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Estimation in nonstationary random

coefficient autoregressive models

István Berkes(1), Lajos Horváth(2) and Shiqing Ling(3)

Abstract

We investigate the estimation of parameters in the random coefficient autoregressive
model Xk = (ϕ + bk)Xk−1 + ek, where (ϕ,ω2, σ2) is the parameter of the process, Eb2

0 =
ω2, Ee2

0 = σ2. We consider a nonstationary RCA process satisfying E log |ϕ + b0| ≥ 0
and show that σ2 cannot be estimated by the quasi-maximum likelihood method. The
asymptotic normality of the quasi-maximum likelihood estimator for (ϕ,ω2) is proven
so the unit root problem does not exist in the random coefficient autoregressive model.

Key words and phrases: random coefficient model, quasi–maximum likelihood, asymp-
totic normality, consistency, law of large numbers.
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1 Introduction

In this paper we are interested in the random coefficient model (RCA) defined by the equations

Xk = (ϕ+ bk)Xk−1 + ek, −∞ < k <∞, (1.1)

where ϕ is a real parameter. The RCA process was introduced by Andél (1976) who also
studied its properties. For a detailed early study we refer to Nicholls and Quinn (1982).
Throughout this paper we assume that

{(bk, ek)} are independent, identically distributed random vectors. (1.2)
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Let log+ x = max{log x, 0}. It follows from Aue et al. (2006) (cf. also Quinn (1980, 1982))
that under condition (1.2) and

E log+ |e0| <∞ and E log+ |ϕ+ b0| <∞, (1.3)

equation (1.1) has a stationary, nonanticipating (i.e. Xk is measurable with respect to the
σ–algebra generated by (bi, ei), i ≤ k) if and only if

−∞ ≤ E log |ϕ+ b0| < 0. (1.4)

Quinn and Nicholls (1981) started the study of the estimation of the parameter of the process
in (1.1). Let θ = (ϕ, ω2, σ2), where

Eb0 = 0, Eb20 = ω2 > 0, (1.5)

Ee0 = 0, Ee20 = σ2 > 0 (1.6)

and
cov(b0, e0) = 0. (1.7)

Aue et al. (2006) used the quasi–maximum likelihood method to estimate θ when (1.4) holds.
They established the strong consistency as well as the asymptotic normality of the quasi–
maximum likelihood estimator under minimal conditions.
In this paper we consider the case when (1.4) does not hold. We assume

Xk = (ϕ+ bk)Xk−1 + ek, 1 ≤ k ≤ n (1.8)

and
E log |ϕ+ b0| ≥ 0, (1.9)

i.e. we start the recursion in (1.8) from the initial value X0 and (1.9) guarantees that the
solutions of (1.8) cannot converge. Throughout this paper we assume that X0 is a constant.
Following the theory developed for the stationary case, we estimate the parameter θ of the
process in (1.8) using the quasi–likelihood method. Assuming that b0 and e0 are normally
distributed, the conditional log–likelihood function (the constant terms are omitted) is given
by

Ln(u) =

n∑

k=1

ℓk(u) with ℓk(u) = −1

2

(
log(xX2

k−1 + y) +
(Xk − sXk−1)

2

xX2
k−1 + y

)
,

where u = (s, x, y). We show that
1

n
Ln(u)

P−→ ∞

but
1

n

(
Ln(u) − Ln(θ)

) P−→ f(s, x) for all u with x > 0 and y > 0,

where

f(s, x) =
1

2

{
log

ω2

x
+ 1 − ω2

x
− (ϕ− s)2

x

}
. (1.10)
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Since f(·) does not depend on y, the quasi–maximum likelihood method cannot be used to

estimate σ2. Since |Xn| P−→ ∞ (n → ∞) (cf. Lemma 4.1), so in (1.1) bnXn−1 dominates en

which is the reason why the variance of e0 cannot be estimated by the quasi–likelihood method.
Hence we are interested in estimating η = (ϕ, ω2). Now η̂n = η̂n(y) = (η̂n,1(y), η̂n,2(y)) is
defined by

max
z∈Γ

Ln(z, y) = Ln(η̂n, y),

z = (s, x) and the set Γ satisfies

Γ =
{
(s, x) : s∗ ≤ s ≤ s∗, x∗ ≤ x ≤ x∗

}
(1.11)

with some s∗ < s∗, 0 < x∗ < x∗. We prove the asymptotic consistency of η̂n(y) for all y and
consider the asymptotic normality of η̂n under various conditions.

2 Results

First we study the asymptotic consistency of η̂n(y).

Theorem 2.1. If (1.2), (1.5)–(1.9) and(1.11) hold, then

η̂n(y)
P−→ (ϕ, ω2) (2.1)

for all y > 0.

Next we consider the asymptotic normality of η̂n(y). Let

Ω0 =

(
ω2 ω2Eb30

ω2Eb30 var(b20)

)
. (2.2)

Theorem 2.2. If the conditions of Theorem 2.1 are satisfied and

Ee40 <∞ and Eb40 <∞, (2.3)

then the distribution of n1/2(η̂n(σ2) − (ϕ, ω2)) converges to the bivariate normal distribution
with mean 0 and covariance matrix Ω0.

We note that Theorems 2.1 and 2.2 were obtained by Ling and Li (2006) as a preliminary
result for the study of non-stationary double AR(1) processes when b0 and e0 are normally
distributed and independent. Their result implies that in case of normal (b0, e0), σ

2 cannot be
estimated by the quasi–maximum likelihood method. A similar phenomenon was also observed
by Jensen and Rahbek (2004a,b) in nonstationary ARCH models. Theorem 2.2 assumes that
σ2 is known. We show in the next section that η̂n(y) is asymptotically normal for all y > 0
under the condition E log |ϕ+ b0| > 0.

Usually, the statistical inference is about ϕ, the expected value of the autoregressive coefficient.
We show that η̂n,1(y) is asymptotically normal for all y so there is no need to know σ2 to get
asymptotic statistical inference about ϕ.
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Theorem 2.3. We assume that the conditions of Theorem 2.1 are satisfied and (2.3) holds.
Then for any y > 0 the distribution of

√
n(η̂n,1(y) − ϕ)/ω converges to the standard normal

distribution and consequently the distribution of
√
n(η̂n,1(y) − ϕ)/

√
η̂n,2(y) converges also to

the standard normal distribution.

Next we are interested in the asymptotic distribution of η̂n(σ2) − (ϕ, ω2) without assuming
(2.3). The assumption Eb40 <∞ will be replaced with the requirement that b20 is in the domain
of attraction of a stable law. This means that

P{b20 > x} = x−αL(x), where 1 < α < 2 and L is a slowly varying function at ∞. (2.4)

Asumption α > 1 guarantees that Eb20 = ω2 exists. Let

an = inf{x : x−αL(x) ≤ 1/n}.

If (2.4) holds, then
1

an

∑

1≤i≤n

(b2i − ω2)
D−→ ξ, (2.5)

where ξ is a stable random variable with characteristic function

exp{−d|t|α(1 + isign(t) tan(πα/2))}, if 1 < α < 2, (2.6)

and d is a positive constant (cf. Breiman (1968, p. 204).

Theorem 2.4. We assume that the conditions of Theorem 2.1 are satisfied, (2.4) and

E|e0|ν <∞ with some ν > 2α/(α− 1) (2.7)

hold. Then n1/2(η̂n,1(σ
2) − ϕ) and n(η̂n,2(σ

2) − ω2)/an are asymptotically independent, the
distribution of n1/2(η̂n,1(σ

2) − ϕ) converges to the normal distribution with mean 0 and vari-
ance ω2 and the distribution of n(η̂n,2(σ

2) − ω2)/an converges to the stable distribution with
characteristic function given in (2.6).

We note that if {ek} and {bk} are independent sequences, then (2.7) can be replaced with
Ee40 <∞.

3 Growth of Xn

We will show in Section 4 (cf. Lemma 4.1) that under the conditions of Theorem 2.1, Xn
P−→

∞. Now we find the order of the growth of Xn. To state our results we need further notation.
Let

ξi = log |ϕ+ bi|, S(i) = ξ1 + · · · + ξi and γi =
∏

1≤j≤i

sign (ϕ+ bj).

In this section we consider the case when

E log |ϕ+ b0| > 0. (3.1)
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Theorem 3.1. If (1.2), (1.3), (1.8) and (3.1) hold, then

e−S(n)γnXn−→X0 + Y a.s.

where
Y =

∑

1≤i<∞

e−S(i)γiei.

The random normalization exp(−S(n)) is the correct one in Theorem 3.1, if the limit is non–
zero with probability one. The next result provide conditions for

P{Y +X0 6= 0} = 1. (3.2)

Theorem 3.2. We assume that (1.2), (1.3), (1.8) and (3.1) hold.
(i) If

P{(ϕ+ b0)X0 + e0 = c} = 0 for all c, (3.3)

then (3.2) holds.
(ii) If

{bk} and {ek} are independent sequences (3.4)

and
P{e0 = c} < 1 for all c, (3.5)

then (3.2) holds.

The first corollary says that under condition (3.1),Xn grows exponentially fast with probability
one.

Corollary 3.1. If (1.2),(1.3), (1.8) (3.1) and (3.3) or (3.4) and (3.5) hold, then

e−τn|Xn|−→∞ a.s. for all 0 < τ < E log |ϕ+ b0|

and
e−τn|Xn|−→0 a.s. for all τ > E log |ϕ+ b0|.

The second corollary is the asymptotic normality of η̂n(y) without assuming that y = σ2.

Corollary 3.2. If (1.2), (1.5)–(1.8), (1.11), (2.3), (3.1) and (3.3) or (3.4) and (3.5) hold,
then for all y > 0 the distribution of n1/2(η̂n(σ2) − (ϕ, ω2)) converges to the bivariate normal
distribution with mean 0 and covariance matrix Ω0.

Similarly, in case of E log |ϕ+ b0| > 0, we have the following generalization of Theorem 2.4.

Corollary 3.3. If (1.2), (1.5)–(1.8), (1.11), (2.4), (2.7), (3.1) and (3.3) or (3.4) and (3.5)
hold, then for all y > 0, n1/2(η̂n,1(σ

2)−ϕ) and n(η̂n,2(σ
2)−ω2)/an are asymptotically indepen-

dent, the distribution of n1/2(η̂n,1(σ
2) − ϕ) converges to the normal distribution with mean 0

and variance ω2 and the distribution of n(η̂n,2(σ
2)−ω2)/an converges to the stable distribution

with characteristic function given in (2.6).
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4 Proofs of Theorems 2.1–2.4

The proofs will use the following result:

Lemma 4.1. If (1.2) and (1.5)–(1.9) hold, then

|Xn| P−→ ∞, (4.1)

Proof. We note that
P{e0 + c(ϕ+ b0) = c} < 1 for all c.

Indeed, if e0 + c(ϕ+ b0) = c with probability one, then multiplying this equation with e0 and
taking expected values we get Ee20 + cϕEe0 + cEb0e0 = cEe0. Since Ee0 = Ee0b0 = 0, we get
Ee20 = 0, which contradicts Ee20 = σ2 > 0 (c.f. (1.6)). Since (1.9) implies P{ϕ + b0 = 0} =
0, the result follows immediately from Remark 2.8 and Corollary 4.1 of Goldie and Maller
(2000).

We start with the study of the log likelihood function.

Lemma 4.2. If (1.2), (1.3) and (1.5)–(1.9) are satisfied, then

sup
u∈Γ∗

∣∣∣∣
1

n

(
Ln(u) − Ln(θ)

)
− f(s, x)

∣∣∣∣
P−→ 0, (4.2)

where f(·) is defined in (1.10) and

Γ∗ =
{
u = (s, x, y) : s∗ ≤ s ≤ s∗, x∗ ≤ x ≤ x∗, y∗ ≤ y ≤ y∗

}
,

with 0 < x∗ and 0 < y∗.

Proof. We write

Ln(u) − Ln(θ) =
1

2

∑

1≤k≤n

log
ω2X2

k−1 + σ2

xX2
k−1 + y

(4.3)

+
1

2

∑

1≤k≤n

(Xk−1bk + ek)
2

ω2X2
k−1 + σ2

− 1

2

∑

1≤k≤n

(
(ϕ− s)Xk−1 +Xk−1bk + ek

)2

xX2
k−1 + y

.

Using the mean value theorem we conclude
∣∣∣∣log

ω2X2
k−1 + σ2

xX2
k−1 + y

− log
ω2

x

∣∣∣∣ ≤ c1

(
x∗

ω2
+
x∗X2

k−1 + y∗

ω2X2
k−1 + σ2

)
1

x∗X
2
k−1 + y∗

≤ c2
1

x∗X2
k−1 + y∗

.

By (4.1) we have that

E
1

x∗X2
n + y∗

→ 0 (4.4)
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and therefore by the Markov inequality

1

n

∑

1≤k≤n

sup
u∈Γ∗

∣∣∣∣log
ω2X2

k−1 + σ2

xX2
k−1 + y

− log
ω2

x

∣∣∣∣
P−→ 0. (4.5)

Also,

∑

1≤k≤n

{
(Xk−1bk + ek)

2

ω2X2
k−1 + σ2

− 1

}

=
∑

1≤k≤n

(b2k − ω2)
X2

k−1

ω2X2
k−1 + σ2

+
∑

1≤k≤n

e2k
ω2X2

k−1 + σ2

+
∑

1≤k≤n

bkek
2Xk−1

ω2X2
k−1 + σ2

−
∑

1≤k≤n

σ2

ω2X2
k−1 + σ2

.

Similarly to (4.4) we obtain
1

n

∑

1≤k≤n

σ2

ω2X2
k−1 + σ2

P−→ 0

Since by (4.1) and the independence of en and Xn−1 we have

E
e2n

ω2X2
n−1 + σ2

→ 0,

thus we get
1

n

∑

1≤k≤n

e2k
ω2X2

k−1 + σ2

P−→ 0.

Now we write

∑

1≤k≤n

(b2k − ω2)
X2

k−1

ω2X2
k−1 + σ2

=
∑

1≤k≤n

(b2k − ω2)
1

ω2
−
∑

1≤k≤n

b2k
σ2

ω2(ω2X2
k−1 + σ2)

+
∑

1≤k≤n

ω2σ2

ω2(ω2X2
k−1 + σ2)

.

The weak law of large numbers yields

1

n

∑

1≤k≤n

(b2k − ω2)
1

ω2

P−→ 0. (4.6)

Using now the independence of bk and Xk−1 with (4.1) we obtain

E
1

n

∑

1≤k≤n

b2k
σ2

ω2(ω2X2
k−1 + σ2)

→ 0 and E
1

n

∑

1≤k≤n

ω2σ2

ω2(ω2X2
k−1 + σ2)

→ 0

7



and therefore by the Markov inequality and (4.6) we conclude

1

n

∑

1≤k≤n

(b2k − ω2)
X2

k−1

ω2X2
k−1 + σ2

P−→ 0. (4.7)

By the independence of (bk, ek) and Xk−1 we get

E

∣∣∣∣∣
1

n

∑

1≤k≤n

bkek
Xk−1

ω2X2
k−1 + σ2

∣∣∣∣∣ ≤
1

n

∑

1≤k≤n

E|bkek|E
∣∣∣∣

Xk−1

ω2X2
k−1 + σ2

∣∣∣∣→ 0

on account of (4.1), resulting in

1

n

∑

1≤k≤n

bkek
Xk−1

ω2X2
k−1 + σ2

P−→ 0.

Hence we proved that
1

n

∑

1≤k≤n

{
(Xk−1bk + ek)

2

ω2X2
k−1 + σ2

− 1

}
P−→ 0. (4.8)

Next we write

(
Xk−1(ϕ− s) +Xk−1bk + ek

)2

xX2
k−1 + y

= (ϕ− s)2 X2
k−1

xX2
k−1 + y

+ b2k
X2

k−1

xX2
k−1 + y

+ e2k
1

xX2
k−1 + y

+ 2(ϕ− s)bk
X2

k−1

xX2
k−1 + y

+ 2(ϕ− s)ek
Xk−1

xX2
k−1 + y

+ 2bkek
Xk−1

xX2
k−1 + y

.

Clearly,

E sup
u∈Γ∗

∣∣∣∣
∑

1≤k≤n

ekbk
Xk−1

xX2
k−1 + y

∣∣∣∣ ≤
∑

1≤k≤n

E

∣∣∣∣bkek
Xk−1

x∗X2
k−1 + y∗

∣∣∣∣

= E|e0b0|
∑

1≤k≤n

E
|Xk−1|

x∗X2
k−1 + y∗

and since by (4.1)

E
|Xn|

x∗X2
n + y∗

→ 0,

the Markov inequality yields

sup
u∈Γ∗

∣∣∣∣
1

n

∑

1≤k≤n

ekbk
Xk−1

xX2
k−1 + y

∣∣∣∣
P−→ 0.
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Similar arguments give

sup
u∈Γ∗

∣∣∣∣
1

n
|ϕ− s|

∑

1≤k≤n

ek
Xk−1

xX2
k−1 + y

∣∣∣∣
P−→ 0.

Next we observe that

sup
u∈Γ∗

∣∣∣∣
∑

1≤k≤n

bk
X2

k−1

xX2
k−1 + y

∣∣∣∣ ≤ sup
u∈Γ∗

1

x

∣∣∣∣
∑

1≤k≤n

bk

∣∣∣∣+ sup
u∈Γ∗

∣∣∣∣
∑

1≤k≤n

bk
1

x

y

xX2
k−1 + y

∣∣∣∣

≤ 1

x∗

∣∣∣∣
∑

1≤k≤n

bk

∣∣∣∣+
y∗

x∗

∑

1≤k≤n

|bk|
1

x∗X2
k−1 + y∗

.

By the law of large numbers we have

1

n

∑

1≤k≤n

bk
P−→ 0

and the Markov inequality with (4.1) gives

1

n

∑

1≤k≤n

|bk|
1

x∗X2
k−1 + y∗

P−→ 0.

Similarly,

sup
u∈Γ∗

1

n

∣∣∣∣
∑

1≤k≤n

e2k
1

xX2
k−1 + y

∣∣∣∣ ≤
1

n

∑

1≤k≤n

e2k
1

x∗X
2
k−1 + y∗

P−→ 0.

Now,

b2k
X2

k−1

xX2
k−1 + y

− ω2

x
= −b2k

y

x(xX2
k−1 + y)

+
1

x
(b2k − ω2),

and therefore, arguing as above, we get

sup
u∈Γ∗

1

n

∣∣∣∣
∑

1≤k≤n

(
b2k

X2
k−1

xX2
k−1 + y

− ω2

x

)∣∣∣∣

≤ 1

x∗

y∗

n

∑

1≤k≤n

b2k
1

x∗X2
k−1 + y∗

+
1

x∗

∣∣∣∣
∑

1≤k≤n

(b2k − ω2)

∣∣∣∣
P−→ 0.

Similarly,

sup
u∈Γ∗

∣∣∣∣
1

n

∑

1≤k≤n

(
X2

k−1

xX2
k−1 + y

− 1

x

)∣∣∣∣
P−→ 0.

Thus we proved

sup
u∈Γ∗

∣∣∣∣∣
1

n

∑

1≤k≤n

(
(ϕ− s)Xk−1 +Xk−1bk + ek

)2

xX2
k−1 + y

−
(

(ϕ− s)2

x
+
ω2

x

)∣∣∣∣∣
P−→ 0. (4.9)

The result in Lemma 4.2 follows from (4.3), (4.5),(4.8) and (4.9).
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Lemma 4.3. If the conditions of Lemma 4.2 are satisfied and η = (ϕ, ω2) ∈ Γ, then

sup
y∗≤y≤y∗

∣∣η̂n(y) − η
∣∣ P−→ 0 for all 0 < y∗ < y∗.

Proof. It is easy to see that

f(s, x) ≤ f(η) for all (s, x)

and we have equality if and only if (s, x) = η. Since

max
z∈Γ

(
Ln(z, y) − Ln(θ)

)
= Ln(η̂n, y) − Ln(θ),

Ln(u), u ∈ Γ∗ is continuous on Γ∗, it converges uniformly to f(s, x), standard arguments
provide the result (cf. Pfanzangl (1969)).

Lemma 4.4. If the conditions of Theorem 2.2 are satisfied, then for all 0 < y we have
∣∣∣∣g1,n(y) −

∑

1≤k≤n

bk
ω2

∣∣∣∣ = oP (n1/2) (4.10)

and ∣∣∣∣g2,n(σ2) −
∑

1≤k≤n

1

2ω4
(b2k − ω2)

∣∣∣∣ = oP (n1/2), (4.11)

where g1,n(y) and g2,n(y) are the partial derivatives of Ln(u) with respect to s and x at
(ϕ, ω2, y).

Proof. Elementary calculations yield

∂ℓk(u)

∂s
=

(Xk − sXk−1)Xk−1

xX2
k−1 + y

and
∂ℓk(u)

∂x
= −1

2

[
X2

k−1

xX2
k−1 + y

− (Xk − sXk−1)
2X2

k−1

(xX2
k−1 + y)2

]

and therefore

g1,n(y) =
∑

1≤k≤n

{
bkX

2
k−1

ω2X2
k−1 + y

+
ekXk−1

ω2X2
k−1 + y

}
,

g2,n(y) =
∑

1≤k≤n

−1

2

{
X2

k−1

ω2X2
k−1 + y

− (Xk−1bk + ek)
2X2

k−1

(ω2X2
k−1 + y)2

}
.

Using the independence of (ek, bk) and Xk−1 we get

var

(
1

n1/2

∑

1≤k≤n

ekXk−1

ω2X2
k−1 + y

)
=
σ2

n

∑

1≤k≤n

E
X2

k−1

(ω2X2
k−1 + y)2

−→ 0.
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Similarly,

var

(
n−1/2

∑

1≤k≤n

bk

{
X2

k−1

ω2X2
k−1 + y

− 1

ω2

})

= var

(
n−1/2

∑

1≤k≤n

bk
y

ω2(ω2X2
k−1 + y)

)

=
y2

ω2

1

n

∑

1≤k≤n

E
1

(ω2X2
k−1 + y)2

−→ 0,

and thus an application of the Markov inequality completes the proof of (4.10).
Write

X2
k−1

ω2X2
k−1 + y

− (Xk−1bk + ek)
2X2

k−1

(ω2X2
k−1 + y)2

(4.12)

= (ω2 − b2k)
X4

k−1

(ω2X2
k−1 + y)2

+
X2

k−1

(ω2X2
k−1 + y)2

(y − 2ekbkXk−1 − e2k)

= (ω2 − b2k)
X4

k−1

(ω2X2
k−1 + y)2

+
X2

k−1

(ω2X2
k−1 + y)2

(σ2 − e2k)

− X2
k−1

(ω2X2
k−1 + y)2

2ekbkXk−1

+
X2

k−1

(ω2X2
k−1 + y)2

(y − σ2).

One can easily verify

E

(
n−1/2

∑

1≤k≤n

(ω2 − b2k)

(
X4

k−1

(ω2X2
k−1 + y)2

− 1

ω4

))2

−→ 0, (4.13)

E

(
n−1/2

∑

1≤k≤n

X2
k−1

(ω2X2
k−1 + y)2

(σ2 − e2k)

)2

−→ 0, (4.14)

E

(
n−1/2

∑

1≤k≤n

X2
k−1

(ω2X2
k−1 + y)2

2ekbkXk−1

)2

−→ 0, (4.15)

and since y = σ2 is assumed

1

n1/2
|y − σ2|E

∑

1≤k≤n

X2
k−1

(ω2X2
k−1 + y)2

= 0, (4.16)

and therefore (4.11) is proven.
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Lemma 4.5. If the conditions of Lemma 4.2 are satisfied, then

sup
u∈Γ∗

∣∣gij,n(u) − gij(u)
∣∣ P−→ 0 1 ≤ i, j ≤ 2,

where

g11,n(u) =
∂2

∂s2

1

n
Ln(u) = −1

n

∑

1≤k≤n

X2
k−1

xX2
k−1 + y

;

g12,n(u) = g21,n(u) =
∂2

∂s∂x

1

n
Ln(u) =

∂2

∂x∂s

1

n
Ln(u)

=
1

n

∑

1≤k≤n

−(Xk − sXk−1)X
3
k−1

(xX2
k−1 + y)2

,

g22,n(u) =
∂2

∂x2

1

n
Ln(u) =

1

n

∑

1≤k≤n

{
X4

k−1

2(xX2
k−1 + y)2

− (Xk − sXk−1)
2X4

k−1

(xX2
k−1 + y)3

}

and

g11(u) = −1

x
, g12(u) = g21(u) = −(ϕ− s)

x2
, g22(u) =

1

2x2
− (ϕ− s)2 + ω2

x3
.

Proof. It can be proven along the lines of the proof of Lemma 4.2 and therefore the details
are omitted.

Proof of Theorem 2.2. Combining the central limit theorem for independent identically dis-
tributed random vectors with Lemma 4.4, we get that

n−1/2
(
g1,n(σ2), g2,n(σ

2)
) D−→ N2(0,Ω∗), (4.17)

where

Ω∗ =





1

ω2

Eb30
2ω4

Eb30
2ω4

var b20
4ω8



 .

Let ‖ · ‖ denote the maximum norm of vectors. Let ▽h(u) = (∂h(u)/∂u1, ∂h(u)/∂u2)
T .

Applying the mean value theorem to the coordinates of ▽Ln(u, σ2), there are random vector
ξn,1 and ξn,2 such that ‖ξn,j − η‖ ≤ ‖η̂n − η‖, j = 1, 2 and

0 =
∂Ln(η, σ2)

∂uj

+

(
▽
∂Ln(ξn,j, σ

2)

∂uj

)T (
η̂n − η), j = 1, 2. (4.18)

Lemma 4.5 and Theorem 2.1 give that for all y > 0

(
1

n
▽
∂Ln(ξn,1, y)

∂u1

,
1

n
▽
∂Ln(ξn,2, y)

∂u2

)
P−→ Ω∗∗, (4.19)
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where

Ω∗∗ =




− 1

ω2
0

0 − 1

2ω4



 .

Putting together (4.17)–(4.19) we conclude

n1/2
(
η̂n(σ2) − η

) D−→ N2

(
0,Ω−1

∗∗ Ω∗Ω
−1
∗∗

)
.

Since Ω0 = Ω−1
∗∗ Ω∗Ω

−1
∗∗ , the proof of Theorem 2.2 is complete.

The proof of Theorem 2.3 uses the following lemma.

Lemma 4.6. If the conditions of Lemma 4.2 are satisfied, then for all y > 0

sup
u∈Γ

∣∣∣∣∣g12,n(u) − (s− ϕ)
1

n

∑

1≤k≤n

X4
k−1

(xX2
k−1 + y)2

∣∣∣∣∣ = OP (n−1/2).

Proof. Using the expression for g12,n(u) in Lemma 4.5 we get that

g12,n(u) = −1

n

∑

1≤k≤n

(ϕ− s)X4
k−1

(xX2
k−1 + y)2

− 1

n

∑

1≤k≤n

bkX
4
k−1

(xX2
k−1 + y)2

− 1

n

∑

1≤k≤n

ekX
3
k−1

(xX2
k−1 + y)2

.

Also,

1

n

∑

1≤k≤n

bkX
4
k−1

(xX2
k−1 + y)2

=
1

n

1

x2

∑

1≤k≤n

bk −
2y

xn

∑

1≤k≤n

bkX
2
k−1

(xX2
k−1 + y)2

− 1

n

y2

x2

∑

1≤k≤n

bk
(xX2

k−1 + y)2
.

The central limit theorem yields

sup
x∗≤x≤x∗

∣∣∣∣∣
1

n

1

x2

∑

1≤k≤n

bk

∣∣∣∣∣ = OP (n−1/2).

Next we show that
sup

x∗≤x≤x∗

|An(x)| = oP (1), (4.20)

where

An(x) =
1

n1/2

∑

1≤k≤n

bkX
2
k−1

(xX2
k−1 + y)2

.

Since for any x ∈ [x∗, x
∗]

EAn(x)2 =
ω2

n

∑

1≤k≤n

E

(
X2

k−1

(xX2
k−1 + y)2

)2

→ 0,

13



the finite dimensional distributions of An(x) converge to 0. Similarly, for all x, x′ ∈ [x∗, x
∗] we

have by the mean value theorem that

E(An(x) − An(x′))2 =
ω2

n

∑

1≤k≤n

E

(
X2

k−1

[
1

(xX2
k−1 + y)2

− 1

(x′X2
k−1 + y)2

])2

≤ (x− x′)2ω
2

n

∑

1≤k≤n

E

(
2X4

k−1

1

(x∗X2
k−1 + y∗)3

)2

≤ (x− x′)2,

for all n large enough. By Billingsley (1968, p. 96), the sequence An(x) is tight, and therefore
An(x) converges in C[x∗, x

∗] to 0. Hence the proof of (4.20) is complete.
Repeating the arguments leading to (4.20), we conclude

sup
x∗≤x≤x∗

∣∣∣∣∣
1

n

y2

x2

∑

1≤k≤n

bk
(xX2

k−1 + y)2

∣∣∣∣∣+ sup
x∗≤x≤x∗

∣∣∣∣∣
1

n

∑

1≤k≤n

ekX
3
k−1

(xX2
k−1 + y)2

∣∣∣∣∣ = OP (n−1/2).

The proof of Lemma 4.6 is established now.

Proof of Theorem 2.3. Similarly to (4.18) we have

0 =
∂Ln(η, y)

∂uj
+

(
▽
∂Ln(ξn,j, y)

∂uj

)T (
η̂n(y) − η), j = 1, 2,

where ξn,j satisfies ‖ξn,j − η‖ ≤ ‖η̂n(y) − η‖, j = 1, 2. This gives

η̂n,1(y) − ϕ = −
(
c11(n)

1

n
g1,n(y) + c12(n)

1

n
g2,n(y)

)
, (4.21)

where cij(n) are defined by

(
1

n
▽
∂Ln(ξn,1, y)

∂u1

,
1

n
▽
∂Ln(ξn,2, y)

∂u2

)−1

=

(
c11(n) c12(n)
c21(n) c22(n)

)
. (4.22)

Using (4.12)–(4.15) we get that
g2,n(y) = oP (n). (4.23)

Now (4.19) gives that c11(n) → −ω2 in probability. Applying Lemma 4.6 and (4.19) we get
that

|c12(n)| = |η̂1,n(y) − ϕ|OP (1) + OP (n−1/2). (4.24)

By (4.21)–(4.24) we conclude

η̂n,1(y) − ϕ =
(
−ω2 + oP (1)

) 1

n
g1,n(y) + [|η̂n,1(y) − ϕ|OP (1) + OP (n−1/2)]oP (1)

=
(
−ω2 + oP (1)

) 1

n
g1,n(y) + |η̂n,1(y) − ϕ|oP (1) + oP (n−1/2),
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which yields

η̂n,1(y) − ϕ = (1 + oP (1))−1

(
(−ω2 + oP (1))

1

n
gn,1(y) + oP (n−1/2)

)

Now the first part of Theorem 2.3 follows from (4.10).
The second part is an immedaite consequence of the first part Theorem 2.1and Slutsky’s
lemma.

The proof of Theorem 2.4 is based on the following modification of Lemma 4.4.

Lemma 4.7. If the conditions of Theorem 2.4 are satisfied, then for all 0 < y we have

∣∣∣∣g1,n(y) −
∑

1≤k≤n

bk
ω2

∣∣∣∣ = oP (n1/2) (4.25)

and ∣∣∣∣g2,n(σ2) −
∑

1≤k≤n

1

2ω4
(b2k − ω2)

∣∣∣∣ = oP (an), (4.26)

where g1,n(y) and g2,n(y) are the partial derivatives of Ln(u) with respect to s and x at
(ϕ, ω2, y).

Proof. We follow the proof of Lemma 4.4. Since the proof of (4.10) required only that Eb20 <
∞, we have (4.25).
To prove (4.26), we use (4.12). It is assumed that Ee40 < ∞ and therefore (4.14) holds.
Assumption (2.4) yields that E|b0|2τ < ∞ for all 0 < τ < α, and therefore condition (2.7)
with Hölder’s inequality gives Ee20b

2
0 <∞. Hence

E

(

n−1/2
∑

1≤k≤n

X2
k−1

(ω2X2
k−1 + y)2

2ekbkXk−1

)2

=
4

n
E(e0b0)

2
∑

1≤k≤n

(
X3

k−1

(ω2X2
k−1 + y)2

)2

−→ 0.

Clearly, (4.16) is satisfied. Thus it is enough to show that

∑

1≤k≤n

(ω2 − b2k)

(
X4

k−1

(ω2X2
k−1 + y)2

− 1

ω4

)
= oP (an). (4.27)

Let

ǫk = b2k − ω2 and zk−1 =
X4

k−1

(ω2X2
k−1 + y)2

− 1

ω4
.

It is clear that |zk| ≤ c1 with some constant c1. Also, according to Lemma 4.1, |zk| → 0 in
probability, as k → ∞, and therefore

δk = Ez2
k → 0 (k → ∞). (4.28)
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Fix n and define

ǫ∗k = ǫkI{|ǫk| ≤ τnan} and ǫ∗∗k = ǫ∗k − Eǫ∗k, 1 ≤ k ≤ n,

where τn is a numerical sequence (to be chosen later) tending to ∞ and I{·} denotes the
indicator function. Let

A(t) =

∫ t

−t

x2dF (x),

where F denotes the distribution function of ǫ0. By the classical theory of the domain of
attraction of stable laws (cf. Feller (1966, pp. 574–577)) we have that

lim
t→∞

A(t)

t2−αL(t)
= c2 (4.29)

with some 0 < c2 < ∞. Also, we note that by the definition of an and the properties of
regularly varying functions we get that

nL(an)/aα
n → 1 (n→ ∞). (4.30)

We also need that for any κ > 0 there is a constant 0 < c3 <∞ such that

L(λx)

L(x)
≤ c3λ

κ for all λ ≥ 1 and x ≥ 1. (4.31)

The assertion in (4.31) is an immediate consequence of the monotone equivalence theorems in
Bingham et al (1987, p. 23). Indeed, there is a non–increasing regularly varying function ψ
such that

lim
x→∞

x−κL(x)

ψ(x)
= 1,

and since ψ(λx) ≤ ψ(x) for all λ ≥ 1 and x ≥ 1, so (4.31) is proven.
Using the independence of ǫ∗∗k and zk−1 we conclude

E(ǫ∗∗k zk−1)
2 = E(ǫ∗∗k )2Ez2

k−1 ≤ E(ǫ∗k)
2Ez2

k−1 = A(τnan)δk−1

and the orthogonality of {ǫ∗∗k zk−1, k ≥ 1} yields

var

(
1

an

∑

1≤k≤n

ǫ∗∗k zk−1

)
=

1

a2
n

∑

1≤k≤n

E(ǫ∗∗k zk−1)
2 ≤ 1

a2
n

A(τnan)
∑

1≤k≤n

δk−1.

Combining (4.29)–(4.31) we get that

var

(
1

an

∑

1≤k≤n

ǫ∗∗k zk−1

)
= O(1)a−2

n (τnan)2−αL(τnan)
∑

1≤k≤n

δk−1

= O(1)τ 2−α
n

L(τnan)

L(an)

1

n

∑

1≤k≤n

δk−1
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= O(1)τ 2−α+κ
n

1

n

∑

1≤k≤n

δk−1.

By (4.28), if τn → ∞ slowly enough, then τ 2−α+κ
n

∑
1≤k≤n δk−1/n→ 0, showing that

var

(
1

an

∑

1≤k≤n

ǫ∗∗k zk−1

)
= o(1).

Using the definitions of ǫ∗k and an together with (2.4), (4.30) and (4.31), we obtain that

∑

1≤k≤n

P{ǫ∗k 6= ǫk} = n(1 − F (τnan)) → 0 (n→ ∞).

Next we observe that
n

an

∫ τnan

−τnan

xdF (x) → 0 (n→ ∞),

if τn → ∞ slowly enough, so using zk → 0 (k → ∞) we conclude that

∑

1≤k≤n

zk−1Eǫ
∗
k =

∑

1≤k≤n

zk−1

∫ τnan

−τnan

xdF (x) = o(1)n

∫ τnan

−τnan

xdF (x) = o(an).

Now the proof of (4.27) is complete.

Proof of Theorem 2.4. Using (4.18) we get

η̂n,1(σ
2) − ϕ = −

(
c11(n)

1

n
g1,n(σ2) + c12(n)

1

n
g2,n(σ2)

)
, (4.32)

and

η̂n,2(σ
2) − ω2 = −

(
c21(n)

1

n
g1,n(σ2) + c22(n)

1

n
g2,n(σ2)

)
, (4.33)

where cij are defined in (4.22). By Lemma 4.7, (4.19) and (4.22) we get that

n

an

(η̂n,2(σ
2) − ω2) =

1

an

∑

1≤k≤n

(b2k − ω2) + oP (1). (4.34)

Since (4.23) clearly holds, we also have (4.24) and from (4.26) we obtain that

η̂n,1(σ
2) − ϕ = c11(n)

1

n
g1,n(σ2) + (|η̂n,1 − ϕ|OP (1) + OP (n−1/2))OP (an/n).

Hence by (4.19) and (4.25) we have

n1/2(η̂n,1(σ
2) − ϕ) = n−1/2

∑

1≤k≤n

bk + oP (1). (4.35)
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The convergence in distribution of n1/2(η̂n,1(σ
2) − ϕ) and n(η̂n,2(σ

2) − ω2)/an now follows
from (4.34) and (4.35); only the asymptotic independence must be established. Note that
the vector (

∑
1≤k≤ bk/n

1/2,
∑

1≤k≤n(b2k − ω2)/an) converges in distribution (cf. Section 10.1 in
Meerschaert and Scheffler (2001)). The first coordinate of the limit is normal, the second
does not contain normal component and therefore the coordinates of the limit distribution are
independent (Meerschaert and Scheffler (2001, p. 41)).

5 Proofs of Theorem 3.1 and Corollaries 3.1–3.3

Using (1.8) one can easily verify that

Xℓ =

ℓ∑

i=1

ei

ℓ∏

j=i+1

(ϕ+ bj) +X0

ℓ∏

j=1

(ϕ+ bj),

and therefore

(
ℓ∏

j=1

(ϕ+ bj)

)−1

Xℓ =
ℓ∑

i=1

ei

(
i∏

j=1

(ϕ+ bj)

)−1

+X0 (5.1)

=
ℓ∑

i=1

eie
−S(i)γi +X0.

Proof of Theorem 3.1. First we note that assumption (1.3) yields

|ei| = O(eic1) a.s. for any c1 > 0

(cf. Berkes at al (2003)) and therefore by the strong law of large numbers

e−S(i) = o(e−ic2) a.s. for any 0 < c2 < E|ξ0|.

Hence Y is absolutely convergent with probability one and the result follows immediately from
(5.1).

The proof of the second part of Theorem 3.2 is based on the following lemma:

Lemma 5.1. If (1.2),(1.3), (1.8) (3.1), (3.4) and (3.5) hold, then

P{Y = c} = 0 for any c.

Proof. First we show that for any sequence an

∑

1≤i<∞

P
{
e−S(i)γiei 6= ai

∣∣ ξj ,−∞ < j <∞
}

= ∞ a.s. (5.2)
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Since Eξ0 exists, we get P{ξ0 = 0} = 0, so γi can be 0 only with probability 0. Hence (5.2)
holds, if for any sequence bn ∑

1≤i<∞

P{ei 6= bi} = ∞. (5.3)

By (3.4), we have (5.3) if and only if

∑

1≤i<∞

P{e0 6= bi} =
∑

1≤i<∞

(
1 − P{e0 = bi}

)
= ∞. (5.4)

If P{e0 = bi} → 1, then e0 must be a constant with probability 1, contradicting (3.5).
Using (5.2) we get that for any sequence an

∑

1≤i<∞

P
{
e−S(i)γiei 6= ai

}
= ∞, (5.5)

and therefore Lemma 5.1 follows from Lévy (1931) (cf. also Breiman (1968, p. 51)).

Lemma 5.2. If (1.2), (1.5)–(1.8), (1.11), (3.1) and (3.3) or (3.4) and (3.5) hold, then

∣∣∣∣g1,n(y) −
∑

1≤k≤n

bk
ω2

∣∣∣∣ = O(1) a.s. (5.6)

and ∣∣∣∣g2,n(y) −
∑

1≤k≤n

1

2ω4
(b2k − ω2)

∣∣∣∣ = O(1) a.s. (5.7)

where g1,n(y) and g2,n(y) are the partial derivatives of Ln(u) with respect to s and x at
(ϕ, ω2, y).

Proof of Lemma 5.2. We return to the decompositions of g1,n(y) and g2,n(y) used in the proof
of Lemma 4.4. Using Theorem 3.1 and Lemma 5.1 we get that

∣∣∣∣
∑

1≤k≤n

ekXk−1

ω2X2
k−1 + y

∣∣∣∣

≤
∑

1≤k≤n

|ek|
|Xk−1|

ω2X2
k−1 + y

=
∑

1≤k≤n

|ek|e−S(k−1)
(
e−S(k−1)|Xk−1|

)(
ω2(e−S(k−1)Xk−1)

2 + e−2S(k−1)y
)−1

≤
{

max
1≤k<∞

(
e−S(k−1)|Xk−1|

)(
ω2(e−S(k−1)Xk−1)

2 + e−2S(k−1)y
)−1
} ∑

1≤k≤n

|ek|e−S(k−1)

= O(1) a.s.
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since by Berkes et al (2003),
∑

1≤k≤n |ek|e−S(k−1) is finite with probability one. Similar argu-
ments give

∣∣∣∣∣
∑

1≤k≤n

bk

{
X2

k−1

ω2X2
k−1 + y

− 1

ω2

}∣∣∣∣∣ ≤
∑

1≤k≤n

|bk|
1

ω2

|y|
ω2X2

k−1 + y
= O(1) a.s.,

completing the proof of (5.6).
The proof of (5.7) goes along the same lines and hence it is omitted.

Proof of Corollary 3.1. It is an immediate consequence of the strong law of large numbers and
Theorems 3.1 and 3.2.

Proof of Corollary 3.2. The proof of Theorem 2.2 can be repeated; only Lemma 4.4 must be
replaced with Lemma 5.2.

Proof of Corollary 3.3. Minor modifications of the proof of Theorem 2.4 are required only.
Namely, one must use Lemma 5.2 instead of Lemma 4.7.
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