗(S) as the in-
tersection of the sets C and D and denote it by C ∩≈ D. In this case
C ∩≈ D = g∗ (f∗([C]) ∩ f∗([D])).

Relative Complement A relative complement of the set C and D, is de-
fined as g∗(S), where S is a maximal element of Xb.p.p. (M) so that
S ⊂ f∗([C])− f∗([D]). Where there exists a maximum S we shall refer
to g∗(S) as relative complement of the sets C and D and denote it by
C −≈ D or C\≈D. In this case C −≈ D = g∗ (f∗([C]) − f∗([D])).

As mentioned above it maybe the case that, for example, f∗([C])∪f∗([D])
is not in Xb.p.p. (M). Hence the definitions appeal to the existence of a
largest subset, S, of f∗([C]) ∪ f∗([D]) that is in Xb.p.p. (M). Such a subset
must exist by Zorn’s lemma and the fact that the union of a chain of sets in
Xb.p.p. (M) is also in Xb.p.p. (M). Note that this only implies the existence
of maximal subsets and not necessarily a maximum subset.

In the case that f∗([C]) ∪ f∗([D]) is not in Xb.p.p. (M) it is natural that
a choice needs to be made, since we must include some curves and exclude
others, as mentioned before the definition. Thus each maximal subset gives
us one of those possible choices. Where f∗([C]) ∪ f∗([D]) is in Xb.p.p. (M),
however, there will be a maximum subset, namely f∗([C]) ∪ f∗([D]), thus
the definition above fits with our intuition regarding b.p.p. satisfying sets.

5 Conclusion and Future Work

We have shown that sets that satisfy the b.p.p. are the same as sets of
inextendible curves that are not contained in a compact region, modulo a
technical condition and a pair of equivalence relations. We have also shown
how to define the usual set relations on the set BPP (M). These relations
and the equivalence provide new ways to explore the effect of different choices
of b.p.p. satisfying sets on the a-boundary classification.
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