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Expanding perfect fluid generalizations of the C-metric
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We reexamine Petrov type D gravitational fields generated by a perfect fluid with spatially homo-
geneous energy density and in which the flow lines form a timelike non-shearing and non-rotating
congruence. It is shown that the anisotropic such spacetimes, which comprise the vacuum C-metric
as a limit case, can have non-zero expansion, contrary to the conclusion in the original investiga-
tion by Barnes [1]. This class consists of cosmological models with generically one and at most
two Killing vectors. We construct their line element and discuss some important properties. The
methods used in this investigation incite to deduce testable criteria regarding shearfree normality
and staticity op Petrov type D spacetimes in general, which we add in an appendix.

PACS numbers: 04.20.-q, 04.20.Jb, 04.40.Nr

1. INTRODUCTION

The C-metric is a well-known exact solution of Ein-
stein’s vacuum equation with zero cosmological constant.
The static region of the corresponding spacetime was first
described by Weyl [2]. At about the same time Levi-
Civita [3] constructed its line element in closed form, ar-
riving at essentially one cubic polynomial with two pa-
rameters as the metric structure function. The C-metric
is a Petrov type D solution for which at each space-
time point both Weyl principal null directions (PNDs)
are geodesic, non-shearing, non-rotating but diverging;
it thus belongs to the Robinson-Trautman class of so-
lutions and was rediscovered as such [4]. The label ‘C’
derives from the invariant classification of static degen-
erate Petrov type D vacuum spacetimes by Ehlers and
Kundt [5]. The importance of this solution as summa-
rized by Kinnersley and Walker [6], is threefold First, the
C-metric describes a spacetime with only two Killing vec-
tors which can be fully analyzed. Next, it is an ‘example
of almost everything’, most notably it describes a radia-
tive, locally asymptotically flat spacetime, whilst con-
taining a static region. The C-metric is contained in the
class of boost-rotation-symmetric spacetimes [7, 8], which
are the only axially symmetric, radiative and asymptot-
ically flat spacetimes with two Killing vectors. Finally,
the solution has a clear physical interpretation as the
anisotropic gravitational field of two Schwarzschild black
holes being uniformly accelerated in opposite directions
by a cosmic string or strut, provided that mα < 1/

√
27,

where the mass m and acceleration α are equivalents of
the two essential parameters of Levi-Civita [6, 9].

Generalizations of the C-metric have been widely con-
sidered. Adding a cosmological constant Λ is straightfor-
ward, and we will henceforth refer with ‘C-metric’ to such
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Einstein spaces. Incorporating electromagnetic charge
q2 = e2+g2 is equally natural and leads to quartic struc-
ture functions [6]. Recently, the question how to include
rotation for the holes received a new answer [10, 11],
avoiding the NUT-like behavior of the previously con-
sidered ‘spinning C-metric’ [12, 13]. All these generaliza-
tions fit in the well-established class D of Petrov type D
Einstein-Maxwell solutions with a non-null electromag-
netic field possessing geodesic and non-shearing null di-
rections aligned with the PNDs [14, 15], which reduces
for zero electromagnetic field to the subclass D0 of Petrov
typeD Einstein spaces and which contains all well-known
4D black hole metrics. In fact, all D-metrics can be de-
rived by performing ‘limiting contractions’ [16] from the
most general member, the Plebianski-Demianski line ele-
ment [17], which exhibits two quartic structure functions
with six essential parameters m, α, q2, Λ, NUT param-
eter l [18] and angular momentum a. A physically com-
prehensive and simplified treatment can be found in [19],
also surveying recent work in this direction.

In this paper we present a new family of Petrov type
D, expanding and anisotropic perfect fluid (PF) gener-
alizations of the C-metric. The direct motivation and
background for this work is the following.

According to the Goldberg-Sachs theorem [20] the two
PNDs of any member of D0 are precisely those null di-
rections which are geodesic and non-shearing. Such a
member is purely electric (i.e. its Weyl scalar Ψ2 is real)
precisely when both PNDs are moreover non-twisting
(i.e. hypersurface-orthogonal (HO)). This is in particu-
lar the case for the C-metric. As we will show, it implies
the existence of an umbilical synchronization (US), i.e., a
non-shearing and non-rotating unit timelike vector field
(tangent to a congruence of observers). The importance
of USs in cosmology was stressed in [21]. If a congru-
ence of observers measuring isotropic radiation admits
orthogonal hypersurfaces, an US exists. Only small de-
viations from isotropy are seen in the cosmic microwave
background, and scalar perturbations of a Friedmann-
Lemaître-Robertson-Walker universe preserve the exis-
tence of an US [22]. In general, spacetimes admitting an
US have zero magnetic part of the Weyl tensor wrt it [23]
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and thus are either of Petrov type O, or purely electric
(PE) and of type D or I [16]. Conformally flat space-
times always admit USs (see e.g. (6.15) in [16]). Trüm-
per showed that algebraically general vacua with a US
are static [24]. Motivated by this result and by his own
work [25] on static PFs, Barnes [1] studied PF space-
times with a US tangent to their flow lines. He was able
to generalize Trümper’s result to such PFs and recovered
Stephani’s results on conformally flat PF solutions which
are either of generalized Schwarzschild type or of general-
ized Friedmann type (so called Stephani universes) [26].
The remaining type D solutions were integrated and in-
variantly partitioned, based on the direction of the gra-
dient of the energy density w relative to the PNDs and
the flow vector at each point. Class I, with w constant
on the hypersurfaces orthogonal to the flow lines and
thus the only class containing Einstein spaces as limit
cases, was further subdivided using the gradient of Ψ2

(cf. section § 2.2 for details). By solving the field equa-
tions, Barnes concludes that class ID, consisting of the
anisotropic class I models, has solely non-expanding so-
lutions. Hence, these PF solutions would not be viable as
a cosmological model. However, based on an integrabil-
ity analysis of class I in the Geroch-Held-Penrose (GHP)
formalism [27], we found that this conclusion cannot be
valid and this led to a detailed reinvestigation.

In this article the general line element of the full ID
class, as originally defined in [1], will be constructed, and
some elementary properties will be discussed. It contains
both the known non-expanding perfect fluid models and
the new expanding ones. We want to stress the following
point. The full class represents a PF generalization of the
C-metric in the naive sense that the C-metric is contained
as the Einstein space limit. The physical interpretation of
this fact is however not established. This would require to
exhibit this solution for small masses as a perturbation of
a known PF solution, just as the C-metric interpretation
of small accelerating black holes has been established in
a flat or (anti-)de Sitter background [6, 28–31].

However, the mathematical relation with the C-metric
is useful. As already deduced in [1], the PF solution is,
just as the C-metric, conformally related to the direct
sum of two 2D metrics. The fact that one part is equal
for the PF solution and the C-metric is helpful in the
analysis, e.g. we will show that (a part of) the axis of
symmetry can readily be identified as a cosmic string,
analogous to the cosmic string present in the C-metric.
The non-static spacetimes presented form exact perfect
fluid solutions with only this symmetry, and the analysis
appears to be within reach. For the expanding ID PF
models both the matter density w(t) and the expansion
scalar θ(t) can be arbitrary functions. This freedom is
displayed explicitly in the metric form, and makes the
solutions more attractive as a cosmological model.

The paper is organized as follows. In section 2 we
present the GHP approach to class I. We derive a closed
set of equations, construct suitable scalar invariants, in-
terpret the invariant subclassification of [1] and perform

a partial integration. At the end we provide alternative
characterizations for the Einstein space members. In sec-
tion 3 we first finish the construction of the general ID
line element in an elegant and transparent way, and point
out the calculative error of [1] in the original approach.
Finally the basic properties of the ID perfect fluid mod-
els are summarized. The work greatly benefited from the
use of the GHP formalism, which at the same time elu-
cidates the deviation of the C-metric. In appendix A we
provide a concise introduction to this formalism for the
non-expert reader. In appendix B, finally, we present cri-
teria for deciding when a Petrov typeD spacetime admits
a (rigid) US or is static.

Notation. For spacetimes (M, gab) we take (+ + + -)
as the metric signature and use geometrized units 8πG =
c = 1, where G is the gravitational coupling constant
and c the speed of light. Λ denotes the cosmological con-
stant. We make consistent use of the abstract Latin index
notation for tensor fields, as advocated in [32]. Round
(square) brackets denote (anti-)symmetrization, ηabcd is
the spacetime alternating pseudo-tensor and ∇cTab... des-
ignates the Levi-Civita covariant derivative of the tensor
field Tab.... One has

daf = ∇af, dbYa = ∇[bYa]

for the exterior derivative of a scalar field f , resp. one-
form field Ya, and we write

X(f) ≡ Xadaf, f,xi ≡ ∂xi
adaf

for the Leibniz action of a tetrad vector field Xa and xi-
coordinate vector field ∂xi

a. However, we use index-free
notation in line elements ds2 = gijdx

idxj . The specific
GHP notation is introduced in appendix A.

2. GHP APPROACH TO CLASS I

2.1. Definition and integrability

We consider Barnes’ class I [1], consisting of spacetimes
(M, gab) with the following properties:

(i) the spacetime admits a unit timelike vector field
ua (uaua = −1) which is non-shearing and non-
rotating, i.e., its covariant derivative is of the form

∇bua = θhab − u̇aub, hab ≡ gab + uaub, (1)

where the acceleration u̇a = ub∇bua and expansion
rate θ = ∇au

a are the remaining kinematic quan-
tities of ua;

(ii) the Weyl-Petrov type is D throughout;

(iii) the Einstein tensor has the structure

Gab = Suaub + pgab = wuaub + phab, (2)

Daw ≡ ha
b∇bw = 0, (3)
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i.e., the spacetime represents the gravitational field
of either a perfect fluid with shearfree normal four-
velocity ua, pressure p + Λ and spatially homoge-
neous energy density w − Λ (case S ≡ w + p 6= 0)
or a vacuum (Einstein space case S = 0, where
w = −p may be identified with Λ).

By virtue of condition (i) the Weyl tensor Cabcd of the
spacetime is purely electric wrt ua [23]:

Eab ≡ Cacbdu
cud 6= 0,

Hab ≡
1

2
ηacmnC

mn
bdu

cud = 0. (4)

The vector field ua is Weyl principal [16] which, in
conjunction with condition (ii), lies in the plane Σ of
Weyl PND’s at each point, i.e., Weyl principal null vec-
tors ka and la (subject to the normalization condition
kala = −1) and q = Q2 > 0 exist such that

ua =
1√
2q

(qka + la) . (5)

Within the GHP formalism (cf. appendix A) based on a
Weyl principal null tetrad (WPNT) (ka, la,ma,ma), q is
(-2,-2)-weighted and the conditions (i)-(iii) translate into

(i) : λ = qσ, (6)

µ− µ+ q(ρ− ρ) = 0, (7)

π + τ = qκ+ q−1ν, (8)

Þ′q − qÞq = −2q(µ− qρ), (9)

ðq = ð
′q = 0, (10)

(ii) : Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 6= Ψ2; (11)

(iii) : Φ01 = Φ12 = Φ02 = 0, (12)

8Φ11 = 4qΦ00 = 4q−1Φ22 = S, (13)

ðw = ð
′w = 0, Þ′w − qÞw = 0. (14)

The [ð, ð′](q) commutator relation yields

Ψ2 = Ψ2, (15)

which expresses (4), and we denote

Ψ ≡ −Eabvavb = 2Ψ2, va ≡ 1√
2q

(qka − la) . (16)

Combining (6)-(16) with the GHP Bianchi equations re-
sults in

κ = ν = 0, σ = λ = 0, (17)

ρ = ρ, µ = µ, π = −τ , (18)

ÞΨ = 3ρΨ, Þ′Ψ = −3µΨ, (19)

ðΨ = 3τΨ, ð
′Ψ = −3πΨ, (20)

Þ′S − qÞS = S(Þq − µ+ qρ), (21)

ðS = τS, ð
′S = τS, (22)

Þ′w = qÞw = −3S(µ− qρ)

2
. (23)

Herewith the Ricci equations reduce to

Þµ = −Þ′ρ (24)

= −ð
′τ + µρ+ ττ +

Ψ

2
+
w

3
− S

4
, (25)

Þ′µ = −µ2 − qS

4
, ðµ = ð

′µ = 0, (26)

Þρ = ρ2 +
S

4q
, ðρ = ð

′ρ = 0, (27)

Þτ = Þ′τ = 0, ðτ = τ2, (28)

−ðπ = ð
′τ = ðτ ≡ H

2
(29)

and the complex conjugates of (28), while the commu-
tator relations applied to a (wp, wq)-weighted scalar η
become

[Þ,Þ′]η = (wp + wq)

(

−ττ + Ψ

2
− w

6
+
S

4

)

η,(30)

[ð, ð′]η = (wp − wq)

(

−µρ+ Ψ

2
− w

6

)

η, (31)

[Þ, ð]η = (−τÞ + ρð+ wq ρτ)η, (32)

[Þ, ð′]η = (−τÞ + ρð′ + wp ρτ )η, (33)

[Þ′, ð]η = (−τÞ′ − µð+ wp µτ)η, (34)

[Þ′, ð′]η = (−τÞ′ − µð′ + wq µτ )η. (35)

Then the [ð, ð′](τ), [ð, ð′](τ ), [Þ, ð′](τ) and [Þ′, ð′](τ)
commutator relations imply

ðH = 2τ(H +Ψ−G), ð′H = 2τ(H +Ψ −G),
ÞH = ρ(H + F ), ÞH = −µ(H + F ),

(36)

where

F ≡ 2ττ , G ≡ 2µρ+
w

3
. (37)

One checks that the integrability conditions for the for-
mal system of PDE’s (9)-(35) are now identically satis-
fied, indicating that corresponding solutions exist. Those
for which ua is non-expanding additionally satisfy

θ ∼ µ− qρ = 0 (38)

(cf. (92) below). However, (38) does not follow as a con-
sequence of the ansätze; this implies the existence of ex-
panding anisotropic perfect fluid models in class I (§ 3).
Neither do the equations tell us about the sign of the
scalar invariant µρ; consistency with (38) requires that
µρ ≥ 0, which prevents the class I Einstein spaces to be
static in general (§ 2.3).

2.2. Metric structure and subclassification

The first, second and last parts of (17)-(18) precisely
account for the hypersurface-orthogonality of ka, la and
ma, respectively. Thus real scalar fields u, v, (zero-
weighted) and U , V ((−1,−1)- resp. (1, 1)-weighted),
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and complex scalar fields ζ (zero-weighted) and Z ((1,-
1)-weighted) exist such that

dau =
Ψ1/3

U
ka, dav =

Ψ1/3

V
la, daζ =

Ψ1/3

Z
ma. (39)

By (A10) this is equivalent to

Þ′u = −Ψ1/3/U, Þu = ðu = ð
′u = 0, (40)

Þv = −Ψ1/3/V, Þ′v = ðv = ð
′v = 0, (41)

ð
′ζ = Ψ1/3/Z, Þζ = Þ′ζ = ðζ = 0, (42)

ðζ = Ψ1/3/Z, Þζ = Þ′ζ = ð
′ζ = 0. (43)

The commutator relations (32)-(35) applied to u, v, ζ
and ζ then yield

ðU = ð
′U = ðV = ð

′V = 0, (44)

ÞZ = Þ′Z = ÞZ = Þ′Z = 0. (45)

Hence, when we take these fields as coordinates, (39)-
(45) imply that the zero-weighted fields UV and ZZ only
depend on (u, v), resp. (ζ, ζ), such that all class I metrics
are conformally related to direct sums of metrics on two-
spaces:

gab = Ψ−2/3(g⊥ab ⊕ gΣab), (46)

g⊥ab ≡ 2Ψ2/3m(amb) = 2ZZ(ζ, ζ)d(aζ db)ζ, (47)

gΣab ≡ −2Ψ2/3k(alb) = −2UV (u, v)d(au db)v. (48)

The line elements of g⊥ab and gΣab will be denoted by ds2⊥,
resp. ds2Σ.

In the case where such a two-space is not of constant
curvature, however, we will construct more suitable coor-
dinates in the sequel. Inspired by the GHP manipulations
(48)-(53) of [33] for type D vacua [47], we start this con-
struction by deducing suitable combinations of the scalar
invariants F , G, H and Ψ. From (A10), (14), (23) and
(28)-(37) it is found that

daF = 3Ψ1/3ϕαa, daG = 3Ψ1/3γ βa, (49)

daϕ = 2Ψ1/3xαa, daγ = 2Ψ1/3y βa, (50)

dax = Ψ1/3 αa, day = Ψ1/3 βa, (51)

where

αa ≡ τma + τma, βa ≡ µka − ρla (52)

are invariantly defined one-forms and

ϕ ≡ H + F

3Ψ1/3
, γ ≡ −H +Ψ+ F + 2G

3Ψ1/3
, (53)

x ≡ H +Ψ−G

3Ψ2/3
, y ≡ −H + 2Ψ+G

3Ψ2/3
. (54)

Consequently, the scalar invariants

C ≡ 3(ϕ− x2) = 3(γ − y2), (55)

D ≡ −x3 − Cx+ F = y3 + Cy −G. (56)

are constant (daC = daD = 0). From (54) and (56) we
conclude that F , G, H and Ψ are biunivocally related to
x, y, C and D, where

2ττ ≡ F = x3 + Cx+D, (57)

2µρ ≡ G− w

3
= y3 + Cy −D − w

3
, (58)

2ð′τ ≡ H = 2x3 + 3x2y + Cy −D, (59)

Ψ = (x+ y)3 6= 0. (60)

Barnes [1] partitioned class I according to the position
of the gradient ∇aΨ relative to Σ and Σ⊥. This relates
to the vanishing of the invariants ττ = −πτ or µρ, maxi-
mal symmetry of g⊥ab or gΣab and spatial rotation or boost
isotropy of gab, as follows.

First assume τ = 0. In this case it follows from (29)
and the first parts of (37) and (53)-(56) that x is constant
and

H = F = ϕ = 0, C = −3x2, D = 2x3,

Ψ−G = 3xΨ2/3. (61)

In combination with (18), (20) and the first parts of (51)-
(52) one gets

ττ = 0 ⇔ π = τ = 0 ⇔ x = const⇔ ∇aΨ ∈ Σ. (62)

The [ð, ð′] commutator relation applied to ζ, ζ and Z
imply ðZ = ð

′Z = 0 and ðð
′Z = 3xΨ2/3Z. Herewith

the Gaussian curvature of the two-space with metric g⊥ab
becomes

K⊥ = −(ZZ)−1(ln(ZZ)),ζζ = −Ψ−2/3
ðð

′(lnZZ)

= −Ψ−2/3
ð

(

ð′Z

Z

)

= −3x,

where the dual of (39) was used in the calculation. In con-
junction with the results of Goode and Wainwright [46],
we conclude that (62) yields the class I solutions which
are locally rotationally symmetric (LRS) of label II in the
Stewart-Ellis classification [34], characterized by g⊥ab hav-
ing constant curvature K⊥ = −3x. As well known (see
e.g. the appendix of [35]) the coordinates ζ and ζ may
then be adapted such that ZZ(ζ, ζ) = (1 +K⊥ζζ/2)−1

in (47), or an alternative form may be taken:

ds2⊥ =
2dζdζ

1 + K⊥

2 ζζ
= Y 2

⊥(dx
2
1 + cos(

√

k⊥x1)
2dx22),

K⊥ = k⊥Y
−2
⊥ , k⊥ ∈ −1, 0, 1. (63)

Now assume µρ = 0. It follows from (24)-(27) and the
second parts of (37) and (50)-(56) that

S = 0, G =
w

3
≡ Λ

3
, −H + 2Ψ +

Λ

3
= 3yΨ2/3,

γ = µ = ρ = 0, C = −3y2, D = −2y3 − Λ

3
. (64)
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In conjunction with (19) and the second parts of (51)-
(52) this implies

µρ = 0 ⇔ µ = ρ = 0 ⇔ y = const⇔ ∇aΨ ∈ Σ⊥. (65)

By a similar reasoning as in the case τ = 0 one concludes
that (65) yields the locally boost isotropic Einstein spaces
of Petrov type D, characterized by gΣab having constant
curvature KΣ = −3y, such that in this case one may take
UV (u, v) = (1−KΣuv/2)−1 in (48) and we have

ds2Σ = − 2dudv

1− KΣ

2 uv
= Y 2

Σ(dx
2
3 − cos(

√

kΣx3)
2dx24),

KΣ = kΣY
−2
Σ , kΣ ∈ −1, 0, 1. (66)

With the two-surface element written in the second form,
it is clear that

∂x4

a = −Ψ−2/3 cos(
√

kΣx3)
2dax4 (67)

is a HO timelike Killing vector field.
Four subclasses of class I thus arise, which were labeled

by Barnes as follows:

IA : τ = 0 = µρ, IB : τ = 0 6= µρ,

IC : τ 6= 0 = µρ, ID : τ 6= 0 6= µρ.

We proceed with the respective integrations. Notice that
in the joint case µρτ = 0 one has

2(ττ + µρ) = (x+ y)3 +K(x+ y)2 − w

3
, (68)

with K = K⊥ for τ = 0 and K = KΣ for µρ = 0. When
τ 6= 0 or µρ 6= 0 we may take x, resp. y as a coordinate,
where (51)-(52) and (60) imply

(x + y)(τma + τma) = dax, (69)

(x+ y)(µka − ρla) = day. (70)

In view of (46)-(48) and (60) it then remains to determine
suitable complementary coordinates for g⊥ab or gΣab.

For τ 6= 0, Frobenius’s theorem and (69) suggest to
examine whether zero-weighted functions φ and f exist
such that

i
x+ y

2ττ
(τma − τma) = fdaφ. (71)

This amounts to calculating the integrability conditions
of the system

Þφ = Þ′φ = 0, τðφ = −τð′φ = i
x+ y

2f
(72)

which turn out to be

Þf = Þ′f = 0, αa∇af = 0. (73)

These last equations have the trivial solution f = 1, for
which a solution φ of (72) is determined up to an irrele-
vant constant. We take φ as the coordinate complemen-
tary to x. On solving (69) and (71) with f = 1 for ma

and ma and using (57) we conclude that

ds2⊥ =
dx2

2ττ
+ 2ττdφ2, (74)

2ττ = x3 + Cx+D (75)

for classes IC and ID. Notice that, with the invariant
x taken as a coordinate, the metric solutions should be
restricted to spacetime regions where x3 + Cx + D > 0
for consistency with Lorentzian signature. Clearly,

∂φ
a = i

τma − τma

x+ y
=

2ττ

(x+ y)2
daφ, (76)

is a HO spacelike Killing vector field (KVF).
For µρ 6= 0 one analogously considers

ðψ = ð
′ψ = 0, µÞψ = ρÞ′ψ =

x+ y

2g
(77)

but the integrability conditions of this system are now

ðg = ð
′g = 0, βa∇ag = −gSµ

2 + q2ρ2

qµρ
. (78)

So g = 1 is only a solution in the Einstein subcase S = 0,
for which we then get

ds2Σ =
dy2

2µρ
+ 2µρdψ2, (79)

2µρ = y3 + Cy −D − Λ

3
(80)

with KVF

∂ψ
a =

µκa + ρla

x+ y
= − 2µρ

(x+ y)2
daψ, (81)

which is timelike for µρ > 0 and spacelike for µρ < 0. In
general, the second vector field in (81) is always HO: the
integrability conditions of (78) are checked to be identi-
cally satisfied, such that solutions g and a corresponding
solution ψ of (77) exist. However, taking ψ as a comple-
mentary coordinate of y eventually leads to a very com-
plicated system of coupled partial differential equations
for g = g(y, ψ), which is impossible to solve explicitly.
We shall remedy this in section 3.1 but now discuss char-
acterizing features of the Einstein space limit cases.

2.3. Characterizations of PE Petrov type D

Einstein spaces

All Petrov type D Einstein spaces, constituting the
class D0, are explicitly known. The line elements are ob-
tained by putting the electromagnetic charge parameter
Φ0, resp. e2 + g2 equal to zero in the D-metrics given
by Debever et al. [14] or García [15]. These coordinate
forms generalize and streamline those found by Kinners-
ley [36] in the Λ = 0 case.
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Recently, a manifestly invariant treatment of D0, mak-
ing use of the GHP formalism, was presented [33]. Within
GHP, D0-metrics are characterized by the existence of a
complex null tetrad wrt (11) and Φij = 0 hold (i.e., the
tetrad is a WPNT and (12)-(13) with S = 0 hold). Ac-
cording to the Goldberg-Sachs theorem, (17) holds and
characterizes the WPNT as well. The scalar invariant
identities (see [33? ])

µρ = µρ, ππ = ττ , (82)

just as (19)-(20), (24)-(25) and the first equation of (29)
are also valid in general. From these relations it follows
that

(15) ⇔ (18), (83)

i.e., a Petrov type D Einstein space is PE if and only if
the WPNT directions are HO. In fact, it can readily be
shown by a more detailed analysis than in [33] that if
the spacetime belongs to Kundt’s class, i.e., if one of the
PNDs is moreover non-diverging, one has

µ = 0 ⇒ ρ = 0 or ρ− ρ 6= 0 6= π + τ . (84)

Equations (4), (5) and (31) in [33] then imply

ρ = ρ 6= 0 ⇒ µ = µ 6= 0 = π + τ , (85)

π = −τ 6= 0 ⇒ µ = µ, ρ = ρ. (86)

Consequently, (a) the Kundt and Robinson-Trautman
subclasses of D0 have empty intersection, (b) in the
Robinson-Trautman case both PND’s are non-twisting
but diverging and (c) a Petrov type D Einstein space
is PE if and only if both PND’s are non-twisting. This
result is implicit in [14], where the concerning PE metrics
form the Einstein space subclasses of the classes labeled
by C00, C0

+, C0
− and C∗. C00 has a flat Λ = 0-limit (cf.

(87) below), C∗ corresponds to Kinnersley’s case IIIA,
while C0

+ and C0
− correspond to cases I and IV with l = 0.

The static part of C0
+ (C0

−) corresponds to class A (B) in
the classification by Ehlers and Kundt [5], while that of
C∗ corresponds to the original static C-metric.

Notice that with S = 0 and w = Λ = const, the boost-
field q does not appear in the equations (11)-(37) and
is not defined by the geometry any more, in contrast to
the situation for perfect fluids S 6= 0 (for which q ≡
4Φ22/S). The set (6)-(10), i.e. the requirement that a
US given by (5) exists, is decoupled from (11)-(37) and is
not needed to derive (19)-(37) from (11)-(18). Hence the
integrability of the complete set (9)-(37) precisely tells
that the closed set (11)-(37) characterizes the class D0

of purely electric Petrov type D Einstein spaces, which
are precisely those Einstein spaces belonging to Barnes’
class I, all admitting a one-degree freedom of USs in all
regions of spacetime [48]. Barnes’ boost-isotropic classes
IA and IC coincide with C00, resp. C0

− of Debever et
al., while C0

+ and C∗ form the Einstein space subclasses
of IB, resp. ID.

A static member of D0 necessarily admits a rigid (i.e.
non-expanding) US, such that µρ ≥ 0, cf. (38). Con-
versely, when µρ = 0 or µρ > 0 for a PE member, it
admits the HO timelike KVF (67), resp. (81). Hence
a Petrov type D Einstein space is static if it admits a
rigid US. This is precisely the case when both PNDs are
non-twisting (i.e. when the spacetime is PE) with posi-
tive or zero product µρ of the divergences of aligned null
vectors subject to the normalization condition (A1). For
µρ > 0 there is an up to reflection unique rigid US, de-
fined from the geometry by (5) and q = µ/ρ, which is
parallel to the unique timelike HO KVF direction. For
µρ = 0 ⇒ µ = ρ = 0 (classes IA and IC) all USs are
rigid USs and they have one degree of freedom, while the
timelike HO KVFs are parametrized by two constants.

Necessary and sufficient conditions for a Petrov type
D spacetime with arbitrary energy-momentum tensor to
allow for a (rigid) US or to be static are given in ap-
pendix B. In particular it provides a proof of the last
statement regarding the case µ = ρ = 0, which is in
fact valid for all boost-isotropic spacetimes with π = −τ
wrt a WPNT (cf. criterion 6”). One can also check from
(11)-(37) that in the PE case with µρ > 0 criterion 2” is
satisfied, providing an alternative proof of the essential
uniqueness of the rigid US and KVF for this case. Taken
together, these two facts are in accordance with a result
by Wahlquist and Estabrook [38]. The existence of a one-
dimensional freedom of USs for all PE Einstein spaces
is essentially due to the hypersurface-orthogonality (17)-
(18) of the WPNT directions (cf. criterion 5), a prop-
erty which is shared with all LRS II spacetimes exhibit-
ing (pseudo-)spherical or planar symmetry. Also, all the
above statements remain true in the electrovac class D.

We note that it is claimed in [1] that all vacuum space-
times admitting a shearfree normal congruence are static,
which would generalize Trümper’s result [24] to Petrov
type D vacua. This is contradicted by the above. Notice
that the C0

+- and C∗-metrics were not explicitly shown
to be all contained in his classes IB and ID (also those
for which µρ < 0; see further § 3.2).

For completeness we write down the PE Petrov type D
Einstein space metrics, as recovered here through (46),
(60), (63), (66), (75) and (80):

C00 : ds2 =
2dζdζ

1 + Λ
2 ζζ

− 2dudv

1− Λ
2 uv

, (87)

C0
± : ds2 = r2

(

dξ2 + δ cos(
√
kξ)2dη2

)

+
dr2

g(r, k)
− δg(r, k)dφ2, (88)

C∗ : ds2 = (x+ y)−2

(

dx2

f(x)
+ f(x)dφ2

− dy2

f(−y) + Λ/3
+ (f(−y) + Λ/3)dψ2

)

, (89)

where k ∈ {−1, 0, 1}, δ = 1 for C0
+ and δ = −1 for C0

−,
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and

g(r, k) = k − 2m

r
− Λ

3
r2, (90)

f(x) = F = x3 + Cx+D. (91)

Regarding C00 one deduces from (53)-(54), (61) and
(64) that

Ψ2 = −Λ

3
= 4x3, K⊥ = −3x = −3y = KΣ,

and rescales ζ, u and v by a factor 2x to arrive at
(87). This line element represents the Einstein space
limit Φ0 = 0 of Bertotti’s homogeneous electrovac fam-
ily with cosmological constant [39, 40], exhibiting spatial
rotation and boost isotropy. Notice that the limit Λ = 0
yields the Minkowski spacetime.

In order to obtain (88) one makes use of (68), re-
places in the C0

+ (C0
−) case the coordinate y (x) by r =

−(2m)1/3/(x+y) and rescales the remaining coordinates
by a factor (2m)1/3, where the constant curvature of g⊥ab
(gΣab) is related to m by K = k(2m)−2/3 (Y = m1/3).
These solutions have a total group G4 of isometries act-
ing on three-dimensional orbits. The subcase C0

+, k = 1,
reproduces after ξ 7→ π/2−ξ the well-known forms of the
spherically symmetric Schwarzschild [41] and Kottler [42]
metrics.

The form (89), with Λ = 0, is the form of the C-
metric obtained by Levi-Civita and recovered by Ehlers
and Kundt. It has the abelian group G2 of isometries
generated by ∂φ

a and ∂ψ
a. Kinnersley and Walker gave

a modified form with x + y replaced by α(x + y) and
x3 + Cx + D by 1 − x2 − 2mαx3. Recently, Hong and
Teo [43] introduced a factored form of the cubic in the
case where it has three distinct real roots (corresponding

to mα < 1/
√
27), which greatly simplifies certain analy-

ses of the C-metric. A further coordinate transformation
can be made such that the Schwarzschild metric is com-
prised as the subcase α = 0. In fact, this was performed
for the charged C-metric. This technique was applied in
extensive form in [19].

3. PERFECT FLUID GENERALIZATIONS OF
THE C-METRIC

3.1. Line element

We resume the integration of class I started at the end
of § 2.3. We thereby focus on the subclass ID charac-
terized by τ 6= 0 6= µρ. Let us first summarize what we
did so far. We started off with the closed set (9)-(37)
of first-order GHP equations in the seven (weighted) real
variables Ψ, S, w, µ, ρ, q, ð′τ and the complex variable τ .
These variables are equivalent to two dimensionless spin
and boost gauge fields, e.g. τ/τ and µ/ρ, and seven real
scalar invariants. The boost and spin gauge fields could

serve to invariantly fix the tetrad – the ID members be-
ing therefore anisotropic – but can be further ignored.
For the C∗-Einstein spaces, S = 0 and w = Λ = const,
and we remarked that q is not a part of the intrinsic
describing set of variables. Hence we end up with four
real scalar invariants in this subcase. These invariants
are equivalent to the two constants C and D and two
independent functions x and y, which we took as coordi-
nates and in terms of which, on adding two coordinates φ
and ψ related to the symmetries, the corresponding C∗-
metric can be expressed. In the perfect fluid case S 6= 0,
the four invariants and their use persist, just as the coor-
dinate φ. However, ψ is no longer a suitable coordinate
and the scalar invariants S and w are no longer constant,
while q = 4Φ22/S now fixes the invariantly defined fluid
velocity vector ua at each point by (5). Thus we need
one more scalar invariant for our description and one re-
maining coordinate complementary to y.

For the first purpose it is natural to look at the kine-
matics of the fluid, which are fully determined by

b = 2∇(cua)m
amc = ∇cuav

avb =
θ

3
, (92)

u̇‖ ≡ vau̇
a, u̇⊥a ≡ 2m(amc)u̇

c, (93)

where va is the intrinsic normalized spacelike vector field
defined in (16), specifying at each point to the up to
reflection unique vector orthogonal to ua and lying in
Σ, while u̇‖ and u̇⊥a are the component along va, resp.

projection onto Σ⊥ of the acceleration u̇a. In analogy
with (92) we define the invariant b̃ by

b̃ = 2∇(cva)m
amc. (94)

The relation with GHP quantities is

b =
µ− qρ√

2q
, b̃ = −µ+ qρ√

2q
, (95)

u̇‖ = (2q)−3/2(Þ′q + qÞq) =
Þq√
2q

− b, (96)

−u̇⊥a = τma + τma ≡ αa =
dax

x+ y
. (97)

Notice that (95) is equivalent to

b ua − b̃ va = µka − ρla ≡ βa =
day

x+ y
(98)

and, in conjunction with (58), implies

2µρ = b̃2 − b2 = y3 + Cy −D − w

3
. (99)

We choose b as the final describing invariant and use b̃
and u̇‖ as auxiliary variables. In view of (95)-(97) one
deduces that the differential information for S, w and b
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comprised in (9)-(37) is precisely

daw = 3bSua, DaS = −Su̇a, (100)

dab = −u(b)ua,

u(b) = −v(b̃) + b̃(u̇‖ − b̃) +
S

2
, (101)

v(b̃) = −x+ y

2
(3y2 + C). (102)

From the last equation it follows that b̃ is non-constant,
such that we may see the second part of (101) as a def-
inition of u̇‖. The relations (100) are nothing but the
energy resp. momentum conservation equations for a per-
fect fluid subject to Daw = 0. The first part of equation
(101) confirms that Daθ = 0 [1, 23], whilst the second
implies again that the expansion scalar does not vanish in
general, contrary to Barnes’ conclusion in [1] (cf. below).

For the second purpose we rely on the hypersurface-
orthogonality of ua by assumption: zero-weighted real
scalar fields t and I exist such that

dat = Iua. (103)

The integrability condition hereof is

DaI = −Iu̇a = −I(u̇⊥a + u̇‖va), (104)

which is equivalent to

ðI = τI, v(I) = −u̇‖I. (105)

We see from (98) and (103) that t is functionally inde-
pendent of y (and of x and φ) and we take it as the fourth
coordinate. On using (103)-(104), (100) and the first part
of (101) are equivalent to

b = b(t), w = w(t), A ≡ S

2I
= A(t), (106)

daw = 6bAdat = 3b Sua, (107)

while (99) yields

b̃ = b̃(y, t) =
√

y3 + Cy −D + b(t)2 − w(t)/3. (108)

This, (97)-(98) and the first part of (105) entail that the
scalar field

J ≡ x+ y

Ib̃
(109)

only depends on y and t. Inverting (98) and (103) we get

(x + y)ua = b̃Jdat, (x+ y)va = bJdat−
day

b̃
, (110)

or dually

− ua

x+ y
=
∂t
a

b̃J
+ b∂y

a, − va

x+ y
= b̃∂y

a. (111)

The only equation still to be satisfied results from elim-
inating u̇‖ between the second parts of (101) and (105),
which gives

b̃2v(J) = Jb̃u(b) +A(x + y), (112)

and in the chosen coordinates translates to

J,y = b̃−3 (db/dt−A) . (113)

As gΣab = (vavb − uaub)/(x + y)2, and by assembling the
above pieces, we obtain

ds2 = (x+ y)−2[ds2⊥ + ds2Σ], (114)

ds2Σ =

(

bJdt− dy

b̃

)2

−
(

b̃Jdt
)2

, (115)

with ds2⊥ given by (75) and where the scalar fields occur-
ring in (115) are given or related by (106)-(108) and

J = J(y, t) = [b′(t)−A(t)]

∫ y

0

dχ

b̃(χ, t)3
+ L(t), (116)

a prime denoting ordinary derivation wrt t and L(t) being
a free function of integration. Notice that we nowhere
used S 6= 0 explicitly in the above integration. Therefore,
the above line element describes the complete class ID,
including the C∗-Einstein space limits.

We neither used τ 6= 0. This implies that the line
element of the complete class IB, characterized by µρ 6=
0 = τ and constituted by all LRS II Einstein spaces and
shear-free perfect fluids withDaw = 0, is obtained as well
by assembling (46), (60), (63), (114)-(116) and (106)-
(108). A coordinate form for this class was first given
by Kustaanheimo [44]. By a coordinate transformation
y 7→ r = −(y + x)−1 and redefinition of L(t) the form
(16.49), (16.51) mentioned in [16] is obtained.

As an alternative to the above, one checks that va is
HO: (x+y)va = daz, and the coordinate z could be used

instead of y. Put Jb̃ ≡ eZ , Z = Z(y, t). By (98) we now
have

y = Y (z, t), Y,z = −b̃, θ = 3Y,te
−Z . (117)

The metric can be written as

ds2 = (x+Y )−2
(

f−1dx2 + fdφ2 + dz2 − e2Zdt2
)

(118)

with f = f(x) given by (91). This is exactly the form
Barnes [1] obtains. We now discuss the more familiar
integration procedure of his paper, namely a direct attack
of the field equations, in these coordinates and wrt a
Weyl principal orthonormal tetrad naturally associated
with (118). One can check that only four of the field
equations are not identically satisfied (the indices 1 to 4
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label the tetrad vectors):

G34 = −Y,tz + Y,tZ,z = 0 (119)

G11 − G33 = −2Y,zz +
df

dx
+

(x+ Y )

(

Z2
,z + Z,zz −

1

2

d2f

dx2

)

= 0 (120)

G11 =
(

Z,zz + Z2
,z

)

(x+ Y )
2
+

(

e−2Z (Y,tt − Y,tZ,t)− Y,zZ,z −
1

2

df

dx

)

2 (x+ Y )

+3
(

Y 2
,z + f − Y 2

,te
−2Z

)

= p (121)

G33 + G44 = 2 (x+ Y ) (Y,zz − Y,zZ,z+

e−2Z (Y,tt − Y,tZ,t)
)

= S (122)

Hence, if supplemented with θ ∼ Y,t = 0, these equations
are the ones obtained in Barnes [1]: equation (119)≡
v(θ) = 0 was missed out, and both equations (121) and
(122) differ from equations (4.23), resp. (4.24) in [1] by
a term 2(x + Y )Y,tte

−2Z . Thus, it is clear that with
these differences a correct non-expanding solution can
be found, but the analysis of expanding solutions will be
incorrect.

Differentiating (120) twice wrt x yields d4f(x)/dx4 =
0, whence

f(x) = ax3 + bx2 + cx+ d. (123)

Substituting this in equation (120), and equating coeffi-
cients of powers of x, leads to

3aY (z, t) = Z,zz(z, t) + Z2
,z(z, t) + b (124)

Y,zz(z, t) =
c

2
− Z(z, t)b+

3

2
aY 2(z, t) (125)

This last equation can be solved for z in terms of Y :

∫ Y (z,t)

0

dr
√

ar3 − br2 + cr + f1(t)
− z + f2(t) = 0 (126)

suggesting eventually to transform coordinates from (z, t)
into (y, t), with y = Y (z, t). Rescaling and translating
coordinates allows us to set a = 1 and b = 0. One can
check that the remaining equations lead exactly to equa-
tions (107) and (113), recovering solution (114)-(116).

3.2. Properties

Consider the metric (114)-(116), with (75) and (106)-
(108).

Let us discuss the intrinsic freedom we have when the
metric is assumed to describe a perfect fluid (S 6= 0).
By (107) and (110) we have that A(t)dat = S/2ua and

J(y, t)dat = (x + y)ua/b̃ are invariantly defined one-
forms, and hence so is L(t)dat because of (116). It follows
that L

A (t) is a scalar invariant. Moreover, as A(t)dat is

exact we may remove the only remaining coordinate free-
dom on t by putting A(t) = 1, such that the conservation
of energy equation (107) can be considered as a defini-
tion θ(t) = w′(t)/2, cf. (92). Hence, in this most general
and natural picture for S 6= 0, the scalar constants C, D
and invariants L

A (t), w(t) stand in biunivocal correspon-
dence with the ID perfect fluid spacetimes, locally. Notice
that the presence of two invariantly defined, distinguish-
ing free functions could have been predicted, since after
elimination of u̇||, there are two scalar invariants u(b) and
u(S) remaining unprescribed in the system of equations
(100)-(102).

In this fashion however, the physical implications re-
main obscure: it would be nice to have a well-known free
function in stead of L/A. Spacetimes with L(t) = 0 have
w(t) as the only free function. If L(t) 6= 0, L(t) can al-
ternatively be fixed to 1 by a coordinate transformation
T (t). The remaining free functions display the variation
θ′(t) of the expansion scalar, the energy density and the
pressure (since Adat =

1
2Sua). These are related by en-

ergy conservation (107). w(t) and (Sua) (t) can be chosen
freely. Alternatively, one can subdivide further in θ = 0
and θ 6= 0. In the case θ = 0, w is constant because
of (107) and can be chosen freely, just as A(t). In the
most interesting case θ 6= 0, w(t) and θ(t) can be chosen
freely, determining Sua. Thus class ID provides a class of
anisotropic cosmological models with arbitrary evolution
of matter density and (non-zero) expansion.

Regarding symmetry, all perfect fluid ID models ad-
mit at least one KVF ∂φ

a given by (76), which at each
point amounts to an invariantly defined spacelike vector
orthogonal to u̇⊥a and lying in Σ⊥. If φ is chosen to be
a periodic coordinate, with range given by [−πE, πE),
the spacetime is cyclically symmetric. We will then refer
to the region F (x) = 0, where the norm of ∂φ

a van-
ishes, as the axis of symmetry [45] [49]. Finding the
complete group of isometries and their nature is trivial
in our approach. The functions x, y, w and L/A are in-
variant scalars, such that Kadax = Kaday = Kadaw =
Kada

L
A = 0 for any KVF Ka. As the ID models are

anisotropic, it follows that the complete isometry group
is at most G2, and if it is G2, both w and L/A are con-
stant. Conversely, when w and L/A are constant we

have θ ≡ 3b = 0 from (107), b̃ = b̃(y) from (108) and
J(y, t) = −A(t)F2(y) from (116). By redefining the time
coordinate such that A(t) = 1 one sees from (114)-(116)
that ∂t

a is a HO timelike KVF. We conclude that the ID
perfect fluid models have at least one spacelike KVF ∂φ

a,
which may be interpreted as the generator of cyclic sym-
metry. They admit a second independent KVF if and
only if both scalar invariants w and L/A are constant,
in which case the spacetimes are static and the complete
group of isometries is abelian G2, generated by ∂φ

a and
∂t
a.
Consider the case where F has 3 real non-degenerate

roots xi, i.e. C < −3
(

D
2

)2/3
. If x1 < x2 < x3 then

F (x) > 0 for all x ∈ (x1, x2). Furthermore, we let φ be
a periodic coordinate. The ratio between circumference
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and radius of a small circle around the axis, x = x1 or
x = x2, is given by

lim
x→x2
<

2πE
√

F (x)
∫ x2

x

√

F−1(x)dx
= −πE

(

3x22 + C
)

(127)

respectively

lim
x→x1

2πE
√

F (x)
∫ x

x1

√

F−1(x)dx
= πE

(

3x21 + C
)

. (128)

It is only possible to choose the parameter E such that
the complete axis is regular, if 3x21 + C = −(3x22 + C).
However, eliminating C andD between this equation and
F (x1) = F (x2) = 0 implies x1 = x2. Consequently, if
F (x) has three real non-degenerate roots, the spacetime
contains a conical singularity. This echoes the properties
of the C-metric [6, 45], but further research is needed to
interpret the metric (114).

4. CONCLUSION

A new Petrov type D exact solution of Einstein’s field
equation in a spatially homogeneous perfect fluid has
been presented. The solution admits in general a group
G1 of isometries, and contains a static class where the
isometry group is G2. This new exact solution thus pro-
vides a class of cosmological models with fewer then 3
killing vector fields, where the evolution of matter density
and (non-zero) expansion can be chosen freely. Whether
a thermodynamic interpretation of the perfect fluid can
be made, is however a matter subject to further research.
[? ] It is certainly not possible to prescribe a barotropic
equation of state w(p). Due to its relation with the C-
metric, the examination of the properties of this low-
symmetry cosmological model becomes tractable.

Appendix A: GHP formalism

The GHP formalism bares a large resemblance to the
Newman-Penrose formalism. Use is made of a complex
null tetrad (ma,ma, la, ka), with

kala = −1, mama = 1 (A1)

and all other inner products vanishing. To put it in other
words, at each point one takes a timelike plane, two vec-
tors ka and la lying along its real null directions, and
two vectors ma and ma lying along the complex conju-
gate null directions of the spacelike plane orthogonal to
it. The basic variables in the formalism are the spin co-
efficients

κ = −Γ144, ν = Γ233, (A2)

ρ = −Γ142, µ = Γ231, (A3)

σ = −Γ141, λ = Γ232, (A4)

τ = −Γ143, π = Γ234, (A5)

the 9 independent components of the traceless part of the
Ricci tensor Sab = Rab − 1

4Rgab

Φ00 =
1

2
Sabk

akb, Φ11 =
1

2
Sab

(

kalb +mamb
)

,

Φ01 =
1

2
Sabk

amb, Φ12 =
1

2
Sabl

amb,

Φ02 =
1

2
Sabm

amb, Φ22 =
1

2
Sabl

alb,

with Φji = Φij , and the 10 independent components of
the Weyl tensor

Ψ0 = Cabcdk
ambkcmd,

Ψ1 = Cabcdk
albkcmd,

Ψ2 = Cabcdm
akblcmd,

Ψ3 = Cabcdl
akblcmd,

Ψ4 = Cabcdl
amblcmd.

Changes of the tetrad leaving the null directions
spanned by ka, la, ma and ma invariant, and at the same
time preserving the normalization conditions (A1), con-
sist of boosts

ka → Aka, la → A−1la (A6)

and spatial rotations

ma → eiθma. (A7)

Quantities transforming under (A6)-(A7) as

η → A
wp+wq

2 ei
wp−wq

2
θη

are called well-weighted of type (wp,wq). They have

boost-weight wB(η) =
wp+wq

2 and spin-weight wS(η) =
wp−wq

2 . One can check that the scalars defined above
are weighted scalars (they are all spin coefficients of the
NP formalism which are well-weighted). The following
derivative operators are defined such that a well-weighted
quantity η is transformed in a well-weighted quantity:

Daη = ∇aη + wB(η)Γ34aη + wS(η)Γ12aη, (A8)

and one uses the notation

D1 = ð, D2 = ð
′, D3 = Þ′, D4 = Þ. (A9)

One can check that, if η is a weighted scalar of type (p, q),
wB(Daη) = wB(η) + w̃B(a) and wS(Daη) = wS(η) +
w̃S(a), with

w̃B(a) =







0 a = 1, 2
−1 a = 3
1 a = 4

w̃S(a) =







1 a = 1
−1 a = 2
0 a = 3, 4.
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Notice that the differential of zero-weighted scalars f can
be expressed as

daf = −Þ′fka − Þfla + ð
′fma + ðfma (A10)

= −l(f)ka − k(f)la +m(f)ma +m(f)ma(A11)

= −u(f)ua + v(f)va +m(f)ma +m(f)ma, ,(A12)

where ua and va are related to ka and la according to
(5), resp. (??). The equations to be solved are the Ricci
identities

∇dΓabc −∇cΓabd = Rabcd + 2Γae[c|Γ
e
b|d] + 2ΓabeΓ

e
[cd],

for (a, b) = (1, 4) and (a, b) = (2, 3), and the Bianchi
identities

∇[f |Rab|cd] = −2Rabe[cΓ
e
df + Γea[cRdf ]eb − Γeb[cRdf ]ea,

written out explicitly in terms of the derivative operators
(A8). These equations are insufficient: as compared to
the Newman-Penrose formalism there are 6 Ricci iden-
tities missing (those identities involving spin coefficients
which are not well-weighted). These Ricci identities are
absorbed in the commutators between the derivative op-
erators, which are given by

[Da, Db] η = −2Γc[ab]Dcη + wB(η)
(

R34ab − 2Γ3c[aΓ
c
|4|b]

)

η

+wS(η)
(

R12ab − 2Γ1e[aΓ
e
|2|b]

)

η + w̃B(b)Γ34aDbη

+w̃S(b)Γ12aDbη − w̃B(a)Γ34bDaη − w̃S(a)Γ12bDaη.

One can show that, after expressing ∇a in terms of Da,
all spin coefficients that appear explicitly in these equa-
tions can be expressed in terms of the spin coefficients
(A2-A5). The equations can be shown to be consistent
and complete. To find a particular class of solutions, in-
variant conditions are imposed on the scalar quantities,
and consistency with the above equations generates a set
of scalar equations to be solved.

The GHP formalism is especially suited for situations
where two null directions are naturally singled out, such
that ka and la can be chosen along these directions. E.g.,
for any given Petrov type D spacetime the Weyl tensor
has precisely two principal null directions (PND’s) which
can be covariantly determined. Choosing ka and la along
them is equivalent to condition (11) for the Weyl tensor
components. A complex null tetrad realizing this condi-
tion is called a Weyl principal null tetrad (WPNT) in the
literature.

Appendix B: (Rigid) synchronizability and staticity
of Petrov type D spacetimes:

Consider a Petrov type D spacetime and let Bn ≡
(ka, la,ma,ma) be an arbitrary WPNT, i.e. (11) holds.
For complex (wp,wp)-weighted scalars z = Re(z) +
i Im(z) we mean with z > 0 (z < 0) that z is real and
strict positive (negative) in the sequel.

The spacetime will admit a unit timelike vector field
ua satisfying (1) - corresponding to an umbilical synchro-
nization or forming the tangent field of a shearfree and
vorticity-free cloud of test particles - if and only if a real
non-negative (-2,-2)-weighted field q exists such that (5)
and (6)-(10) hold wrt Bn. On using ghp6 and ghp12 it
turns out that, regardless of the structure of the energy-
momentum tensor, the only integrability condition of (9)
is (15), i.e., the Weyl tensor is purely electric wrt ua. It
follows that a given Petrov type D spacetime admits a
shearfree normal unit timelike vector field if and only if,
wrt an arbitrary Bn, Ψ2 is real and one of the following
sets of spin-boost invariant conditions holds:

1. the scalar invariant λσ > 0 and q0 ≡ λ/σ satisfies
(7) and (8)-(10);

2. the real scalar invariant (µ− µ)(ρ− ρ) > 0, and
q0 ≡ −(µ− µ)/(ρ− ρ) satisfies (6) and (8)-(10);

3. λ = σ = µ − µ = ρ − ρ = 0, the scalar invariant
κν 6= 0 and one of the following situations occurs,
where q0, defined in each subcase, satisfies (9)-(10)
and where b ≡ (π + τ )/κ, c ≡ ν/κ:

3a. Im(b)Im(c) > 0 and q0 ≡ Im(c)/Im(b), with also
q20 − Re(b)q0 + Re(c) = 0;

3b. b is real, c < 0 and q0 ≡ (b+
√
b2 − 4c)/2;

3c. b > 0, c > 0, b2 ≥ 4c, and q0 ≡ (b+
√
b2 − 4c)/2 or

q0 ≡ (b −
√
b2 − 4c)/2;

4. λ = σ = µ− µ = ρ− ρ = 0, and either κ = 0 6= ν,
(π + τ)ν > 0 and q0 ≡ ν/(π + τ) satisfies (9)-(10),
or κ 6= 0 = ν, (π + τ)κ > 0 and q0 ≡ (π + τ)/κ
satisfies (9)-(10);

5. λ = σ = µ− µ = ρ− ρ = 0, κ = ν = π + τ = 0.

The subdivision of case 3 stems from a straightforward
analysis of equation (8). In cases 1, 2, 3a, 3b and 4 there
is a unique shearfree normal unit timelike vector field
ua, whereas there may be one or two such ua’s in case
3c. Case 5 precisely corresponds to the hypersurface-
orthogonality of the Bn tetrad vectors. Moreover, the
imaginary part of ghp5 − ghp11 yields (15) in this case.
In conjunction with (9)-(10) we conclude that any Petrov
type D spacetime with HO Weyl principal null tetrad di-
rections admits a one-degree freedom of shearfree nor-
mal timelike congruences. Important examples of such
spacetimes are the Petrov type D purely electric Einstein
spaces and their ‘electrovac’ generalizations (see [37? ]
and § 2.3) and all spacetimes with (pseudo-)spherical or
planar symmetry (which constitute the locally rotation-
ally symmetric (LRS) class II Lorentzian spaces, see [34]).
These examples all satisfy (12) on top of (17)-(18) and
are further characterized by Φ00 = Φ22 = (Φ11 =) 0, resp.
π = τ = ðR = 0 (cf. [46]).
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The spacetime will admit a unit timelike vector field
ua satisfying

ua;b = −u̇aub, (B1)

corresponding to a rigid umbilical synchronization or
modeling a rigid non-rotating cloud of test particles,
when θ = 0 or, in GHP language, (38) holds additionally
to the above. Notice that (7) is then identically satisfied.
Thus a given Petrov type D spacetime admits a shear-
free normal and non-expanding unit timelike vector field
if and only if, wrt Bn, Ψ2 is real and one of the following
holds:

1’. condition 1 with (7) replaced by (38);

2’. the scalar invariant µρ > 0 and q0 ≡ µ/ρ satisfies
(6) and (8)-(10);

3’-5’. conditions 3-5 with µ− µ = ρ− ρ = 0 replaced by
µ = ρ = 0.

Here case 5’ yields that any Petrov type D spacetime
with geodesic, shearfree and non-diverging PNDs and
HO Weyl principal complex null directions admits a one-
degree freedom of shearfree normal and non-expanding
timelike congruences.

The spacetime is static if and only if it admits a HO
timelike Killing vector field. An equivalent characteriza-
tion was given by Ehlers and Kundt [5]: the spacetime is
static if and only if a unit timelike vector field ua exists
for which shear, vorticity and expansion scalar vanish, i.e.
(B1) holds, and for which the acceleration u̇a is Fermi-
propagated along the integral curves of ua:

ü[aub] = 0. (B2)

The field ua is then parallel to a (HO and timelike) Killing
vector field. By a long but straightforward calculation,
thereby simplifying expressions by means of (6)-(9), (38),
ghp1, ghp7 and the [Þ,Þ′](q) commutator relation, one
shows that the extra condition (B2) is equivalent to

(qκ+ q−1ν)(Þq +
√

2q)− 2Þν + 2qÞτ

+Φ21 − qΦ10 = 0, (B3)

ÞÞq = πτ + πτ − q(κπ + κπ)− q−1(νπ + νπ)

+2Φ11 −
R

12
+ 2Ψ2. (B4)

In case 5’ above, the Ricci equations ghp1, ghp3 and
ghp9 yield Þτ = Φ10 and Φ00 = Φ22 = 0, while (B3)-
(B4) reduces to

Φ12 + qΦ01 = 0, (B5)

ÞÞq = −2ττ + 2Φ11 −
R

12
+ 2Ψ2. (B6)

In the subcase Φ01 = Φ12 = 0, the [Þ,Þ′], [Þ, ð] and [Þ, ð′]
commutators applied to q yield

Þ′Þq = −qÞÞq + (Þq)2, (B7)

ðÞq = τÞq, ð
′Þq = τÞq. (B8)

The compatibility requirement of (B6)-(B8) with the
commutator relations for Þq gives the single condition

Þ′R+ qÞR = 0. (B9)

According to the Sach’s star dual [27] of the LRS cri-
terium in [46], the subcase Þ′R = ÞR = 0 hereof pre-
cisely corresponds to a boost isotropic spacetime with
π + τ = 0. From the above we conclude: A Petrov type
D spacetime is static if and only if, wrt an arbitrary Bn,
one of the following sets of conditions holds:

1”-4”. Ψ2 is real, conditions 1’-4’ hold and q0 additionally
satisfies (B3)-(B4);

5”a. condition 5’ holds, the scalar invariant Φ01Φ21 < 0
and q0 ≡ −Φ12/Φ01 satisfies (9)-(10) and (B4);

5”b. condition 5’ holds, Φ01 = Φ21 = 0, the scalar in-
variant (Þ′R)(ÞR) < 0 and q0 ≡ −Þ′R/ÞR satisfies
(9)-(10) and (B6);

6”. the spacetime is (locally) boost isotropic and π +
τ = 0.
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