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Abstract

We present dynamical description of gravitational collapse in view

of Misner and Sharp’s formalism. Matter under consideration is a

complicated fluid consistent with plane symmetry which we assume

to undergo dissipation in the form of heat flow, radiation, shear and

bulk viscosity. Junction conditions are studied for a general spacetime

in the interior and Vaidya spacetime in the exterior regions. Dynam-

ical equations are obtained and coupled with causal transport equa-

tions derived in context of Müller Israel Stewart theory. The role of

dissipative quantities over collapse is investigated.

Keywords: Gravitational collapse; Dissipation; Junction conditions; Dy-
namical equations; Transport equations.

1 Introduction

The ultimate fate of the star (when it undergoes catastrophic phase of col-
lapse) is one of the most important questions in gravitation theory today.
When a star has exhausted all of its nuclear fuel, it collapses under the in-
fluence of its own gravity and releases large amount of energy. In fact, it is
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a highly dissipative process, i.e., energy is not conserved in it, rather due to
various forces and with the passage of time, it becomes lesser. Dissipative
process plays dominant role in the formation and evolution of stars.

The initial discussion over this problem was given by Oppenheimer and
Snyder [1] who assumed a spherically symmetric distribution of matter. They
took the most simplest form of matter, i.e., dust and the flow is considered
to be adiabatic. It is somewhat unrealistic to ignore the pressure as it cannot
be overlooked in the formation of singularity. Misner and Sharp [2] adopted
a better approach by considering an ideal fluid which gave a more realis-
tic analysis of gravitational collapse. Both of them assumed vacuum in the
exterior region. Vaidya [3] introduced a non-vacuum exterior by giving the
idea of outgoing radiation in collapse. It was physically a quite reasonable
assumption as radiation is a confirmation that dissipative processes are oc-
curring, causing loss of thermal energy of the system which is an effective
way of decreasing internal pressure.

The Darmois junction conditions [4] gave a way to obtain exact models of
an interior spacetime with heat flux to match with exterior Vaidya spacetime.
Sharif and Ahmad [5] considered the perfect fluid with positive cosmological
constant to discuss the junction conditions with spherical symmetry. The
same authors [6] also worked on junction conditions for plane symmetric
spacetimes.

Goswami [7] made an attempt in search of a more physical model of
collapse. He considered dust like matter with heat flux to conclude that
dissipation causes a bounce in collapse before the formation of singularity.
Nath at el. [8] investigated dissipation in the form of heat flow and formu-
lated junction conditions between charged Vaidya spacetime in exterior and
quasi-spherical Szekeres spacetime in interior regions. They also discussed
apparent horizons and singularity formation. Ghosh and Deshkar [9] studied
gravitational collapse of radiating star with plane symmetry and pointed out
some useful results. A lot of work is being done over gravitational collapse by
considering shear free motion of the fluid. Although, it leads to simplifica-
tion in obtaining exact solutions of the field equations, yet it is an unrealistic
approach. Shear viscosity is a source of dissipating energy and plays an im-
portant role in collapse. Chan [10] investigated gravitational collapse, with
radial heat flow, radiation and shear viscosity. He showed how the pressure
became anisotropic due to shear viscosity.

Herrera and Santos [11] discussed the dynamics of gravitational collapse
which undergoes dissipation in the form of heat flow and radiation. Di Prisco
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et al. [12] extended this work by adding charge and dissipation in the form
of shear viscosity. Herrera [13] provided comprehensive details of inertia of
heat and how it plays an effective role in dynamics of dissipative collapse.
Herrera and Martinez [14] presented relativistic model of heat conducting
collapsing object and debated over the effect of a parameter which occurs
in dynamical equation on collapse. Herrera and collaborators [15]-[16] pro-
posed a model of shear free conformally flat collapse and focused on the role
of relaxation process, local anisotropy and relation between dissipation and
density inhomogeneity.

Recently, Herrera et al. [17] threw light on behavior of non-equilibrium
massive object which lost energy due to heat flow, radiation, shear and bulk
viscosity. Matter under consideration was distributed with spherical symme-
try. It has become quite clear that when mass and energy densities involved
in the physical phenomenon are sufficiently high as in gravitational collapse,
gravitational field plays an important and dominant role. The gravitational
dynamics then must be taken into account for a meaningful description of
such ultra high energy objects. This fact motivated us to elaborate the
above mentioned paper in the context of plane symmetries. Matter under
consideration is a complicated fluid which suffers through dissipation. Misner
and Sharp’s prescription is used to work out dynamical equations. Transport
equations are obtained in the context of Müller Israel Stewart theory [18], [19]
which is a causal theory for dissipative fluids. Thermodynamic viscous/heat
coupling coefficients are taken to be non-vanishing which is expected to be
quite plausible in non-uniform stellar models of universe. One of the dynam-
ical equations is then coupled to transport equations in order to figure out
the influence of dissipation over collapse.

The paper is written in the following manner. The next section is about
the matter distribution in the interior region and some physical quantities rel-
evant to matter under consideration. The Einstein field equation are worked
out in section 3 and junction conditions are discussed in section 4. Dy-
namical equations are formulated in section 5 and are coupled to transport
equations in section 6. The last section discusses and concludes the main
results of the paper.
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2 Interior matter distribution and some phys-

ical quantities

A 4-dimensional spacetime is split into two regions: interior V − and exterior
V + through a hypersurface Σ which is the boundary of both regions. We
assume the matter distribution in the interior region to be consistent with
plane symmetry. The interior region V − admits the following line element

ds2− = −f(t, z)dt2 + g(t, z)(dx2 + dy2) + h(t, z)dz2, (1)

where {χ−µ} ≡ {t, x, y, z} (µ = 0, 1, 2, 3). The fluid is presumed to dissipate
energy in terms of heat flow, radiation, shearing and bulk viscosity.

The energy-momentum tensor for such a fluid is defined as

Tab = (µ+ p+Π)VaVb + (p+Π)gab + qaVb + qbVa + ǫlalb + πab, (2)

where µ, p, Π, qa, la and πab are the energy density, pressure, bulk viscosity,
heat flow, null four-vector in z-direction and shear viscosity tensor respec-
tively. Heat flow qa is taken to be orthogonal to velocity V a, i.e., qaV

a = 0.
Moreover, we have

V aVa = −1, laVa = −1, πabV
b = 0, π[ab] = 0, πa

a = 0, lala = 0. (3)

In the standard irreversible thermodynamics by Eckart, we have the following
relation [20]

πab = −2ησab, Π = −ζΘ, (4)

where η and ζ stand for coefficients of shear and bulk viscosity, σab is the
shear tensor and Θ is the expansion. The algebraic nature of Eckart constitu-
tive equations causes several problems but we are concerned with the causal
approach of dissipative variables. Thus we would not assume (4) rather we
shall resort to transport equations of Müller-Israel-Stewart theory.

The shear tensor σab is defined as

σab = V(a;b) + a(aVb) −
1

3
Θhab, (5)

where the acceleration aa and the expansion Θ are given by

aa = Va;bV
b, Θ = V a

;a (6)
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and hab = gab + VaVb is the projection tensor. The shear tensor σab satisfies

Vaσ
ab = 0, σab = σba, σa

a = 0. (7)

In co-moving coordinates, one can take

V a =
1√
f
δa0 , qa =

q√
h
δa3 , la =

1√
f
δa0 +

1√
h
δa3 , (8)

here q is a function of t and z.
Using Eq.(8), the non-vanishing components of the shear tensor σab turn

out to be

σ11 = −g

3
σ = σ22, σ33 =

2h

3
σ, (9)

where

σ =
1

2
√
f

(

ḣ

h
− ġ

g

)

. (10)

Thus we have

σabσ
ab =

2

3
σ2. (11)

Also, in view of Eqs.(3) and (4), it yields

π0a = 0, π3
3 = −2π2

2 = −2π1
1. (12)

In compact form, it can be written as

πab = Ω(χaχb −
1

3
hab), (13)

where Ω = 3
2
π3
3 and χa is a unit four-vector in z-direction satisfying

χaχa = 1, χaVa = 0, χa =
1√
h
δa3 . (14)

In view of Eqs.(6) and (8), it follows that

a3 =
f ′

2f
, Θ =

1√
f

(

ġ

g
+

ḣ

2h

)

, (15)

where dot and prime represent derivative with respect to time t and z re-
spectively.

The Taub’s mass for plane symmetric spacetime is defined by [21]

m(t, z) =
(g)3/2

2
R12

12 =
1

8
√
g

(

ġ2

f
− g′2

h

)

. (16)
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3 The Einstein field equations

The Einstein field equations for the metric (1) yield the following set of
equations

ġ

2g

(

ġ

2g
+

ḣ

h

)

+
fg′

2gh

(

h′

h
+

g′

2g

)

− fg′′

gh
= 8π(µ+ ǫ)f, (17)

ġ

2f

(

ḟ

2f
+

ġ

2g
− ḣ

2h

)

+
g′

4h

(

f ′

f
− h′

h
− g′

g

)

− f ′g

4fh

(

h′

h
+

f ′

f

)

+
ḣg

4fh

(

ḣ

h
+

ḟ

f

)

− g̈

2f
+

g′′

2h
+

g

2fh
(f ′′ − ḧ) = 8π(p+Π− 1

3
Ω)g,

(18)

g′

2g

(

g′

2g
+

f ′

f

)

+
ġh

2fg

(

ġ

2g
+

ḟ

f

)

− g̈h

fg
= 8π(p+Π + ǫ+

2

3
Ω)h, (19)

ġ

2g

(

g′

g
+

f ′

f

)

+
g′ḣ

2gh
− ġ′

g
= −8π(q + ǫ)

√

fh. (20)

After some manipulation, we can also write Eq.(20) in the following form

4π(q + ǫ)
√
h =

1

3
(Θ− σ)′ − σ

√
g ′

√
g
. (21)

4 Junction conditions

We discuss junction conditions for the interior region V − given by Eq.(1) and
the exterior region V + which is taken as plane symmetric Vaidya spacetime
ansatz given by the line element [22]

ds2+ =
2m(ν)

Z
dν2 − 2dνdZ + Z2(dX2 + dY 2), (22)

where χ+µ ≡ {ν,X, Y, Z} (µ = 0, 1, 2, 3), ν is the retarded time and m(ν)
represents total mass inside Σ. The line element for the hypersurface Σ is
defined as

(ds2)Σ = −dτ 2 + A2(τ)(dx2 + dy2), (23)
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where ξi ≡ (τ, x, y) (i = 0, 1, 2) are the intrinsic coordinates of Σ.
The Darmois junction conditions [4] are

• The continuity of the line elements over the hypersurface Σ gives

(ds2)Σ = (ds2−)Σ = (ds2+)Σ. (24)

This is called continuity of the first fundamental form.

• The continuity of the extrinsic curvature Kab over the hypersurface Σ
yields

[Kij ] = K+
ij −K−

ij = 0, (a, b = 0, 1, 2). (25)

This is known as continuity of the second fundamental form.

Here K±
ij is the extrinsic curvature defined as

K±
ij = −n±

σ (
∂2χσ

±

∂ξi∂ξj
+ Γσ

µν

∂χ
µ
±∂χ

ν
±

∂ξi∂ξj
), (σ, µ, ν = 0, 1, 2, 3). (26)

where n±
σ are the components of outward unit normal to hypersurface Σ in

the coordinates χ±µ.
The equations of hypersurface Σ in terms of coordinates χ∓µ are given as

k−(t, z) = z − zΣ = 0, (27)

k+(ν, Z) = Z − ZΣ(ν) = 0, (28)

where zΣ is taken to be an arbitrary constant. Using Eqs.(27) and (28), the
interior and exterior metrics take the following form over hypersurface Σ

(ds2−)Σ = −f(t, zΣ)dt
2 + g(t, zΣ)(dx

2 + dy2), (29)

(ds2+)Σ = 2

(

m(ν)

ZΣ
− dZΣ

dν

)

dν2 + Z2
Σ(dX

2 + dY 2). (30)

In view of junction condition (24), we get

Z2
Σ = g(t, zΣ), (31)

dt

dτ
=

1√
f
, (32)

dν

dτ
=

(

2
dZΣ

dν
− 2m(ν)

ZΣ

)−1/2

. (33)
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Using Eqs.(27) and (28), the unit normals in V − and V + respectively, turn
out to be

n−
µ =

√
h(0, 0, 0, 1), (34)

n+
µ =

[

2

(

dZ

dν
− m(ν)

Z

)]−1/2(

−dZ

dν
, 0, 0, 1

)

. (35)

The non-zero components of the extrinsic curvature K±
ij are

K−
00 = −

(

f ′

2f
√
h

)

Σ

, (36)

K+
00 =

[

d2ν

dτ 2

(

dν

dτ

)−1

− m

Z2

dν

dτ

]

Σ

, (37)

K−
11 = K−

22 =

(

g′

2
√
h

)

Σ

, (38)

K+
11 = K+

22 =

[

Z
dZ

dτ
− 2m

dν

dτ

]

Σ

. (39)

Now, by the junction condition (25), i.e., continuity of extrinsic curva-
tures, it follows that

[

d2ν

dτ 2

(

dν

dτ

)−1

− m

Z2

dν

dτ

]

Σ

= −
(

f ′

2f
√
h

)

Σ

, (40)

2m
dν

dτ
=

ġ

2
√
f
− g′

2
√
h
. (41)

Using Eqs.(33) and (41), we obtain

(

dν

dτ

)−1

=
1√
g

[

ġ

2
√
f
+

g′

2
√
h

]

. (42)

Inserting Eq.(42) in (41), it follows that

m(ν) =
1

8
√
g

(

ġ2

f
− g′2

h

)

(43)

and hence
m(t, z)

Σ
= m(ν). (44)
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Differentiating Eq.(42) with respect to τ , and making use of Eqs.(43) and
(42), we can write Eq.(40) as

1

2
√
fhg

[

−ġ′√
g
+

g′ḣ

2h
√
g
+

f ′ġ

2f
√
g
+

√
h√
f

{

−g̈√
g
+

ġḟ

2f
√
g
+
√
g

(

ġ

2g

)2

+
f

4g3/2

(

g′√
h

)2

+
f ′g′

2h
√
g
+

√
f√
h

(

g′ġ

2g3/2

)

}]

Σ
= 0. (45)

Comparing Eq.(45) with Eqs.(19) and (20), it yields

p+Π +
2

3
Ω = q. (46)

5 Dynamical equations

The energy-momentum conservation, T ab
;b = 0, gives

T ab
;b Va =

(µ̇+ ǫ̇)√
f

+
(q′ + ǫ′)√

h
+

ġ

g
√
f
(µ+ p+Π + ǫ− 1

3
Ω)

+
ḣ

2h
√
f
(p+Π+ µ+ 2ǫ+

2

3
Ω) +

(fg)′

fg

(q + ǫ)√
h

= 0 (47)

and

T ab
;b χa =

1√
f
(q̇ + ǫ̇) +

1√
f
(q + ǫ)

(hg)̇

hg
+

1√
h
(p′ +Π′ + ǫ′ +

2

3
Ω′)

+
f ′

2f
√
h
(p+Π+ µ+ 2ǫ+

2

3
Ω) +

g′

g
√
h
(ǫ+ Ω) = 0. (48)

Now we investigate the dynamical properties of the system using the Mis-
ner and Sharp’s [2] perspective. For this purpose, we take the proper time
derivative as

DT =
1√
f

∂

∂t
, (49)

and the proper derivative in z-direction as

DZ̃ =
1

Z̃ ′

∂

∂z
, (50)
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where
Z̃ =

√
g. (51)

The velocity U of the collapsing fluid can be defined as the variation of
Z̃ with respect to the proper time

U = DT (Z̃) =
1

2
√
g
DT g. (52)

In the case of collapse, the velocity of the collapsing fluid must be negative.
In view of Eq.(52), Eq.(16) can take the following form

E =

√
g ′

√
h

= [U2 − 2√
g
m(t, z)]1/2. (53)

Making use of Eq.(50) in Eq.(21), it follows that

4π(q + ǫ) = E

[

1

3
DZ̃(Θ− σ)− σ

Z̃

]

. (54)

In case of no dissipation, using Eqs.(10), (15) and (52), the above equation
becomes

DZ̃

(

U

Z̃

)

= 0. (55)

This implies that U ∼ Z̃ depicting that now collapse will be homologous.
The rate of change of Taub’s mass, using Eqs.(16), (19), (20) and (49), turn
out to be

DTm = −4πZ̃2[(p+Π+ ǫ+
2

3
Ω)U + (q + ǫ)E]. (56)

Thus the rate of change of Taub’s mass represents variation of total energy
inside the collapsing plane surface. Since this variation is negative, it shows
that total energy is being dissipated during collapse. The first round brackets
on the right hand side stand for energy due to work being done by the effective
isotropic pressure (p + Π + 2

3
Ω) and the radiation pressure ǫ. The second

brackets describe energy leaving the system due to heat flux and radiation.
Similarly, using Eqs.(16), (17), (20) and (50), we get

DZ̃m = 4πZ̃2[µ+ ǫ+ (q + ǫ)
U

E
]. (57)

This equation describes about the variation of energy between adjoining plane
surfaces inside the fluid distribution. On the right hand side, (µ+ ǫ) stands
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for energy density of the fluid element plus the energy of null fluid showing
dissipation due to radiation. Moreover, (q + ǫ)U

E
is negative (as U < 0),

telling that energy is leaving due to outflow of heat and radiation.
Making use of Eqs.(16), (19), (51) and (53), the acceleration DTU of the

collapsing matter inside the hypersurface Σ is given as

DTU = −4π(p+Π + ǫ+
2

3
Ω)Z̃ − m

Z̃2
+

Ef ′

2f
√
h
. (58)

Substituting the value of f ′

2f
from the above equation into Eq.(48), it follows

that

(p+Π+ µ+ 2ǫ+
2

3
Ω)DTU = −(p+Π + µ+ 2ǫ+

2

3
Ω)

×[4πZ̃(p+Π+ ǫ+
2

3
Ω) +

m

Z̃2
]

−E2[DZ̃(p+Π + ǫ+
2

3
Ω) +

2

Z̃
(ǫ+ Ω)]

−E[DT q +DT ǫ+ 4(q + ǫ)
U

Z̃
+ 2(q + ǫ)σ].

(59)

This equation has the form of Newton’s second law, i.e.,

Force = Mass density × Acceleration.

The term within the brackets on the left hand side stands for ”effective”
inertial mass and the remaining term is acceleration. The first term on
the right hand side represents gravitational force. Since by the equivalence
principle, inertial mass is equivalent to passive gravitational mass and passive
gravitational mass is equivalent to active gravitational mass. Thus the factor
within round brackets stands for active gravitational mass and the factor
within the square brackets shows how dissipation effects active gravitational
mass. The second square brackets firstly include gradient of effective pressure
which involves radiation pressure and the collective effect of shear and bulk
viscosity. The second contribution is of local anisotropy of pressure which is
the result of radiation and shear viscosity. The last square brackets entirely
depend upon dissipation. The hydrostatic equilibrium can be obtained from
the above equation by substituting U = 0, q = 0, ǫ = 0, Π = 0 and Ω = 0.

DZ̃p = −(µ+ p)
h

Z̃ ′
2

[

m

Z̃2
+ 4πZ̃p

]

.
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6 Transport equations

The general expression for entropy 4-current is given as [20]

Sµ = SnV µ+
qµ

T
− (β0Π

2+β1qνq
ν +β2πνκπ

νκ)
V µ

2T
+

α0Πq
µ

T
+
α1π

µνqν

T
, (60)

where n is particle number density, T is temperature, βA(ρ, n) ≥ 0 are ther-
modynamic coefficients for scalar, vector and tensor dissipative contributions
to the entropy density and αA(ρ, n) are thermodynamic viscous/heat cou-
pling coefficients. The divergence of extended current (follows from Gibbs
equation and Bianchi identities) is given by

TSα
;α = −Π

[

V α
;α − α0q

α
;α + β0Π;αV

α +
T

2

(

β0

T
V α

)

;α

Π

]

− qα[hµ
α(lnT ),µ(1 + α0Π) + Vα;µV

µ − α0Π;α − α1π
µ
α;µ

+ α1π
µ
αh

β
µ(lnT ),β + β1qα;µV

µ +
T

2

(

β1

T
V µ

)

;µ

qα]

− παµ

[

σαµ − α1qµ;α + β2παµ;νV
ν +

T

2

(

β2

T
V ν

)

;ν

παµ

]

. (61)

The 2nd law of thermodynamics requires that Sα
;α ≥ 0. This leads to the

following transport equations for our dissipative variables

τ0Π,αV
α +Π = −ζΘ+ α0ζq

α
;α −

1

2
ζT

(

τ0

ζT
V α

)

;α

Π, (62)

τ1h
β
αqβ;µV

µ + qα = −k[hβ
αT,β(1 + α0Π) + α1π

µ
αh

β
µT,β + T (aα

− α0Π;α − α1π
µ
α;µ)]−

1

2
kT 2

( τ1

kT 2
V β
)

;β
qα (63)

and

τ2h
µ
αh

ν
βπµν;ρV

ρ + παβ = −2ησαβ + 2ηα1q<β;α> − ηT

(

τ2

2ηT
V ν

)

;ν

παβ , (64)

where

q<β;α> = h
µ
βh

ν
α

(

1

2
(qµ;ν + qν;µ)−

1

3
qσ;κh

σκhµν

)

, (65)
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with k as the thermal conductivity. The relaxation times are given by

τ0 = ζβ0, τ1 = kTβ1, τ2 = 2ηβ2. (66)

Notice that if the thermodynamic coupling coefficients are assumed to be
zero, Eqs.(62)-(64) turn to be Eqs.(2.21)-(2.23) as given in [20]. The inde-
pendent components of Eqs.(62)-(64) are calculated as follows.

τ0Π̇ = −
(

ζ +
τ0Π

2

)

Θ
√

f + α0ζ

√
f√
h

[

q′ + q

(

f ′

2f
+

g′

g

)]

−
[

ζT

2

(

τ0

ζT

).

+
√

f

]

Π, (67)

τ1q̇ = −k

√
f√
h

[

T ′(1 + α0Π+
2

3
α1Ω) + T

{

f ′

2f
− α0Π

′′

− α1

(

2

3
Ω′ +

f ′

3f
Ω +

g′

g
Ω

)}]

− q

[

kT 2

2

( τ1

kT 2

).

+
τ1

2
Θ
√

f +
√

f

]

, (68)

τ2Ω̇ = −2
√

fησ + ηα1

√
f√
h
(2q′ − g′

g
q)

−
[

ηT

(

τ2

2ηT

).

Ω +
τ2

2
Θ
√

fΩ + Ω
√

f

]

. (69)

Now we discuss the action of dissipation over dynamics of collapsing ob-
ject. We couple these transport equations to dynamical equation (59). Using
Eq.(68) in Eq.(59), it follows that

(µ+ p+Π+ 2ǫ+
2

3
Ω)(1 − Λ)DTU = (1− Λ)Fgrav + Fhyd

+
kE2

τ1

[

DZ̃T (1 + α0Π +
2

3
α1Ω)− T

{

α0DZ̃Π+
2

3
α1

(

DZ̃Ω +
3

Z̃
Ω

)}]

+E

[

kT 2q

2τ1
DT

( τ1

kT 2

)

−DT ǫ

]

− E

[(

3q

2
+ 2ǫ

)

Θ− q

τ1
− 2(q + ǫ)

U

Z̃

]

,

(70)
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where Fgrav and Fhyd are given by

Fgrav = −(p +Π+ µ+ 2ǫ+
2

3
Ω)

×
[

m+ 4π(p+Π+ ǫ+
2

3
Ω)Z̃3

]

1

Z̃2
, (71)

Fhyd = −E2

[

DZ̃(p+Π+ ǫ+
2

3
Ω) + 2(ǫ+ Ω)

1

Z̃

]

(72)

and

Λ =
kT

τ1

(

p+Π + µ+ 2ǫ+
2

3
Ω

)−1(

1− 2

3
α1Ω

)

. (73)

Inserting Eq.(67) in Eq.(70), we obtain

(p+Π+ µ+ 2ǫ+
2

3
Ω)(1− Λ +∆)DTU = (1− Λ +∆)Fgrav + Fhyd

+
kE2

τ1

[

DZ̃T

(

1 + α0Π+
2

3
α1Ω

)

− T

{

α0DZ̃Π +
2

3
α1

(

DZ̃Ω +
3

Z̃
Ω

)}]

−E2

(

p+Π+ µ+ 2ǫ+
2

3
Ω

)

∆

(

DZ̃q

q
+

2

Z̃

)

+E

[

kT 2q

2τ1
DT

( τ1

kT 2

)

−DT ǫ

]

+ E

[

q

τ1
+ 2(q + ǫ)

U

Z̃

]

+E
∆

α0ζq

(

p+Π+ µ+ 2ǫ+
2

3
Ω

)[{

1 +
ζT

2
DT

(

τ0

ζT

)}

Π+ τ0DTΠ

]

,

(74)

where ∆ is given by

α0ζq

(

p+Π + µ+ 2ǫ+
2

3
Ω

)−1(
3q + 4ǫ

2ζ + τ0Π

)

. (75)

Here we see that (1−Λ+∆) is the major factor that appears in the dynamical
equation after coupling it with the transport equations. We would like to
mention here that Eq.(74) is the plane symmetric version of Eq.(55) in [17].

7 Summary and Conclusion

Gravitational collapse in a star is an irreversible phenomenon. Dynamics
(such as transport processes) of such non-equilibrium objects and connection
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between their dynamics and thermodynamics are of extensive significance in
order to have a better visualization of this problem. Thus we have studied
the dynamics of dissipative collapse, i.e., what role does dissipation play
with passing time as star collapses under the influence of its own gravity.
The most realistic model of matter, i.e, complicated fluid is assumed in the
interior region and is taken to be consistent with plane symmetry.

To see how system evolves with time, dynamical equations for the plane
symmetric spacetime are obtained using Misner and Sharp formalism. In
the dynamical equation (59), we see that the gravitational force represented
by the first term on the right hand side is expected to be much effective as
compared to non-dissipative fluid and so gravitational collapse is expected to
be faster in this case. Moreover, since the pressure gradient is negative in the
second term on right hand side of this equation, which combined with the mi-
nus sign preceding that term makes a positive contribution, thereby reducing
the rate of collapse. The last square brackets entirely depend on dissipation
and one cannot expect any such contribution in a dynamical equation for
non-dissipative collapse. The third term in this bracket is positive due to
negative sign of velocity of collapsing fluid U. It shows that outflow of heat
flux q > 0 and radiation ǫ > 0 reduces the total energy of the system and
hence reduces the rate of collapse.

Transport equations in the context of Müller, Israel and Stewart theory
of dissipative fluids are obtained and coupled to dynamical equation in order
to see the influence of dissipation over dynamics of a collapsing plane. After
this union of dynamical and transport equations, we get equation (74) where
the factor (1−Λ+∆) appears in the dynamical equation. We see the effect
of this factor for different possible values.

• If 0 < (Λ − ∆) < 1, inertial and gravitational mass densities will be
reduced.

• If (Λ−∆) tends to 1, inertial mass density tends to zero.

• If (Λ−∆) > 1, gravitational force will become positive and it will lead
to the reversal of collapse. Another possibility for reversal of collapse
is to take (Λ − ∆) < 1 such that (1 − Λ + ∆) is sufficiently small.
Consequently, it will significantly decrease the gravitational force.
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