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Abstract

It is common practice in Markov chain Monte Carlo to update a high-dimensional

chain one variable (or sub-block of variables) at a time, rather than conduct a single block

update. While this modification can make the choice of proposal easier, the theoretical

convergence properties of the associated Markov chain have received limited attention.

We present conditions under which the chain converges uniformly to its stationary distri-

bution at a geometric rate. Also, we develop a recipe for performing regenerative simu-

lation in this setting and demonstrate its application for estimating Markov chain Monte

Carlo standard errors. In both our investigation of convergence rates and in Monte Carlo

standard error estimation we pay particular attention to the case with state-independent

component-wise proposals. We illustrate our results in two examples, a toy Bayesian infer-

ence problem and a practically relevant example involving maximum likelihood estimation

for a generalized linear mixed model.
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1 Introduction

Let π be a probability distribution having support X. The canonical Markov chain Monte

Carlo (MCMC) method for making draws from π is the Metropolis-Hastings algorithm, de-

scribed here. Let X(k) = x denote the current state, and suppose the stationary distribution

π has a density with respect to some reference measure µ (often Lebesgue or counting measure

or their product), which we will also denote by π. Let p(·, ·) denote the user-defined proposal

kernel density. The updated state X(k+1) is obtained via

1. Simulate x∗ from proposal density p(x, ·)

2. Calculate acceptance probability α(x, x∗), where

α(x, y) = min

{

1,
π(y)

π(x)

p(y, x)

p(x, y)

}

3. Set

X(k+1) =

{

x∗ with probability α(x, x∗)

x with probability 1 − α(x, x∗)

Thus the choice of a Metropolis-Hastings sampler boils down to choosing a proposal density

kernel p(·, ·). One common choice is to use a proposal kernel that satisfies p(x, y) = p(y, x)

in which case this is called a Metropolis algorithm. If, further, p(x, y) = p(x − y) = p(y − x)

for all x and y, the sampler is called a Metropolis random walk. Another common choice of

candidate is a proposal p(·) that does not depend on the current state of the chain, that is,

the Metropolis-Hastings independence sampler (MHIS).

In practice, the selection of a candidate distribution can be a challenging proposition,

particularly in problems where the state space has high dimension. This has led to investi-

gation of optimal scaling of Metropolis algorithms and so-called adaptive algorithms which

allow the proposal kernel to change over the course of the simulation (see, for example,

Bédard and Rosenthal, 2008; Rosenthal, 2008, and the references therein). An alternative

approach is to, rather than update the chain as a single block, update one variable (or sub-

block of variables) at a time. The choice between these two strategies is frequently unclear

(see, e.g., Roberts and Sahu, 1997), although a general guideline seems to be that updating

as a single block may not be advantageous if the components of π are only weakly correlated.

Further, by breaking a high-dimensional simulation problem into several smaller-dimensional

problems, the component-wise approach can make the choice of candidate distributions much

easier.
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One hopes that whatever version of Metropolis-Hastings is used, the simulation will rel-

atively quickly produce a representative sample from the target population π. Thus an im-

portant consideration in MCMC is the rate of convergence of the chain to its stationary

distribution. Specificity requires notation. Let B be the Borel σ-algebra on X and Pn(x, dy)

denote the n-step Markov transition kernel, that is, for any x ∈ X, A ∈ B, and n ∈ Z
+,

Pn(x,A) = Pr(X(n+j) ∈ A|X(j) = x) for the Markov chain Φ =
{

X(0),X(1),X(2), . . .
}

. If the

chain is Harris ergodic (i.e., aperiodic, π-irreducible, and positive Harris recurrent), then, as

n → ∞, ||Pn(x, ·) − π(·)|| → 0 where ‖ · ‖ denotes the total variation norm. We will consider

the rate of this convergence in the following way. Suppose there exist a real-valued function

M(x) on X and 0 < t < 1 such that

||Pn(x, ·) − π(·)|| ≤ M(x)tn . (1)

When M is bounded say Φ is uniformly ergodic and otherwise say it is geometrically ergodic.

Harris ergodicity is well-understood for Metropolis-Hastings chains. Tierney (1994) showed

that a Metropolis-Hastings chain with block updates is Harris ergodic under weak condi-

tions while Chan and Geyer (1994) and Roberts and Rosenthal (2006) found conditions un-

der which variable-at-a-time chains are Harris recurrent. Also, much work has been done on

establishing (1) for various versions of Metropolis-Hastings. For example, Tierney (1994) and

Mengersen and Tweedie (1996) showed that the MHIS sampler is uniformly ergodic if there ex-

ists ǫ > 0 such that p(x) ≥ ǫπ(x) for all x ∈ X. Mengersen and Tweedie (1996) further proved

that if ess inf {p(x)/π(x)} = 0 in π-measure, the resulting MHIS is not even geometrically

ergodic. Moreover, Mengersen and Tweedie (1996) proved that the Metropolis random walk

on R
d cannot be uniformly ergodic. However, Christensen et al. (2001); Jarner and Hansen

(2000); Mengersen and Tweedie (1996); Roberts and Tweedie (1996) have established condi-

tions under which Metropolis yields a geometrically ergodic chain.

Note well that none of these convergence rate results apply to variable-at-a-time imple-

mentations (though Fort et al., 2003; Roberts and Rosenthal, 1998, have shown that random

scan Metropolis random walks can be geometrically ergodic). Thus we begin by considering

uniform ergodicity of such samplers in Section 2, eventually focusing on a variable-at-a-time

version of the Metropolis-Hastings algorithm with state-independent candidate distributions.

In particular, we find conditions under which the resulting chain converges uniformly to its

stationary distribution at a geometric rate and apply them to a toy Bayesian example and a

practically relevant example involving maximum likelihood estimation for a generalized linear

mixed model. We also provide an empirical comparison of the variable-at-a-time sampler with

the Metropolis random walk and the MHIS.
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In addition to generally ensuring the rapid convergence required for useful simulation, (1) is

also a key sufficient condition for calculating asymptotically valid Monte Carlo standard errors

(Flegal et al., 2008; Flegal and Jones, 2008; Hobert et al., 2002; Jones et al., 2006). One of

the most common goals in MCMC is to evaluate the quantity Eπg =
∫

X
g(x)π(dx) where π

is a probability distribution with support X and Eπ|g| < ∞. In Markov chain Monte Carlo

(MCMC) integration, Eπg is approximated by the ergodic average ḡn = n−1
∑n−1

i=0 g(X(i))

on a partial realization of a Markov chain having π as its stationary distribution. The use

of ḡn is usually justified through Birkhoff’s ergodic theorem. Now (1) along with a moment

condition on g ensures the existence of a central limit theorem for the Monte Carlo error, i.e.,

there exists 0 < σ2
g < ∞ such that as n → ∞,

√
n(ḡn − Eπg)

d→ N(0, σ2
g) .

The condition (1) also ensures that we can use the method of regenerative simulation to con-

struct asymptotically valid MCMC standard errors. Regenerative simulation presents some

complications not seen in block sampling algorithms, thus we develop a recipe for regeneration

in variable-at-a-time implementations. Although we do not pursue these applications here,

our algorithm for implementing regeneration also can be used to choose reasonable start-

ing values (Hobert et al., 2006) or even as the basis of an adaptive component-wise MCMC

sampler, perhaps following the basic recipes of Gilks et al. (1998) or Brockwell and Kadane

(2005).

The remainder of this paper is organized as follows. In Section 2 we introduce variable-

at-a-time implementations, consider convergence rates for two general algorithms, and de-

velop conditions for the uniform convergence of the variable-at-a-time sampler with state-

independent proposals. In Section 3 we introduce the method of regenerative simulation for

estimating Monte Carlo standard errors, and demonstrate its implementation for variable-at-

a-time samplers. In Section 4 we consider two examples, a toy problem in Bayesian inference

and a logit-normal generalized linear mixed model (GLMM).

2 Convergence rates under variable-at-a-time updates

2.1 Basic Technique: Minorization

There are constructive techniques for verifying the existence of an appropriate M and t in (1);

see Meyn and Tweedie (1993, Chapter 15). Following is a method for establishing uniform

ergodicity. Suppose there exist a positive integer n0, a number ǫ > 0, a set C ∈ B, and a

4



probability measure Q on B such that

Pn0(x,A) ≥ ǫQ(A) for all x ∈ C, A ∈ B. (2)

We then say that a minorization condition holds on the set C, called a small set. If (2) holds

with C = X, then Φ is uniformly ergodic and ‖Pn(x, ·)−π(·)‖ ≤ (1− ǫ)⌊n/n0⌋ where ⌊·⌋ is the

greatest integer function.

2.2 General variable-at-a-time updates

Suppose X = X1 × · · · × Xd with Borel σ-algebra B. We allow each Xi ⊆ R
bi so that the total

dimension is b1 + · · · + bd. Under a variable-at-a-time, or component-wise, implementation

of Metropolis-Hastings, the update of X(k) = x = (x1, . . . , xd), where xi ∈ Xi, to X(k+1), is

obtained as follows. Letting i index the component of the chain due for update, a candidate x∗
i

is drawn from pi(x, ·), a proposal density on Xi. Then, if x∗ = (x1, . . . , xi−1, x
∗
i , xi+1, . . . , xd),

the acceptance probability for the ith update is given by

αi(x, x∗
i ) = min

{

1,
π(x∗)

π(x)

pi(x
∗, xi)

pi(x, x∗
i )

}

.

Two ways to combine these component-wise updates involve composition and simple mixing.

Before describing these we require more notation. We will continue to use a subscript to

indicate the position of a vector component and a parenthetical superscript to indicate the

step in a Markov chain, so X(k) = x = (x1, . . . , xd), where xi ∈ Xi, denotes the current state

of the chain. For each i = 1, . . . , d let x[i] = (x1, . . . , xi) and x[i] = (xi, . . . , xd); let x[0] and

x[d+1] be null (vectors of dimension 0). Next, f(u, v|w) denotes a Markov transition density

(MTD) if it is a density in v conditional on u and w; the reader should think of a Markov

chain moving from u to v possibly conditionally on some other variable w.

Composition of the component-wise updates corresponds to deterministically cycling through

them one at a time. Thus the MTD for a move from X(k) = x to X(k+1) = y is

fcomp(x, y) =

d
∏

i=1

fi(xi, yi | y[i−1], x
[i+1]) (3)

where fi(xi, · | y[i−1], x
[i+1]) is the MTD for a Metropolis-Hastings algorithm on Xi having,

given current state xi, proposal density pi((y[i−1], x
[i]), ·), and acceptance probability

αi((y[i−1], x
[i]), yi) = min

{

1,
π(y[i], x

[i+1])

π(y[i−1], x[i])

pi((y[i], x
[i+1]), xi)

pi((y[i−1], x[i]), yi)

}

. (4)

Our first result establishes general conditions for uniform ergodicity of the Markov chain

determined by fcomp.
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Theorem 1. Suppose there exist positive constants εi and positive functions qi on X1×· · ·×Xi

such that

fi(xi, yi|y[i−1], x
[i+1]) ≥ εiqi(y[i])

for all x[i] and y[i], for each i = 1, . . . d. Then the Markov chain corresponding to fcomp is

uniformly ergodic. Moreover, if we let

C =

∫

X

q1(x1)q2(x1, x2) · · · qd(x1, . . . , xd)µ(dx),

then after n iterations the total variation distance to stationarity is bounded above by (1 −
Cε1 · · · εd)

n.

Proof. We will establish (2) for n0 = 1. Now

fcomp(x, y) =
d

∏

i=1

fi(xi, yi|y[i−1], x
[i+1]) ≥

d
∏

i=1

εiqi(y[i]) .

Let Pcomp denote the one-step transition kernel corresponding to the MTD fcomp. Then

Pcomp(x,A) ≥ ε1 · · · εd C Q(A),

where

Q(A) =
1

C

∫

A
q1(x[1])q2(x[2]) · · · qd(x[d])µ(dx) .

In simple mixing, each update consists of just one randomly selected component-wise

update, where the component selection probabilities do not depend on the state of the chain.

Let ri > 0 and
∑d

i=1 ri = 1, we can then write the MTD for the transition X(k) = x to

X(k+1) = y as

fmix(x, y) =

d
∑

i=1

rifi(xi, yi|x(−i))I(y(−i) = x(−i)) (5)

where x(−i) = x r xi and similarly for y(−i).

For the remainder of this paper we will focus on composition. This turns out to be suffi-

cient because, as the following theorem asserts, if a component-wise algorithm with updates

combined by composition is uniformly ergodic, then the sampler is uniformly ergodic under

simple mixing as well.

Theorem 2. Suppose there exists ǫ > 0 and a probability measure Q such that Pcomp(x,A) ≥
ǫQ(A) for all x ∈ X and A ∈ B, and thus the composition sampler is uniformly ergodic. Then
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the corresponding simple mixing algorithm (with the same component-wise proposal kernels) is

uniformly ergodic as well. Moreover, if r1, . . . , rd denote the component selection probabilities,

then after n × d iterations the total variation distance to stationarity is bounded above by

(1 − ǫ r1 · · · rd)
n.

Proof. Let fk
mix denote the k-step MTD of the mixing algorithm, given by (5) for k = 1. Now,

fd
mix(x, y) ≥

d
∏

i=1

fmix

(

(y[i−1], x
[i]), (y[i], x

[i+1])
)

=

d
∏

i=1

rifi

(

xi, yi|(y[i−1], x
[i+1])

)

=
d

∏

i=1

ri fcomp(x, y)

where the inequality follows from the fact that the right-hand side only accounts for the case

that the updates occur in the order 1, 2, . . . , d; the first equality follows from the definition of

fmix; and the second equality follows from the definition of fcomp.

If we let Pmix denote the corresponding Markov transition kernel, we have

P d
mix(x,A) ≥

d
∏

i=1

ri Pcomp(x,A) ≥ ǫ

d
∏

i=1

ri Q(A) .

Remark 1. Consider the upper bounds on the total variation distance in both theorems,

specifically, (1 − Cε1 · · · εd)
n for fcomp and (1 − ǫ r1 · · · rd)

n for fd
mix. Notice that as d → ∞

both of these bounds tend to 1. Also, in Theorem 2 the assumed minorization for Pcomp

implies a total variation upper bound of (1 − ǫ)n. Of course, the upper bound for Pmix is

larger, that is, (1− ǫ)n < (1− ǫ r1 · · · rd)
n, but since these are just upper bounds on the total

variation distance we caution against using them to compare the two Markov chains.

Remark 2. Roberts and Rosenthal (1997, Proposition 3.2) proved a result that has a similar

flavor. Specifically, they showed that if the deterministically updated Gibbs sampler is uni-

formly ergodic, then so is the so-called random scan Gibbs sampler when the component-wise

selection probabilities are equal. Note that equal selection probabilities ri ≡ 1/d achieves the

tightest upper bound available from Theorem 2 by maximizing the product r1 · · · rd.
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2.3 Component-wise independence sampler

In a component-wise independence sampler (CWIS), the component-wise proposal kernels

pi(x, ·) do not depend on the current state of the chain x. Again letting i index the component

of the chain due for update, a proposal x∗
i is drawn from pi(·), a density on Xi. Then, if

x∗ = (x1, . . . , xi−1, x
∗
i , xi+1, . . . , xd), the acceptance probability for the ith update is given by

αi(x, x∗
i ) = min

{

1,
π(x∗)

π(x)

pi(xi)

pi(x∗
i )

}

.

We are interested in establishing conditions under which the CWIS is uniformly ergodic.

Clearly the conditions of Theorem 1 may be difficult to verify in practical applications. Fur-

ther, as a CWIS update will likely be some combination of accepted and rejected component-

wise proposals, the CWIS is not truly an independence sampler at all, and thus the results

from Mengersen and Tweedie (1996) are not directly applicable. It is tempting to think

that extending their work to component-wise updates will be straightforward. If we let

p(x) =
∏d

i=1 pi(xi), a density on X, is the existence of ǫ > 0 such that p(x) ≥ ǫπ(x) a

sufficient condition for uniform ergodicity of CWIS? It is not at all clear that it is. Attempts

to generalize Mengersen and Tweedie’s (1996) argument break down with the proliferation of

cases to consider. In Theorem 3 we give a pair of conditions that together are sufficient for

uniform ergodicity of CWIS.

Recall the notation previously defined. We use a subscript to indicate the position of a

vector component and a parenthetical superscript to indicate the step in a Markov chain, so

X(k) = x = (x1, . . . , xd), where xi ∈ Xi, denotes the current state of the chain. For each

i = 1, . . . , d let x[i] = (x1, . . . , xi) and x[i] = (xi, . . . , xd); let x[0] and x[d+1] be null (vectors of

dimension 0). Now an explicit statement of the CWIS update rule for X(k) = x is

1. For each i = 1, . . . , d,

(a) Simulate x∗
i ∼ pi(·)

(b) Calculate

αi((y[i−1], x
[i]), x∗

i ) = min

{

1,
π(y[i−1], x

∗
i , x

[i+1])

π(y[i−1], xi, x[i+1])

pi(xi)

pi(x∗
i )

}

(c) Set yi =

{

x∗
i with probability αi

xi with probability 1 − αi

2. Set X(k+1) = (y1, . . . , yd).

8



Theorem 3. Consider a CWIS on state space X = X1 × · · · × Xd with target density π and

proposal densities pi for i = 1, . . . , d. Define p(x) :=
∏d

i=1 pi(xi), a density on X, and suppose

p(x) = 0 if and only if π(x) = 0. Further suppose there exists δ > 0 such that p(x) ≥ δπ(x)

for all x ∈ X. Finally, suppose there exists ε > 0 such that for any x, y ∈ X with π(x) > 0

and π(y) > 0,

π(x)π(y) = π(x[i−1], x
[i])π(y[i−1], y

[i]) ≥ επ(x[i−1], y
[i])π(y[i−1], x

[i]) > 0 (6)

for each i = 1, . . . , d − 1. If we let Pcwis denote the Markov transition kernel, then, for any

x ∈ X and A ∈ B(X),

Pcwis(x,A) ≥ δε⌊d/2⌋π(A)

where ⌊·⌋ denotes the greatest integer function, and thus the Markov chain is uniformly ergodic.

Moreover, the total variation distance to stationarity after n iterations is bounded by (1 −
δε⌊d/2⌋)n.

Proof. See Appendix A.

Remark 3. As in Section 2.2 we see that the total variation upper bound for the CWIS

approaches 1 as d → ∞. Moreover, the upper bound for CWIS is larger than that of the

MHIS which is (1 − δ)n in the notation of the theorem. However, we will encounter an

example in Section 4.2 where, despite the larger upper bound, CWIS is convincingly better

than the MHIS.

The following two corollaries indicate settings under which (6) is easily verified.

Corollary 1. Consider a CWIS on state space X = X1 × · · · × Xd with target density π and

proposal densities pi for i = 1, . . . , d. Define p(x) :=
∏d

i=1 pi(xi), a density on X, and suppose

p(x) = 0 if and only if π(x) = 0. Further suppose there exists δ > 0 such that p(x) ≥ δπ(x)

for all x ∈ X. Finally, suppose there exist pairs of functions gi and hi on Xi for i = 1, . . . , d

such that
d

∏

i=1

gi(xi) ≤ π(x) ≤
d

∏

i=1

hi(xi) (7)

for any x ∈ X, and supxi∈Xi
{hi(xi)/gi(xi)} < ∞ for each i = 1, . . . , d. Then the Markov

chain is uniformly ergodic.

Proof. We need only show that (7) implies (6). Let ρi = infxi∈Xi
{gi(xi)/hi(xi)} for i =

1, . . . , d; by assumption each ρi > 0. Then, for any x, y ∈ X and each i = 1, . . . , d we have

π(x[i−1], x
[i])π(y[i−1], y

[i])

π(x[i−1], y[i])π(y[i−1], x[i])
≥

i−1
∏

j=1

gj(xj)gj(yj)

hj(xj)hj(yj)

d
∏

j=i

gj(yj)gj(xj)

hj(yj)hj(xj)
≥

d
∏

j=1

ρ2
j .
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Thus (6) holds with ε = (ρ1 · · · ρd)
2.

Remark 4. An immediate consequence of Corollary 1 is that if the target density π can be

expressed as a product of d densities (each πi a density on Xi), that is, if the components of

a random vector X ∼ π are mutually independent, a CWIS with p(x) ≥ δπ(x) is uniformly

ergodic. Further, since (6) holds for ε = 1 in this case, the upper bound on total variation

distance to stationarity is (1 − δ)n, the same bound as can be obtained for the MHIS.

Corollary 2. Consider a CWIS on state space X = X1 × · · · × Xd with target density π and

proposal densities pi for i = 1, . . . , d. Define p(x) :=
∏d

i=1 pi(xi), a density on X, and suppose

p(x) = 0 if and only if π(x) = 0. If there exist 0 < a ≤ b < ∞ and c < ∞ such that

a ≤ π(x) ≤ b and p(x) ≥ c for π-almost all x, then the chain is uniformly ergodic.

Proof. The conditions of Theorem 3 hold with δ = c/b and ε = (a/b)2.

Remark 5. Although, in the interest of brevity, we have not stated it here, using Theorem 2 it is

straightforward to see that the corresponding simple mixing algorithm with state-independent

proposals is uniformly ergodic under the conditions of Theorem 3 and Corollaries 1 and 2.

2.4 Metropolised Gibbs

In a Gibbs sampler, the update of X(k) = x = (x1, . . . , xd), where each xi ∈ Xi, to X(k+1) =

y = (y1, . . . , yd) is conducted by, for each i = 1, . . . , d, taking yi to be a draw from the condi-

tional density πi(·|y[i−1], x
[i+1]). If the means to simulate from some or all of the conditional

densities πi(xi|x(−i)) are unavailable, one might apply the Metropolis-Hastings idea to the

component-wise updates. Letting pi((y[i−1], x
[i]), ·) denote the proposal density for the ith

component, this “Metropolised” Gibbs algorithm proceeds by, for each i = 1, . . . , d,

1. Simulate x∗
i ∼ pi((y[i−1], x

[i]), ·)

2. Calculate

αi = min

{

1,
πi(x

∗
i |y[i−1], x

[i+1])

πi(xi|y[i−1], x[i+1])

pi((y[i−1], x
∗
i , x

[i+1]), xi)

pi((y[i−1], x[i]), x∗
i )

}

(8)

3. Set

yi =

{

x∗
i with probability αi

xi with probability 1 − αi

Of course, this approach is identical to the composition approach to variable-at-a-time updates

of Section 2.2.
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Theorem 4. The Metropolised Gibbs sampler with Metropolis-Hastings proposal densities

pi((y[i−1], x
[i]), ·), i = 1, . . . , d, is equivalent to fcomp with proposal densities pi((y[i−1], x

[i]), ·).

Proof. Proposal densities are identical, so we need only show that acceptance probabilities

are equivalent (which they must be, as both algorithms are constructed to have the same

invariant distribution). If we let x∗ = (x1, . . . , xi−1, x
∗
i , xi+1, . . . , xd), we have

π(x∗)

π(x)
=

π−i(x(−i))πi(x
∗
i |x(−i))

π−i(x(−i))πi(xi|x(−i))
=

πi(x
∗
i |x(−i))

πi(xi|x(−i))

and the equivalence of (4) and (8) follows immediately.

3 Regenerative simulation

Here we consider a generalization to the minorization condition introduced in Section 2.1, and

assume it holds for n0 = 1. Specifically, we suppose there exists a function s : X → [0, 1] with

Eπs > 0 and a probability measure Q on B such that

P (x,A) ≥ s(x)Q(A) for all x ∈ X and A ∈ B . (9)

The method of regenerative simulation (RS) requires simulation of the split chain
{

(X(n), δ(n))
}

,

generated as follows. Given X(k) = x, find X(k+1) and δ(k) by

1. Simulate X(k+1) ∼ P (x, ·)

2. Simulate δ(k), a Bernoulli random variable with success probability r(X(k),X(k+1))

where

r(x, y) =
s(x)Q(dy)

P (x, dy)
(10)

denotes the conditional probability of regeneration given a jump from x to y in the
{

X(n)
}

chain.

By construction, the sub-chain
{

X(n)
}

has Markov transition kernel given by P . Also, the set

of n for which δ(n−1) = 1, called regeneration times, represent times at which the chain “prob-

abilistically restarts itself.” An important application of regenerative simulation is Monte

Carlo standard error estimation, as described in Appendix B; see any of Hobert et al. (2002);

Jones et al. (2006); Jones and Hobert (2001); Mykland et al. (1995) for further details.

Now consider a variable-at-a-time Metropolis-Hastings algorithm having transition density

defined at (3), i.e.,

fcomp(x, y) =

d
∏

i=1

fi(xi, yi | y[i−1], x
[i+1])

11



where each fi(xi, · | y[i−1], x
[i+1]) is an MTD with proposal density pi((y[i−1], x

[i]), · ). Assume

that for i = 1, . . . , d there exist positive functions si on Xi × · · · × Xd and qi on X1 × · · · × Xi

such that

pi((y[i−1], x
[i]), yi) ≥ si(x

[i])qi(y[i]) . (11)

Next, assume that there are positive functions wi for i = 1, . . . , d such that

wi(x)pi(x, yi) = wi(y)pi(y, xi) for all x, y ∈ X . (12)

Remark 6. For the CWIS note that (11) holds with si(x
[i]) = 1 and qi(y[i]) = pi(yi) and (12)

holds with wi(x) = pi(xi).

Set ri(x) = π(x)/wi(x) and also suppose there exists a set of functions gi1, gi2, hi1, hi2 for

i = 1, . . . , d such that for any x with π(x) > 0 we have

0 ≤ gi1(x[i])gi2(x
[i+1]) ≤ ri(x) ≤ hi1(x[i−1])hi2(x

[i]) for each i = 1, . . . , d (13)

and assume further that

Eπgi1gi2 > 0 for each i = 1, . . . , d . (14)

Remark 7. Consider the conditions (13) and (14), which are not as restrictive as they may

at first appear. Indeed these conditions hold quite generally for bounded target densities.

For example, consider the CWIS setting and take wi(x) = pi(xi) as above. For each i =

1, . . . , d − 1, select a point x̃[i] ∈ X1 × · · · × Xi, and a set Di ⊂ Xi+1 × · · · × Xd such that

inf
{

π(x) : x[i+1] ∈ Di

}

> 0. Then take

gi1(x[i]) =
1

pi(xi)
inf

x[i+1]∈Di

[

π(x[i], x
[i+1])

π(x̃[i], x[i+1])

]

,

and

gi2(x
[i+1]) = π(x̃[i], x

[i+1])IDi
(x[i+1]) .

Assume supπ(x) < ∞. We can take

hi1(x[i−1]) = sup
x[i]∈Xi×···×Xd

π(x[i−1], x
[i])

and hi2(x
[i]) = 1/pi(xi), and (13) holds. Finally, (14) holds by definition of the Di.

We now show that (11)–(14) together are sufficient to guarantee a minorization. First,

note that

fcomp(x, y) ≥
d

∏

i=1

pi((y[i−1], x
[i]), yi)αi((y[i−1], x

[i]), yi)

12



as the right-hand side only accounts for the case where every component-wise update proposal

is accepted. Also,

αi((y[i−1], x
[i]), yi) = min

{

1,
π(y[i], x

[i+1])

π(y[i−1], x[i])

pi((y[i], x
[i+1]), xi)

pi((y[i−1], x[i]), yi)

}

= min

{

1,
π(y[i], x

[i+1])

wi(y[i], x[i+1])

wi(y[i−1], x
[i])

π(y[i−1], x[i])

}

= min

{

1,
ri(y[i], x

[i+1])

ri(y[i−1], x[i])

}

≥ min

{

1,
gi1(y[i])gi2(x

[i+1])

hi1(y[i−1])hi2(x[i])

}

≥ min

{

1,
cigi1(y[i])

hi1(y[i−1])

}

min

{

1,
gi2(x

[i+1])

cihi2(x[i])

}

,

where the equality follows from (12), the first inequality follows from (13) and the second is due

to the fact that for any nonnegative real numbers a and b, min {1, ab} ≥ min {1, a}min {1, b},
and ci is any positive constant. Now (11) implies

fcomp(x, y) ≥
d

∏

i=1

si(x
[i])min

{

1,
gi2(x

[i+1])

cihi2(x[i])

}

qi(y[i])min

{

1,
cigi1(y[i])

hi1(y[i−1])

}

.

This implies a minorization condition (9) with

s(x) ∝
d

∏

i=1

si(x
[i])min

{

1,
gi2(x

[i+1])

cihi2(x[i])

}

, (15)

and probability density

q(y) ∝
d

∏

i=1

qi(y[i])min

{

1,
cigi1(y[i])

hi1(y[i−1])

}

. (16)

Note that some care must be taken in the selection of the si and the gi1, gi2 to ensure that

Eπs > 0, as required for the minorization condition. We will not need the normalizing constant

for q since the probability of regeneration only depends on the product of s and q. We now

give the update rule for the component-wise split chain. Letting X(k) = x denote the current

state of the chain, X(k+1) and δ(k) are found by

1. Generate X(k+1) = y according to the component-wise update rule or fcomp(x, ·)
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2. If even a single component-wise update proposal was rejected, set δ(k) = 0. If every

component-wise update proposal was accepted, let δ(k) be a Bernoulli random variable

with success probability

rA(x, y) =
d

∏

i=1

si(x
[i])min

{

1,
gi2(x

[i+1])

cihi2(x
[i])

}

qi(y[i])min

{

1,
cigi1(y[i])

hi1(y[i−1])

}

pi((y[i−1], x[i]), yi)min

{

1,
π(y[i], x

[i+1])

π(y[i−1], x
[i])

pi((y[i], x
[i+1]), xi)

pi((y[i−1], x
[i]), yi)

} (17)

We thus have the following theorem, which extends Mykland et al.’s (1995) Theorem 2 to

component-wise updates, guaranteeing that the above update rule yields the correct regener-

ation probability (10).

Theorem 5. A component-wise sampler with MTD fcomp having target density π satisfying

(11)–(14) has a minorization condition P (x,A) ≥ s(x)Q(A) for all x ∈ X and A ∈ B(X).

Further, in the component-wise split chain algorithm defined above, the probability of a regen-

eration occurring on a jump from x to y is given by

Pr(δ(k) = 1|X(k) = x,X(k+1) = y) =
s(x)Q(dy)

P (x, dy)
.

Proof. The first assertion was proved above. Let Ak denote the event that every single

component-wise update proposal is accepted in the k + 1 update. Since δ(k) is zero if even a

single update proposal is rejected, we have for any x, y ∈ X,

1 = Pr(Ak|δ(k) = 1,X(k) = x,X(k+1) = y) =
Pr(Ak, δ

(k)|X(k) = x,X(k+1) = y)

Pr(δ(k) = 1|X(k) = x,X(k+1) = y)

and thus

Pr(δ(k) = 1|X(k) = x,X(k+1) = y) = Pr(Ak, δ
(k) = 1|X(k) = x,X(k+1) = y)

= Pr(δ(k) = 1|Ak,X
(k) = x,X(k+1) = y)

× Pr(Ak|X(k) = x,X(k+1) = y)

= rA(x, y) ×
∏d

i=1 pi((y[i−1], x
[i]), yi)αi((y[i−1], x

[i]), yi)µ(dy)

P (x, dy)

=
s(x)q(y)µ(dy)

P (x, dy)
=

s(x)Q(dy)

P (x, dy)

where rA is given by (17), and q and s are given by (16) and (15), respectively.

Remark 8. Implementation of RS in the algorithm defined by MTD fmix is challenging. In

particular, we were unsuccessful in establishing a minorization of the form (9). However, it is

at least theoretically possible to implement RS using the minorization developed in the proof

of Theorem 2. Of course, this is not appealing from a practical point of view.
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4 Examples

4.1 A toy problem in Bayesian inference

Let Y1, . . . , Ym be i.i.d. Normal(µ, θ), and let the prior on (µ, θ) be given by the density

π0(µ, θ) ∝ IA(µ)IB(θ)/
√

θ, where A and B are Borel subsets of R and R
+, respectively.

Consider the problem of simulating an ergodic Markov chain with stationary distribution

given by the posterior density

π(µ, θ) ∝ θ−
m+1

2 e−
1
2θ [s2+m(µ−ȳ)2]IA(µ)IB(θ)

where ȳ = 1
m

∑m
i=1 yi and s2 =

∑m
i=1(yi−ȳ)2. Jones and Hobert (2001) showed that, provided

m ≥ 5, the Gibbs sampler is geometrically ergodic, even with A = R and B = R
+. Here we

propose a Metropolis-Hastings independence sampler that we show to be uniformly ergodic

provided A is bounded, and a component-wise independence sampler that we will show is

uniformly ergodic provided A is bounded and B is bounded below away from zero. Then we

show how to use RS in both samplers and conclude with an empirical comparison.

4.1.1 An independence sampler

If (µ(k), θ(k)) = (µ, θ) ∈ A×B denotes the current state of the chain, the update (µ(k+1), θ(k+1))

is found by

1. Simulate proposals µ∗ ∼ N(ȳ, s2

m ) on A (a truncated normal distribution) and θ∗ ∼
IG(m−1

2 , s2

2 ) on B (a truncated inverse gamma). Simulating the proposals is easily done

by rejection sampling.

2. Calculate the acceptance probability α = min
{

1, π(µ∗,θ∗)
π(µ,θ)

p(µ,θ)
p(µ∗,θ∗)

}

, where p(µ, θ) is the

product of the two univariate proposal densities. The acceptance probability reduces to

the minimum of 1 and

exp

{

−m

2

[(

1

s2
− 1

θ

)

(µ − ȳ)2 −
(

1

s2
− 1

θ∗

)

(µ∗ − ȳ)2
]}

3. Set

(µ(k+1), θ(k+1)) =

{

(µ∗, θ∗) with probability α

(µ, θ) with probability 1 − α

To prove that this algorithm is uniformly ergodic we will show the existence of ǫ > 0 such

that p(µ, θ) > ǫπ(µ, θ) for all (µ, θ) ∈ A × B . Suppose A is bounded, and let µ̃ satisfy
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|µ̃ − ȳ| = supµ∈A |µ − ȳ| < ∞. Now

p(µ, θ)

π(µ, θ)
∝ exp

{

−m

2

(

1

s2
− 1

θ

)

(µ − ȳ)2
}

.

Thus the inequality holds for ǫ = k exp
{

− m
2s2 (µ̃ − ȳ)2

}

> 0 where k is a ratio of normalizing

constants.

To simulate the MHIS split chain we follow the recipe of Mykland et al. (1995). The con-

ditional probability of regeneration on a jump from (µ′, θ′) to (µ, θ), given that the Metropolis-

Hastings proposal was accepted, is

rA(x, y) =















min
{

π(µ′,θ′)
cp(µ′,θ′) ,

π(µ,θ)
cp(µ′,θ′)

}

π(µ′, θ′) < cp(µ′, θ′), π(µ, θ) < cp(µ, θ)

min
{

cp(µ′,θ′)
π(µ′,θ′) , cp(µ,θ)

π(µ,θ)

}

π(µ′, θ′) > cp(µ′, θ′), π(µ, θ) > cp(µ, θ)

1 otherwise .

We take the constant c > 0 to be the median value of π(µ, θ)/p(µ, θ) from a preliminary run.

4.1.2 A component-wise independence sampler

In a CWIS the proposals µ∗ and θ∗ are considered independently, allowing the possibility that

one component of the chain might move while the other does not. Let (µ(k), θ(k)) = (µ, θ) ∈
A × B denote the current state of the chain. The updated value µ(k+1) is found by

1. Simulate µ∗ from candidate density p1(·) ∼ N(ȳ, s2

m ) on A (truncated normal distribu-

tion).

2. Calculate the acceptance probability α1 = min
{

1, π(µ∗,θ)
π(µ,θ)

p1(µ)
p1(µ∗)

}

, which reduces to the

minimum of 1 and

exp

{

−m

2

(

1

s2
− 1

θ

)

[

(µ − ȳ)2 − (µ∗ − ȳ)2
]

}

3. Set

µ(k+1) =

{

µ∗ with probability α1

µ with probability 1 − α1

If we now let (µ(k+1), θ(k)) = (µ, θ) ∈ A × B, we find θ(k+1) by

1. Simulate θ∗ from candidate denstiy p2(·) ∼ IG(m−1
2 , s2

2 ) on B (truncated inverse gamma

distribution).
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2. Calculate acceptance probability α2 = min
{

1, π(µ,θ∗)
π(µ,θ)

p2(θ)
p2(θ∗)

}

, which reduces to the min-

imum of 1 and

exp

{

−m

2

(

1

θ∗
− 1

θ

)

(µ − ȳ)2
}

3. Set

θ(k+1) =

{

θ∗ with probability α2

θ with probability 1 − α2

To show the above CWIS is uniformly ergodic, we must find δ > 0 such that p1(µ)p2(θ) ≥
δπ(µ, θ), and ε > 0 such that (6) holds. Assuming A is bounded, let µ̃ satisfy |µ̃ − ȳ| =

supµ∈A |µ − ȳ| < ∞, and the former condition holds with δ = k exp
{

− m
2s2 (µ̃ − ȳ)2

}

> 0 by

the argument of the previous subsection. Further,

π(µ, θ)π(µ′, θ′)

π(µ, θ′)π(µ′, θ)
= exp

{

−m

2

(

1

θ
− 1

θ′

)

[

(µ − ȳ)2 − (µ′ − ȳ)2
]

}

≥ exp

{

− m

2min {θ, θ′} max
{

(µ − ȳ)2, (µ′ − ȳ)2
}

}

If we also assume B is bounded below away from zero, and denote the infimum of B by θ∗ > 0,

then (6) holds with ε = exp
{

−m(µ̃−ȳ)2

2θ∗

}

. Uniform ergodicity follows from Theorem 3.

Now consider implementing RS. Let r1(µ, θ) ∝ π(µ, θ)/p1(µ) and r2(µ, θ) ∝ π(µ, θ)/p2(θ).

For the CWIS split chain we seek pairs of functions g1, g2 and h1, h2 such that r1(µ, θ) ≥
g1(µ)g2(θ) and r2(µ, θ) ≤ h1(µ)h2(θ). Now

r1(µ, θ) = exp

{

−m + 1

2
log θ − s2

2θ
− m

2

(

1

θ
− 1

s2

)

(µ − ȳ)2
}

≥ exp

{

−m

2

(

1

θ̃
− 1

s2

)

(µ − ȳ)2
}

× exp

{

−m + 1

2
log θ − s2

2θ

}

I(θ > θ̃)

for any choice of θ̃ ∈ B, suggesting a sensible choice of g1 and g2. Also

r2(µ, θ) = exp
{

−m

2θ
(µ − ȳ)2

}

and thus the desired inequality holds for h1(µ) = 1 and h2(θ) = 1.

The conditional probability of a regeneration on a jump from (µ′, θ′) to (µ, θ), conditional

on both component-wise proposals being accepted, is given by

rA((µ′, θ′), (µ, θ)) =

min

{

1,
g2(θ

′)

r1(µ′, θ′)

}

min {1, g1(µ)}

min

{

1,
r1(µ, θ′)

r1(µ′, θ′)

}

min

{

1,
1

h2(θ′)

}

min

{

1,
r2(µ, θ)

h1(µ)

}

min

{

1,
r2(µ, θ)

r2(µ, θ′)

}

with the components of this expression as defined above.
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4.1.3 An empirical comparison

Let m = 10, ȳ = 10.2, and s2 = 6.5, and suppose our goal is to estimate the posterior mean

inverse coefficient of variation E(µ/
√

θ|y).

We let A = (0, 100) and B = R
+ and implemented the MHIS of subsection 4.1.1, starting

the chain at (µ(0), θ(0)) = (10, 1). Results are shown in Figure 1. Autocorrelation tails off to

zero by lag 10 or so.

We let A = (0, 100) and B = (.01,∞) and considered the CWIS of subsection 4.1.2, again

starting the chain at (µ(0), θ(0)) = (10, 1). As Figure 2 demonstrates, the autocorrelation

function for CWIS tails off more rapidly than did that of the MHIS.

To study the performance of the regenerative simulation approach to MCMC standard

error estimation (see Appendix B) we conducted the following simulation study. For each

sampler we produced 20,000 chains of a fixed length n. From each realized chain we simu-

lated the associated split chain using the techniques described above, and computed a 95%

confidence interval for the quantity of interest based on (24)–(26) with g(µ, θ) = µ/
√

θ. The

“partial tours” at the beginning and end of each run, those draws that preceded the first re-

generation and those that came subsequent to the last observed regeneration, were discarded.

We note that discarding the partial tour at the end of the run introduces a bias, but it will

be negligible in this simple example. We can compare MHIS to CWIS with respect to inter-

val widths and realized coverage rates. We considered n = 5000 and n = 1000; results are

summarized in Table 1.

The last two columns of Table 1 describe the frequency of regeneration for each sampler.

The mean tour length for MHIS was 2.57, and that of CWIS was 5.22. Recall that CWIS

permits a regeneration only if both component-wise proposals were accepted, thus it is not

surprising that CWIS regenerates less frequently than MHIS.

While high frequency of regeneration is desirable, this is not the correct criterion on

which to be comparing samplers. The middle columns in Table 1 report coverage rates and

interval half-widths. While CWIS produces less frequent regeneration than MHIS, it also

yields narrower confidence intervals, with no discernible sacrifice in coverage probability.

4.2 A logit-normal GLMM

In a generalized linear mixed model (GLMM) the distribution of the observable data is spec-

ified conditionally on an unobserved vector of random effects. Consider a GLMM in which,

conditional on U = u, the observations Yij are independently distributed as Bernoulli(pij),

where logit(pij) = βxij + ui for j = 1, . . . ,mi and i = 1, . . . , q, where the xij are covariates.
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Let the random effects U1, . . . , Uq be i.i.d. Normal(0, σ2). McCulloch (1997) discusses three

Monte Carlo algorithms for finding maximum likelihood estimators of the unknown parame-

ter θ = (β, σ2). A common feature is that all three require simulation from the same target

distribution, namely the conditional distribution of the random effects given the data. We

thus wish to simulate an ergodic Markov chain with stationary density

π(u|y; θ) ∝ exp







q
∑

i=1



uiyi+ −
mi
∑

j=1

log
(

1 + eβxij+ui

)

− u2
i

2σ2











(18)

where yi+ =
∑mi

j=1 yij for i = 1, . . . , q. McCulloch’s (1997) Monte Carlo EM algorithm requires

a Monte Carlo approximation to the so-called Q-function

Q(θ; θ̃) =

∫

lc(θ; y, u)π(u|y; θ̃)du

where

lc(θ; y, u) =

q
∑

i=1

mi
∑

j=1

[

yij(βxij + ui) − log
(

1 + eβxij+ui

)]

− q

2
log(σ2) − 1

2σ2

q
∑

i=1

u2
i

denotes the “complete-data log-likelihood,” what the log-likelihood would be if the random

effects were observable.

In the following we propose three samplers having target density π(u|y; θ). We begin with

a Metropolis-Hastings random walk sampler which we show to be geometrically ergodic; next

we consider an independence sampler which we show is uniformly ergodic; and finally we

consider a component-wise independence sampler which is uniformly ergodic. For the latter

we discuss the simulation of the split chain. Further, we include an empirical comparison of

the three samplers, and report the performance of regenerative simulation in the CWIS. We

conclude with a comment on the use of RS in the Metropolis random walk.

4.2.1 Metropolis random walk

A Metropolis random walk with normally distributed jump proposals, that is,

p(u, u∗) ∝ exp

{

− 1

2τ2
|u∗ − u|2

}

, (19)

where | · | denotes the standard Euclidean norm, is geometrically ergodic, as we prove here

using Theorem 4.3 of Jarner and Hansen (2000). We must show that

lim
|u|→∞

uT∇ log π(u)

|u| = −∞
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and that

lim sup
|u|→∞

uT∇ log π(u)

|u| |∇ log π(u)| < 0 .

Now ∂
∂ui

log π(u) = yi+ − pi+ − ui

σ2 , where pi+ =
∑mi

j=1 pij, for i = 1, . . . , q, and thus

lim
|u|→∞

uT∇ log π(u)

|u| = lim
|u|→∞

∑q
i=1 ui(yi+ − pi+) − 1

σ2

∑q
i=1 u2

i
(
∑q

i=1 u2
i

)1/2

= − 1

σ2
lim

|u|→∞

∑q
i=1 u2

i
(
∑q

i=1 u2
i

)1/2
= − 1

σ2
lim

|u|→∞
|u| = −∞ .

Next,

lim sup
|u|→∞

uT∇ log π(u)

|u| |∇ log π(u)| = lim sup
|u|→∞

∑q
i=1 ui(yi+ − pi+) − 1

σ2

∑q
i=1 u2

i

(
∑q

i=1 u2
i

)1/2
(

∑q
i=1

(

yi+ − pi+ − ui

σ2

)2
)1/2

= lim sup
|u|→∞

− 1
σ2

∑q
i=1 u2

i
(
∑q

i=1 u2
i

)1/2 (

1
σ4

∑q
i=1 u2

i

)1/2

=
−1/σ2

−1/σ2
lim sup
|u|→∞

|u|2
|u|2 = −1 .

4.2.2 An independence sampler

Consider a Metropolis-Hastings independence sampler with proposals drawn from the random

effects’ marginal distribution, p(u). The acceptance probability for a proposed jump from u

to u∗ reduces to the minimum of 1 and r(u∗)/r(u), where r(u) ∝ π(u)/p(u), the ratio of the

target density to the proposal density. In the logit-normal example we can take

r(u) = exp







q
∑

i=1



uiyi+ −
mi
∑

j=1

log
(

1 + eβxij+ui

)











. (20)

Recall that an MHIS is uniformly ergodic if and only if there exists ǫ > 0 such that p(u) ≥
ǫπ(u) for all u; equivalently, an MHIS is uniformly ergodic if and only if r(u) is bounded. It

is easily verified that r(u) ≤ exp
{

−β
∑

i

∑

j xijyij

}

for all u ∈ R
q, and thus our MHIS is

uniformly ergodic.

4.2.3 A component-wise independence sampler

In McCulloch’s (1997) implementation of the Monte Carlo EM and Monte Carlo Newton-

Raphson algorithms, simulation from the target distribution is accomplished by a component-

wise independence sampler with (univariate) proposals drawn from the marginal distribution
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of the random effects. Specifically, for the ith component-wise update, we generate a proposal

u∗
i ∼ Normal(0, σ2); the acceptance probability is again equal to the minimum of 1 and

r(u∗)/r(u), where u∗ = (u1, . . . , ui−1, u
∗
i , ui+1, . . . , uq) and r is given by (20). The CWIS is

also uniformly ergodic, an immediate consequence of our Corollary 1 and the fact that the

random effects are conditionally independent given the data.

Regenerative simulation is straightforward in this problem because (13) holds with equality

on both sides, again as a result of component-wise independence in the target distribution. De-

fine ri(ui) = exp
{

uiyi+ − ∑

j log(1 + eβxij+ui)
}

for i = 1, . . . , q, so that r(u) =
∏q

i=1 ri(ui).

The conditional probability of regeneration on a jump from u′ to u, conditional on every

component-wise proposal being accepted, is

rA(u′, u) =

q
∏

i=1

min

{

ci

ri(u′
i)

, 1

}

min

{

ri(ui)

ci
, 1

}

min

{

ri(ui)

ri(u′
i)

, 1

}

or

rA(u′, u) =

q
∏

i=1















min
{

ri(u′

i)
ci

, ri(ui)
ci

}

ri(u
′
i) < ci, ri(ui) < ci

min
{

ci

ri(u′

i)
, ci

ri(ui)

}

ri(u
′
i) > ci, ri(ui) > ci

1 otherwise .

With the goal of maximizing the frequency of regeneration, it makes sense to take the ci to

be the median values of ri(ui) from a preliminary run.

4.2.4 Simulation study

Suppose xij = j/15 for each j = 1, . . . ,mi ≡ 15, for each i = 1, . . . , q = 10. We consider a

data set generated by Booth and Hobert (1999, Table 2), assuming θ = (β, σ2) = (5.0, 0.5).

Suppose we want to evaluate Q(θ; θ̃) for θ = θ̃ = (4.0, 1.5). We can take as a Markov

chain Monte Carlo approximation the ergodic average of the chain
{

lc(θ; y, u(k))
}

where
{

u(k) : k = 1, 2, . . .
}

is an ergodic Markov chain with stationary density π(u|y; θ̃) as defined

by (18).

We ran each of the three Metropolis-Hastings algorithms discussed above, in each case

simulating a chain of length n = 106 and taking as our initial distribution U (0) ∼ Nq(0, σ
2I).

For the Metropolis random walk we drew our jump proposals from a Nq(0, τ
2I), with τ2 =

σ2/10 (this setting determined by trial and error, in order to minimize the autocorrelation

in the resulting chain, and yielding an acceptance rate of 39.18%). A partial trace plot

(the second 1000 updates) and the sample autocorrelation function are shown in Figure 3.

Analogous plots for the MHIS and CWIS follow, in Figures 4 and 5, respectively.
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Our most striking result is the dreadful performance of the MHIS. It is worth recalling

that, as we proved above, Figure 4 depicts a uniformly ergodic Markov chain! Thus this

example nicely illustrates the perils of over-reliance on asymptotic properties of a sampler,

which provide little guarantee of favorable performance in finite-sample implementations. The

Metropolis random walk (geometrically ergodic) mixes much faster than the MHIS, but still

shows significant autocorrelation. The CWIS is, by a very wide margin, the best of the three

samplers considered.

To study the performance of regenerative simulation in this setting we propose the fol-

lowing experiment. Using the CWIS algorithm defined above, run a chain for a fixed number

of regenerations R, and calculate a 95% confidence interval for Q(θ; θ̃) based on the RS ap-

proach to MCMC standard error estimation (see Appendix B; specifically, we use (24)–(26)

with g(u) = lc(θ; y, u)). Repeat a large number of times, noting coverage rates and interval

widths.

We considered R = 50, R = 25, and R = 10, and generated 1000 chains for each. Results

are summarized in Table 2. The right-most columns summarize the observed chain lengths

(note that this experiment has the opposite design of the previous example, in that the

number of regenerations is fixed and the total chain length is random). The overall average

tour length is N̄ = 10,732, a result of the fact that a regeneration in CWIS requires that

every component-wise proposal be accepted. Because the tours are so long, one might expect

regenerative simulation to yield accurate results for even modest values of R. For R = 50 and

R = 25 the attained coverage rate is in fact reasonably close to the nominal confidence level.

For R = 10 the method undercovers.

4.2.5 Regeneration in Metropolis random walk

The reader might wonder why we did not conduct a similar study for the Metropolis random

walk sampler. As we will show, it is not entirely clear how to implement regenerative sim-

ulation in high-dimensional Metropolis random walks; in particular, Mykland et al.’s (1995)

approach is often not viable, as we demonstrate here.

The RS recipe of Mykland et al. (1995) requires functions s and q such that p(u, u∗) ≥
s(u)q(u∗) for all u, u∗. The conditional probability of regeneration on a jump from U (k) = u′

to U (k+1) = u, given that the Metropolis jump proposal was accepted, is given by

rA(u′, u) =
s(u′)q(u)

p(u′, u)
×















min
{

π(u′)
c , π(u)

c

}

π(u′) < c, π(u) < c

min
{

c
π(u′) ,

c
π(u)

}

π(u′) > c, π(u) > c

1 otherwise .
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To find appropriate functions s and q Mykland et al. (1995) suggest choosing a point ũ and a

set D and taking s(u) = infu∗∈D [p(u, u∗)/p(ũ, u∗)] and q(u∗) = p(ũ, u∗)ID(u∗). Intuitively, it

makes sense to take ũ to be some a priori estimate of the “center” of the target distribution,

perhaps the ergodic average from a preliminary run. We might then take D to be a hypercube

centered at ũ, that is, D = {u : |ui − ũi| ≤ bi i = 1, . . . , d} for some b1, . . . , bd > 0. For the

Metropolis random walk p(u, u∗) is given by (19). Then

s(u′)q(u)

p(u′, u)
= exp

{

− 1

τ2

q
∑

i=1

(u′
i − ũi)[ui − ũi + bi sgn(u′

i − ũi)]

}

q
∏

i=1

I(|ui − ũi| < bi) (21)

where sgn(z) = z/|z| for z 6= 0.

We ran a chain of length n = 106 and observed 391,804 accepted proposals. We take the

ũi to be the mean values from a preliminary run. The choice of the bi entails a Goldilocks

problem: we want to observe |ui−ũi| < bi with high frequency, but (21) depends on an infimum

taken over the set of all such u. We considered six different values of the bi (six different

multiples of the standard deviations from a preliminary run); results are summarized below.

The middle column indicates the proportion of the 391,804 accepted proposals for which each

|ui − ũi| < bi, i.e., the proportion of the time that (21) was non-zero. The right-most column

indicates the average non-zero value of (21).

bi % {|ui − ũi| < bi} (21)

0.3 SDi 0.00

0.5 SDi 5.10 × 10−5 0.00107

1.0 SDi 0.0193 2.62 × 10−06

1.5 SDi 0.2269 6.77 × 10−09

2.0 SDi 0.6113 7.88 × 10−11

2.5 SDi 0.8668 1.79 × 10−12

There is no acceptable trade-off available here, and thus regeneration is not viable in this

problem. We note two caveats on our negative conclusion: (i) that we only considered D to

be a hypercube centered at ũ, and (ii) that we considered only the approach recommended

by Mykland et al. (1995). We are not aware of any other literature on this problem. It is not

our contention that regeneration is impossible in high-dimensional Metropolis random walks.

We merely hope to convey that it is a challenging proposition, and suggest it as a possible

subject for future research.
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A Proof of Theorem 3

First note that ε ≤ 1 as can be seen by taking x = y. Now, for x, y ∈ X, define

β(x, y) =

d
∏

i=1

pi(yi)αi((y[i−1], x
[i]), yi).

We will show that there exists ρ > 0 such that β(x, y) ≥ ρπ(y) for all x, y ∈ X and thus, since

P (x, dy) ≥ β(x, y)dy, that the chain is uniformly ergodic.

For any x and y we can partition the index set {1, . . . , d} into I1 and I0 defined by

I1(x, y) =
{

i : αi((y[i−1], x
[i]), yi) = 1

}

,

I0(x, y) =
{

i : αi((y[i−1], x
[i]), yi) < 1

}

;

and write

β(x, y) =

d
∏

i=1

pi(yi)αi((y[i−1], x
[i+1]), yi) =

∏

i∈I1

pi(yi)
∏

i∈I0

pi(xi)
π(y[i−1], yi, x

[i+1])

π(y[i−1], xi, x[i+1])
. (22)

Now fix x and y in X. There exists an even integer k such that

I0(x, y) = {d0 + 1, . . . , d1, d2 + 1, . . . , d3, d4 + 1, . . . , d5, . . . . . . , dk + 1, . . . , dk+1}
I1(x, y) = {d1 + 1, . . . , d2, d3 + 1, . . . , d4, d5 + 1, . . . , d6, . . . , dk−1 + 1, . . . , dk}

(23)

where 0 = d0 ≤ d1 < d2 < d3 < . . . < dk ≤ dk+1 = d.

This representation of I0 and I1 appears to make sense only for the case where α1 and αd

are both less than 1, but in fact can be shown to accommodate the general case by allowing

the first or last batch of I0 to be null. We will explain further here, but first we must explain

how k and the dj are determined.

For each j = 1, . . . , k − 1, dj + 1 is the index of a switch between α = 1 and α < 1: If j is

even the switch is from αdj
= 1 to αdj+1 < 1 and if j is odd then αdj

< 1 and αdj+1 = 1. If

α1 < 1 and αd < 1, then k is the total number of such switches, which must be even. If only

one of α1 and αd is less than 1, there must be k − 1 such switches, and if α1 = αd = 1 then

the number of switches is k − 2. We can define d1 and dk a bit more precisely as

d1 =

{

0 if all αi < 1

min {i : αi = 1} − 1 otherwise

and

dk =

{

d0 = 0 if all αi < 1

max {i : αi = 1} otherwise
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Thus the representation in (23) is completely general, since either or both of d1 = 0 (in which

case the set {d0 + 1, . . . , d1} is null) and dk = d (in which case {dk + 1, . . . , dk+1} is null) are

allowed. A null contribution to I0 is easily recognized: If d1 = 0, as is the case where α1 = 1,

the first batch of indices in I0 is {d0 + 1, . . . , d1} = {1, 0}, which should be considered null; if

dk = d, as is so when αd = 1, the last batch of indices in I0 is {dk + 1, . . . , dk} = {d + 1, d},
which should also be considered null.

In the special case where all αi are less than 1, then k = 0 and d1 = d; if all αi are equal

to 1, then k = 2, d1 = 0 and d2 = d.

We now find ρ > 0 such that β(x, y) ≥ ρπ(y) for any x, y ∈ X. First, suppose x and y are

such that all αi are less than 1. Then I1 = ∅, and

β(x, y) = p(x)
π(y)

π(x)
≥ δπ(y)

thus taking care of that special case. Now suppose that at least one αi = 1. We will

need a new notation which we introduce here. Given 0 = d0 ≤ d1 < d2 < . . . < dk ≤
dk+1 = d, we partition the vector z ∈ X = X1 × · · · × Xd as z = (z0, z1, z2, . . . , zk) where

zj = (zdj+1, . . . , zdj+1
). Thus we are changing our use of a subscript from indicator of a single

component to indicator of “batch.” Define z[j] = (z0, z1, . . . , zj) and z[j] = (zj , zj+1, . . . , zk)

for j = 0, 1, . . . , k. Let z[−1] and z[k+1] be null. By (22),

β(x, y) = p(x0, y1, x2, y3, x4, . . . , yk−1, xk)
∏

j∈{0,2,...,k}

π(y[j−1], yj , x
[j+1])

π(y[j−1], xj , x[j+1])

≥ δπ(x0, y1, x2, . . . , yk−1, xk)
∏

j∈{0,2,...,k}

π(y[j−1], yj , x
[j+1])

π(y[j−1], xj , x[j+1])

= δπ(x0, y1, x2, . . . , yk−1, xk)
π(y0, x

[1])

π(x0, x[1])

∏

j∈{2,4,...,k}

π(y[j−1], yj , x
[j+1])

π(y[j−1], xj , x[j+1])

≥ δεπ(y[1], x2, y3, x4, . . . , yk−1, xk)
∏

j∈{4,...,k}

π(y[j−1], yj , x
[j+1])

π(y[j−1], xj , x[j+1])

≥ δε2π(y[3], x4, y5, x6, . . . , yk−1, xk)
∏

j∈{4,...,k}

π(y[j−1], yj, x
[j+1])

π(y[j−1], xj , x[j+1])

...

≥ δεk/2π(y[k−1], xk)
π(y[k−1], yk)

π(y[k−1], xk)

= δεk/2π(y)
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where the first inequality follows from the assumption that p(x) ≥ δπ(x) and the rest follow

from (6). We have seen that the number of switches is either k, k − 1, or k − 2; thus it must

be that k ≤ d + 1. But if the number of switches is k − 2, that means the first batch of

I0 is null and we have one less ε on the right hand side of the final inequality above. Thus

β(x, y) ≥ ρπ(y) holds with ρ = δε⌊d/2⌋, and thus the chain is uniformly ergodic.

B MCMC standard error estimation via regenerative simula-

tion

Let
{

X(0),X(1),X(2), . . .
}

be a Harris ergodic Markov chain on (X,B) with stationary dis-

tribution π and let g : X → R
1. Further let

{

(X(n), δ(n)) : n = 0, 1, 2, . . .
}

be an associated

split chain with δ(0) = 1. Define 0 = τ0 < τ1 < τ2 < . . . by τr = min
{

k > τr−1 : δ(k) = 1
}

for r = 1, 2, . . .; thus τr indicates the rth regeneration time. We call the path taken by

the chain between regeneration times τr−1 and τr the rth tour ; let Nr = τr − τr−1 and

Sr =
∑τr

k=τr−1+1 g(X(k)) denote the tour length and tour sum, respectively, for r = 1, 2, . . .. It

follows from the split chain construction that the pairs (Nr, Sr) are i.i.d., since each is based

on a different tour.

Suppose we run the split chain for a total of R regenerations (and hence observe R tours).

A natural estimator of Eπg is

Êπg = ḡR,RS :=
S̄R

N̄R
=

∑R
r=1 Sr

∑R
r=1 Nr

=
1

τR

τR
∑

k=1

g(X(k)) = ḡτR
. (24)

Assume E(Nr) < ∞ and E(|Sr|) < ∞. Then, as R → ∞, ḡR,RS = ḡτR
→ Eπg by the strong

law of large numbers. Further, if E(N2
r ) < ∞ and E(S2

r ) < ∞, then
√

R(ḡτR
−Eπg)

d→ N(0, ξ2
g )

as R → ∞ by the central limit theorem. Hobert et al. (2002) proved that

ξ̂2
g :=

1

RN̄2

R
∑

r=1

(Sr − NrḡτR
)2 (25)

is a consistent estimator of ξ2
g . Finally, an approximate 100(1 − α)% confidence interval for

Eπg is given by

ḡτR
± zα/2 ξ̂g√

R
(26)

where Pr(Z < zp) = 1 − p if Z has the standard normal distribution.
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Trace plot for MHIS
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Figure 1: Trace plot and estimated autocorrelation function of
{

µ(k)/
√

θ(k)
}

for the MHIS in

the example of Section 4.1.
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Trace plot for CWIS
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Figure 2: Trace plot and estimated autocorrelation function of
{

µ(k)/
√

θ(k)
}

for the CWIS in

the example of Section 4.1.
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Half-width Coverage Number of tours

Sampler Chain length Mean Std Dev Rate Std Error Mean Std Dev

MHIS n = 5000 0.1494 0.0093 0.9495 0.0015 1944.47 34.65

CWIS 0.1113 0.0069 0.9494 0.0016 958.01 27.31

MHIS n = 1000 0.3321 0.0293 0.9455 0.0016 388.03 15.54

CWIS 0.2472 0.0278 0.9441 0.0016 190.88 12.20

Table 1: Half-widths and coverage rates of nominal 95% confidence intervals for E(µ/
√

θ|y)

in the example of Section 4.1. Based on 20,000 replications.

Coverage Half-width Total chain length

Regenerations Rate Std Error Mean Std Dev Mean Std Dev

R = 50 0.928 0.0082 0.01172 0.00189 533,668 72,893

R = 25 0.920 0.0086 0.01600 0.00355 267,392 52,479

R = 10 0.862 0.0109 0.02377 0.00836 107,316 35,258

Table 2: Coverage rates and interval half-widths of nominal 95% confidence intervals for

Q(θ; θ̃) in the logit-normal example of Section 4.2. Based on 1000 replications.
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Figure 3: Partial trace plot and autocorrelation function for the Markov chain {lc(θ; y, u(k))}
generated by the Metropolis random walk sampler in the logit-normal example of Section 4.2.
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Figure 4: Partial trace plot and autocorrelation function for the Markov chain {lc(θ; y, u(k))}
generated by the Metropolis-Hastings independence sampler in the logit-normal example of

Section 4.2.
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Figure 5: Partial trace plot and autocorrelation function for the Markov chain {lc(θ; y, u(k))}
generated by the component-wise independence sampler in the logit-normal example of Section

4.2.
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