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Singularities in (3 + 1)-dimensional Horava-Lifshitz (HL) theory of gravity are studied. These
singularities can be divided into scalar, non-scalar curvature, and coordinate singularities. Because of
the foliation-preserving diffeomorphisms of the theory, the number of scalars that can be constructed
from the extrinsic curvature tensor Kij , the 3-dimensional Riemann tensor and their derivatives is
much large than that constructed from the 4-dimesnional Riemann tensor and its derivatives in
general relativity (GR). As a result, even for the same spacetime, it may be singular in the HL
theory but not in GR. Two representative families of solutions with projectability condition are
studied, one is the (anti-) de Sitter Schwarzschild solutions, and the other is the Lu-Mei-Pope
(LMP) solutions written in a form satisfying the projectability condition - the generalized LMP
solutions. The (anti-) de Sitter Schwarzschild solutions are vacuum solutions of both HL theory and
GR, while the LMP solutions with projectability condition satisfy the HL equations coupled with an
anisotropic fluid with heat flow. It is found that the scalars K and KijK

ij are singular only at the
center for the de Sitter Schwarzschild solution, but singular at both the center and r = (3M/|Λ|)1/3

for the anti-de Sitter Schwarzschild solution. The singularity at r = (3M/|Λ|)1/3 is absent in GR.
In addition, all the generalized LMP solutions have two scalar curvature singularities, located at
either r = 0 and r = rs > 0, or r = r1 and r = r2 with r2 > r1 > 0, or r = rs > 0 and r = ∞,
depending on the choice of the free parameter λ.

PACS numbers: 04.60.-m; 98.80.Cq; 98.80.-k; 98.80.Bp

I. INTRODUCTION

There has been considerable interest recently on a the-
ory of quantum gravity proposed by Horava [1], moti-
vated by Lifshitz theory in solid state physics [2], for
which the theory is usually referred to as the Horava-
Lifshitz (HL) theory. The HL theory is based on the
perspective that Lorentz symmetry should appear as an
emergent symmetry at long distances, but can be fun-
damentally absent at high energies [3]. With such a
perspective, Horava considered systems whose scaling
at short distances exhibits a strong anisotropy between
space and time,

x → ℓx, t → ℓzt. (1.1)

In (3 + 1)-dimensional spacetimes, in order for the the-
ory to be power-counting renormalizable, it needs z ≥
3. At low energies, the theory is expected to flow to
z = 1, whereby the Lorentz invariance is “accidentally re-
stored.” So, the HL theory is non-relativistic, ultra-violet
(UV) complete, explicitly breaks Lorentz invariance at
short distances, but is expected to reduce to general rel-
ativity (GR) in the infrared (IR) limit.

The effective speed of light in this theory diverges in
the UV regime, which could potentially resolve the hori-
zon problem without invoking inflation [4]. The spatial
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curvature is enhanced by higher-order curvature terms
[5–7], and this opens a new approach to the flatness prob-
lem and to a bouncing universe [5, 8, 9]. In addition, in
the super-horizon region scale-invariant curvature per-
turbations can be produced without inflation [10, 11],
and the perturbations become adiabatic during slow-roll
inflation driven by a single scalar field and the comov-
ing curvature perturbation is constant [11]. Due to all
these remarkable features, the theory has attracted lot of
attention lately [12–14].
To formulate the theory, Horava assumed two condi-

tions – detailed balance and projectability (He also con-
sidered the case where the detailed balance condition
was softly broken) [1]. The detailed balance condition
restricts the form of a general potential in a (D + 1)-
dimensional Lorentz action to a specific form that can
be expressed in terms of a D-dimensional action of a rel-
ativistic theory with Euclidean signature, whereby the
number of independent-couplings is considerably limited.
The projectability condition, on the other hand, orig-
inates from the fundamental symmetry of the theory –
the foliation-preserving diffeomorphisms of the Arnowitt-
Deser-Misner (ADM) form,

ds2 = −N2c2dt2 + gij
(

dxi +N idt
) (

dxj +N jdt
)

,

(i, j = 1, 2, 3), (1.2)

which require coordinate transformations be only of the
types,

t → f(t), xi → ζi(t,x), (1.3)

that is, space-dependent time reparameterizations are no
longer allowed, although spatial diffeomorphisms are still
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a symmetry. Then, it is natural, but not necessary, to
restrict the lapse function N to be space-independent,
while the shift vector N i and the 3-dimensional metric
gij in general depend on both time and space,

N = N(t), N i = N i(t, x), gij = gij(t, x). (1.4)

This is the projectability condition, and clearly is pre-
served by the foliation-preserving diffeomorphisms (1.3).
However, due to these restricted diffeomorphisms, one
more degree of freedom appears in the gravitational sec-
tor - a spin-0 graviton. This is potentially dangerous, and
needs to be highly suppressed in the IR regime, in order
to be consistent with observations. Similar problems also
raise in other modified theories, such as massive gravity
[15].
Under the rescaling (1.1), the dynamical variables

N, N i and gij scale as,

N → N, N i → ℓ−2N i, gij → gij . (1.5)

Note that in [7, 11], the constant c in the metric (1.2) was
absorbed into N , so that there the lapse function scaled
as ℓ−2.
So far most of the work on the HL theory has aban-

doned the projectability condition but kept the detailed
balance [4, 6, 12–14]. One of the main reasons is that
the detailed balance condition leads to a very simple ac-
tion, and the resulted theory is much easier to deal with,
while abandoning projectability condition gives rise to lo-
cal rather than global Hamiltonian constraint and energy
conservation. However, with detailed balance a scalar
field is not UV stable [5], and gravitational perturba-
tions in the scalar section have ghosts [1] and are not
stable for any given value of the dynamical coupling con-
stant λ [16]. In addition, detailed balance also requires
a non-zero (negative) cosmological constant, breaks the
parity in the purely gravitational sector [17], and makes
the perturbations not scale-invariant [18]. Breaking the
projectability condition, on the other hand, can cause
strong couplings [19] and gives rise to an inconsistency
theory [20].
To resolve these problems, various modifications have

been proposed [21]. In particular, Blas, Pujolas and
Sibiryakov (BPS) [22] showed that the strong coupling
problem can be solved without projectability condition
(in which the lapse function becomes dependent on both
t and xi), when terms constructed from the 3-vector

ai ≡
∂iN

N
, (1.6)

are included. Contrary claims can be found in [23]. In
addition, it is not clear how the inconsistency problem
[20] is resolved in such a generalization.
On the other hand, Sotiriou, Visser and Weifurtner

(SVW) formulated the most general HL theory with pro-
jectability but without detailed balance conditions [17].
The total action consists of three parts, kinetic, potential

and matter,

S = ζ2
∫

dtd3xN
√
g
(

LK − LV + ζ−2LM
)

, (1.7)

where g = det gij , and

LK =
1

c2

[

KijK
ij − (1− ξ)K2

]

,

LV = 2Λ−R+
1

ζ2
(

g2R
2 + g3RijR

ij
)

+
1

ζ4

(

g4R
3 + g5R RijR

ij + g6R
i
jR

j
kR

k
i

)

+
1

ζ4
[

g7R∇2R+ g8 (∇iRjk)
(

∇iRjk
)]

. (1.8)

Here ζ2 = 1/16πG, and c denotes the speed of light.
In the “physical” units, one can set c = 1 [17]. The
covariant derivatives and Ricci and Riemann terms are
all constructed from the three-metric gij , while Kij is the
extrinsic curvature,

Kij =
1

2N
(−ġij +∇iNj +∇jNi) , (1.9)

where Ni = gijN
j . The constants ξ, gI (I = 2, . . . 8) are

coupling constants, and Λ is the cosmological constant.
In the IR limit, all the high order curvature terms (with
coefficients gI) drop out, and the total action reduces
when ξ = 0 to the Einstein-Hilbert action.
The SVW generalization seems to have the potential to

solve the above mentioned problems [24], although it was
found that gravitational scalar perturbations either have
ghosts (0 ≤ ξ ≤ 2/3) or are not stable (ξ < 0) [7, 25].
In order to avoid ghost instability, one needs to assume
ξ ≤ 0. Then, the sound speed c2ψ = ξ/(2 − 3ξ) becomes
imaginary, which leads to an IR instability. Izumi and
Mukohyama showed that this type of instability does not
show up if |cψ| is less than a critical value [26].
It is fair to say, in order to have a viable HL theory,

much work needs to be done, and various aspects of the
theory ought to be explored, including the renormaliza-
tion group flows [27], Vainshtein mechanism [15, 28], so-
lar system tests [29], Lorentz violations [30], and its ap-
plications to cosmology [7, 11].
In this paper, we shall study another important issue

in the HL theory - the problem of singularities, which is
closely related to the issue of black holes in this the-
ory [12]. Although we are initially interested in the
case with projectability condition, our conclusions can
be equally applied to the HL theory without projectabil-
ity condition. The extrinsic curvature Kij and the 3-
dimensional Riemann tensor Rijkl are not tensors under
the 4-dimensional Lorentz transformations,

xµ → x′µ = ζµ
(

t, xi
)

. (1.10)

As a result, in GR one usually does not use them to
construct gauge-invariant quantities. However, in the
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HL theory, due to the restricted diffeomorphisms, these
quantities become tensors, and can be easily used to con-
struct various scalars. If any of such scalars is singular,
such a singularity cannot be limited by the restricted co-
ordinate transformations (1.3). Then, we may say that
the spacetime is singular. It is exactly in this vein that
we study singularities in the HL theory. In particular,
we first generalize the definitions of scalar, non-scalar
and coordinate singularities in GR to the HL theory in
Sec. II, and then in Sec. III we study two representa-
tive families of spherical static solutions of the HL theory,
and identify scalar curvature singularities using the three
quantities K, KijK

ij and R. In Sec. IV, we present
our main conclusions and remarks. There is also an Ap-
pendix, in which we show explicitly that the second class
of the LMP solutions written in the ADM frame with pro-
jectability condition in general satisfy the HL equations
coupled with an anisotropic fluid with heat flow.
Before proceeding further, we would like to note that

black holes in GR for asymptotically-flat spacetimes are
well-defined [31]. However, how to generalize such defini-
tions to more general spacetimes is still an open question
[32, 33]. The problem in the HL theory becomes more
complicated [26, 34], partially because of the fact that
particles in the HL theory can have non-standard disper-
sion relations, and therefore no uniform maximal speed
exists. As a result, the notion of a horizon is observer-
depedent.

II. SINGULARITIES IN HL THEORY

In GR, there are powerful Hawking-Penrose theorems
[31], from which one can see that spacetimes with quite
“physically reasonable” conditions are singular. Al-
though the theorems did not tell the nature of the sin-
gularities, Penrose’s cosmic censorship conjecture states
that those formed from gravitational collapse in a “phys-
ically reasonable” situation are always covered by hori-
zons [35].
To study further the nature of singularities in GR, El-

lis and Schmidt divided them into two different kinds,
spacetime curvature singularities and coordinate singu-

larities [36]. The former is real and cannot be made dis-
appear by any Lorentz transformations (1.10), while the
latter is coordinate-depedent, and can be made disappear
by proper Lorentz transformations. Spacetime curva-
ture singularities are further divided into two sub-classes,
scalar curvature singularities and non-scalar curvature

singularities. If any of the scalars constructed from the
4-dimensional Riemann tensor Rσµνλ and its derivatives
is singular, then the spacetime is said singular, and the
corresponding singularity is a scalar one. If none of these
scalars is singular, spacetimes can be still singular. In
particular, tidal forces and/or distortions (which are the
double integrals of the tidal forces), experienced by an
observer, may become infinitely large [37]. These kinds
of singularities are usually referred to as non-scalar cur-

vature singularities.
To generalize these definitions to the HL theory, as

mentioned in the Introduction, both the extrinsic curva-
ture Kij and the 3-dimensional Riemann tensor Rijkl can
be used to construct gauge-invariant quantities, as now
they are all tensors under the restricted transformations
(1.3). Then, we can see that now there are three kinds of
scalars: one is constructed from Kij and its derivatives;
one is from the 3-dimensional Riemann tensor Rijkl and

its derivatives; and the other is the mixture of Kij , R
i
jkl

and their derivatives. Therefore, we may define a scalar
curvature singularity in the HL theory as the one where
any of the scalars constructed from Kij , Rijkl and their
derivatives is singular. A non-scalar curvature singular-
ity is the one where none of these scalars is singular, but
some other physical quantities, such as tidal forces and
distortions experienced by observers, become unbounded.
Coordinate singularities are the ones that can be limited
by the restricted coordinate transformations (1.3).
Several comments now are in order. The scalars con-

structed from the 3-dimensional tensorsKij and Rijkl and
their derivatives include all scalars constructed from the
4-dimensional Rσµνλ and its derivatives. Thus, according
to the above definitions, all scalar singularities under the
general Lorentz transformations (1.10) are also scalar sin-
gularities under the restricted transformations (1.3), but
not the other way around. In this sense, scalar singulari-
ties in the HL theory are more general than those in GR.
One simple example is the anti-de Sitter Schwarzschild
solutions, which are also solutions of the SVW general-
ization with ξ = 0, as in this case the 3-dimensional Ricci
tensor Rij vanishes identically, and the contributions of
high order derivatives of curvature to the potential LV
are zero, as can be seen from Eq. (1.8). However, as
shown in the next section, the corresponding two scalars
K and KijK

ij all become singular at r = (3M/|Λ|)1/3.
This singularity is absent in GR [31].
In 3-dimensional space, the Weyl tensor vanishes iden-

tically, and the Riemann tensor is determined alge-
braically by the curvature scalar and the Ricci tensor:

Rijkl = gikRjl + gjlRik − gjkRil − gilRjk

−1

2

(

gikgjl − gilgjk
)

R. (2.1)

Therefore, the singular behavior of the scalars made of
the 3-dimensional Riemann tensor Rijkl may well be rep-
resented by the 3-dimensional curvature scalar R.

III. SINGULARITIES IN SPHERICAL STATIC
SPACETIMES

The metric of general spherically symmetric static
spacetimes that preserve the ADM form of Eq. (1.2)
with the projectability condition can be cast in the form
[38],

ds2 = −dt2 + e2ν
(

dr + eµ−νdt
)2

+ r2dΩ2, (3.1)
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where µ = µ(r), ν = ν(r). Then, we have

R =
2e−2ν

r2

[

2rν′ −
(

1− e2ν
)

]

,

K = eµ−ν
(

µ′ +
2

r2

)

,

KijK
ij = e2(µ−ν)

(

µ′2 +
2

r2

)

, (3.2)

where ν′ ≡ dν/dr, etc. It is interesting to note that for
the metric (3.1) we have

Cij = 0 = ǫijkRil∇jR
l
k, (3.3)

where Cij is the Cotton tensor, defined as

Cij = ǫikl∇k

(

Rjl −
1

4
Rδjl

)

. (3.4)

As a result, the HL theory with detailed balance [1]

SHLd =

∫

dtdx3N
√
g

{

2

κ2

[

KijK
ij − λK2

]

+
κ2µ2

(

ΛWR − 3Λ2
W

)

8(1− 3λ)
+

κ2µ2
(

1− 4λ)R2

32(1− 3λ)

−κ2µ2

8
RijR

ij +
κ2µ

2w2
ǫijkRil∇jR

l
k

− κ2

2w2
CijC

ij

}

, (3.5)

can be effectively considered as a particular case of the
general SVW action (1.7) with

G =
κ2

32πc2
, c2 =

κ4µ2ΛW
16(1− 3λ)

, Λ =
3ΛW
2

,

g2 =
4λ− 1

4ΛW
ζ2, g3 =

1− 3λ

ΛW
ζ2,

ξ = 1− λ, g4 = g5 = ... = g8 = 0. (3.6)

It should be noted that these relations are valid only
when the conditions of Eq. (3.3) hold. In general, these
two terms do not vanish and violate parity, while the
SVW action always preserves it. It must not be confused
with the parameter µ used in the action (3.5) and the
metric coefficient used in (3.1).
To study singularities in the HL theory, in the rest of

this paper we shall restrict ourselves to two representative
cases, the (anti-) de Sitter Schwarzschild solutions and
the solutions found by Lu, Mei and Pope (LMP) [6].

A. (Anti-) de Sitter Schwarzschild Solutions

The (anti-) de Sitter Schwarzschild solutions are given
by [38]

µ =
1

2
ln

(

M

r
+

Λ

3
r2
)

, ν = 0. (3.7)

When Λ > 0, it represents the de Sitter Schwarzschild
solutions, and when Λ < 0 it represents the anti-de Sitter
Schwarzschild solutions. As mentioned previously, they
are also solutions of the SVW generalization with ξ = 0.
Inserting the above into Eq.(3.2), we find that

R = 0,

K =

(

3M + Λr3

12r3

)1/2 (
4

r
− 3M − 2Λr3

3M + Λr3

)

,

KijK
ij =

3M + Λr3

12r3

[

8 +

(

3M − 2Λr3

3M + Λr3

)2
]

. (3.8)

Clearly, when Λ ≥ 0, K and KijK
ij are singular only at

the center r = 0. However, when Λ < 0, they are also
singular at r = rΛ ≡ (3M/|Λ|)1/3. In contrast to GR,
this singularity is a scalar one, and cannot be removed
by any coordinate transformations given by Eq. (1.3).
In GR, the (anti-) de Sitter Schwarzschild solutions are

usually given in the orthogonal gauge,

ds2 = −e2Ψ(r)dτ2 + e2Φ(r)dr2 + r2dΩ2, (3.9)

with

Ψ = −Φ =
1

2
ln

(

1− 2M

r
+

1

3
Λr2

)

. (3.10)

Clearly, the metric (3.9) does not satisfy the pro-
jectability condition, and its coefficient grr is singular
at e2Φ(rEH ) = 0. But, in GR this is a coordinate singu-
larity, and all scalars made of the 4-dimensional Riemann
tensor and its derivatives are finite at r = rEH .
It is interesting to note that in the orthogonal gauge

(3.9), K and KijK
ij all vanish, as can be seen from Eqs.

(1.9), while the 3-dimensional Ricci scalar is given by
Rorth = −2Λ, where Rorth denotes the quantity calcu-
lated in the orthogonal gauge (3.9).
In [38], it was showed explicitly that metric (3.9) is

related to metric (3.1) by the coordinate transformations,

τ = t−
∫ r

√

e−2Ψ − 1 eΦdr, (3.11)

under which we have

Φ(r) = ν(r) − 1

2
ln
(

1− e2µ
)

,

Ψ(r) =
1

2
ln
(

1− e2µ
)

, (3.12)

or inversely,

µ =
1

2
ln
(

1− e2Ψ
)

, ν = Φ(r) + Ψ(r). (3.13)

Note that the coordinate transformations (3.11) are
not allowed by the foliation-preserving diffeomorphisms
(1.3). In addition, since K, KijK

ij and R are not scalars
under these transformations, it explains why we have
completely different physical interpretations in the two
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different gauges, defined, respectively, by Eqs. (3.1) and
(3.11). In fact, in the framework of the HL theory the two
different gauges represent two different theories - metric
(3.1) represents a HL theory with projectability condi-
tion, while metric (3.11) represents a HL theory without
projectability condition.

B. The LMP Solutions

The LMP solutions were originally found for the HL
theory with detailed balance but without projectability
conditions in the form (3.9). There are two classes of
solutions, given, respectively, by

Φ = −1

2
ln
(

1 + x2
)

, (3.14)

for any Ψ(r), and

Φ = −1

2
ln
(

1 + x2 − αxα±

)

,

Ψ = −β± ln(x) +
1

2
ln
(

1 + x2 − αxα±

)

, (3.15)

where x ≡
√
−ΛW r, and

α− ≡ 2λ−
√
6λ− 2

λ− 1
=

2(2λ− 1)

2λ+
√
6λ− 2

,

α+ ≡ 2λ+
√
6λ− 2

λ− 1
, β± ≡ 2α± − 1, (3.16)

with α being an arbitrary real constant. Fig. 1 schemati-
cally shows the curves of α± vs λ, which shows that there
is no solution for the α+ branch when λ = 1.
Solutions given by Eqs. (3.14) and (3.15) shall be re-

ferred to, respectively, as Class A and B solutions. Par-
ticular values of α± are

α−(λ) =



























−1, λ = 1/3,
0, λ = 1/2,
1/2, λ = 1,
2/3, λ ≃ 1.375,
1, λ = 3,
2, λ = ∞,

α+(λ) =











−1, λ = 1/3,
−∞, λ = 1−0,
+∞, λ = 1+0,
2, λ = ∞,

(3.17)

which are useful in the following discussions.
In the orthogonal gauge (3.9), as mentioned previously,

the extrinsic curvature Kij vanishes identically, while the
3-dimensional curvature for the above two classes of so-
lutions can be written as

Rorth =
2

r2

{

α
(

1 + α±

)

xα± − 3x2
}

. (3.18)

When α = 0, the corresponding Rorth is for the solution
(3.14), which reduces to a constant. That is, in this case

α

α

α

+

+

−

0 1 λ
1/2

1/3

2

−1

FIG. 1: The functions α±(λ) defined by Eq. (3.16).

all the three scalars K, KijK
ij and R are finite. When

α 6= 0, it is for the solution (3.15), which is singular only
when α± ≤ 2 at r = 0. From Fig.1 we can see that
α− is always less than two for a finite λ. Therefore, this
branch of solutions is always singular at the center. α+

is always less than two for 1/3 ≤ λ < 1 and greater
than two for λ > 1. Therefore, Rorth is finite for the α+

solutions with λ > 1 for any r, including the center r = 0,
while it is singular at the center for the α+ solutions with
1/3 ≤ λ < 1.

1. Class A Solutions

Transforming the above solutions into the canonical
ADM form (3.1), we find that for the solution (3.14), we
have

µ = −∞, ν = −1

2
ln
(

1− ΛW r2
)

, (3.19)

where in writing the above expressions, we had chosen
Ψ = 0. Then, the corresponding three scalars are given
by

K = KijK
ij = 0, R = 6ΛW , (3.20)

which are all finite. As shown in [38], this solution is also
a vacuum solution of the SVW generalization (1.7) with
a non-vanishing constant curvature k = 6ΛW . Since it
does not depend explicitly on the coupling constant ξ, it
is a vacuum solution for any given ξ, including ξ = 0.
For detail, we refer readers to Sec. V of [38].
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2. Class B Solutions

For Class B solutions (3.15), they can be written in the
canonical ADM form (3.1) with

µ =
1

2
ln∆, ν =

(

1− 2α±

)

ln(x), (3.21)

where

∆ ≡ 1− x2(1−2α±) − x4(1−α±) + αx2−3α± . (3.22)

Clearly, to have real solutions, we must assume ∆ ≥ 0.
It should be noted that unlike Class A solutions, this
class of solutions do not satisfy the vacuum equations of
the HL theory with projectability condition, due to the
fact that the HL actions are not invariant under the co-
ordinate transformations (3.11). As shown in Appendix,
they can be interpreted as solutions of the HL theory
with projectability condition coupled with a spherical
anisotropic fluid with heat flow. The properties of sin-
gularities of these quantities can be well represented by
the three scalars K, KijK

ij and R, as can be seen from
Appendix, so in the following we shall not consider them
specifically.
Inserting the above solutions into Eq. (3.2) we find

that

R =
2

r2

{

1−
(

1 + 2β±

)

x2β±

}

,

K =

√
−ΛW

2∆1/2x3−2α±

(

4
√

−ΛW∆− x2δ
)

,

KijK
ij = − ΛW

4∆x4(1−α±)

(

8∆− x2δ2
)

, (3.23)

where

δ ≡ 2
(

1− 2α±

)

x1−4α± + 4
(

1− α±

)

x3−4α±

− α
(

2− 3α±

)

x1−3α± . (3.24)

To study these solutions further, it is found convenient
to consider the two branches α± separately. We shall use
β = β± to denote the α± branches.
Case i) β = β+, 1/3 ≤ λ < 1: In this case we have

α+ ≤ −1 and β+ ≤ −3. Then, from the expression (3.22)
we find that

∆ =
{

1, x = 0,
−∞, x → ∞.

(3.25)

Thus, there must exist a point x = xs at which we have
∆(xs) = 0. Since ∆ ≥ 0, we must restrict the solutions
to the range 0 ≤ x ≤ xs (or equivalently, 0 ≤ r ≤ rs,
where rs ≡ xs/

√
−ΛW .). Fig. 2 shows this case. From

the expressions (3.23) we find that all these three scalars
diverge at the center r = 0, while K and KijK

ij di-
verge at r = rs. Therefore, in the present case there are
two scalar curvature singularities, located, respectively,
at r = 0 and r = rs.

1

0

∆

r

(r)

r s

α > 0

α < 0

FIG. 2: The function ∆(x) defined by Eq. (3.22) for the α+

branch with 1/3 ≤ λ < 1. All three scalars R, K and KijK
ij ,

defined by Eq. (3.23), become unbounded at r = 0, while only
K and KijK

ij diverge at r = rs.

Case ii) β = β+, λ > 1: In this case we have α+ ≥ 2
and β+ ≥ 3, where the equality holds only when λ = ∞.
Then, from the expression (3.22) we find that

∆ =
{−∞, x = 0,
+1, x → ∞.

(3.26)

Fig.3 shows this case, from which we find that for any
given λ > 1, there always exists a minimum rs > 0 so
that ∆(r) ≥ 0 for r ≥ rs, where rs is the solution of
∆(r) = 0. Then, from the expressions (3.23) we find
that K and KijK

ij diverge at r = rs, while R diverges
as r → ∞. Therefore, in the present case there are also
two scalar curvature singularities, located, respectively,
at r = rs and r = ∞.
Case iii) β = β−, 1/3 ≤ λ < 1: In this case we have

−1 ≤ α− < 1/2 and −3 ≤ β− < 0, where the equality
holds only for λ = 1/3. Then, from the expression (3.22)
we find that

∆ =
{

+1, x = 0,
−∞, x → ∞.

(3.27)

from Fig.4, we find that for any given λ in this range,
there always exists a maximum rs > 0 so that ∆(r) ≥ 0
for 0 ≤ r ≤ rs. Then, From the expressions (3.23) we
find that all three scalars R, K and KijK

ij become
unbounded at the center, while only K and KijK

ij di-
verge at r = rs. Therefore, in the present case there are
two scalar curvature singularities, located, respectively,
at r = 0 and r = rs.
Case iv) β = β− = 0, λ = 1: In this case we have

α− = 1/2, and

∆ = αx1/2 − x2. (3.28)

Thus, to have ∆ non-negative, we must assume α > 0.
Then, ∆ ≥ 0 for 0 ≤ r ≤ rs ≡ α2/3, where ∆(x) = 0 at
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1

0

∆

r

(r)

α < α

α > α c

c

r s

FIG. 3: The function ∆(x) defined by Eq. (3.22) for the α+

branch with λ > 1, where αc is the value of α, for which
∆′(x) > 0 for α < αc. K and KijK

ij diverge at r = rs, while
R diverges as r → ∞.

1

0

∆

r

(r) α > α c

α < α
c

r s

FIG. 4: The function ∆(x) defined by Eq. (3.22) for the α−

branch with 1/3 ≤ λ < 1, where αc is the value of α, for
which ∆′(x) < 0 for α < αc. R, K and KijK

ij diverge at the
center r = 0, while only K and KijK

ij diverges at r = rs.

both r = 0 and r = rs. At the center, all three scalars
R, K and KijK

ij become unbounded, while only K and
KijK

ij diverge at r = rs.
Case v) β = β−, 1 < λ < 3: In this case we have

1/2 ≤ α− < 1, 0 ≤ β− < 1, and

∆ =
{−∞, x = 0,
−∞, x → ∞.

(3.29)

Fig.5 shows the general properties of ∆(r), from which
we can see that for any given λ, there always exists a crit-
ical value αc, for which ∆(r) ≥ 0 is possible only when
α > αc. In the latter case, ∆(r) = 0 always has two
positive roots, say, r1 and r2. Without loss of general-
ity, we assume r2 > r1 > 0. When r1 ≤ r ≤ r2, ∆(r)

∆ (r)

r0

α > α 

α < α

α = α
c

c

c

r r1 2

FIG. 5: The function ∆(x) defined by Eq. (3.22) for the
α− branch with 1 < λ < 3, where αc is the value of α, for
which ∆(x) ≥ 0 is possible only when α > αc. K and KijK

ij

diverge at the two points r = r1,2, while R remains finite
there.

is non-negative. At the two points r = r1 and r2 we
have ∆(ri) = 0, and Eq. (3.23) shows that both K and
KijK

ij become unbounded at these points, while R re-
mains finite. Therefore, in the present case there are also
two scalar curvature singularities, located, respectively,
at r = r1 and r = r2 for α > αc. Solutions with α ≤ αc
are not physical.
Case vi) β = β− = 1, λ = 3: In this case we have

α− = β− = 1, and

∆ =
α

x
− 1

x2
=

{−∞, x = 0,
0, x → ∞.

(3.30)

Clearly, to have ∆ ≥ 0, we must assume α > 0. Then,
for r ≥ rs ≡ 1/(

√
−ΛW α), ∆ is non-negative [See Fig.6,

Curve (a)]. At r = rs, ∆(r) = 0, and Eq. (3.23)
shows that both K and KijK

ij become unbounded at
this point, while R remains finite. As r → ∞, ∆(r) → 0,
and K and KijK

ij become unbounded again, while R
still remains finite. Therefore, in the present case there
are also two scalar curvature singularities, located, re-
spectively, at r = rs and r = ∞.
Case vii) β = β−, λ > 3: In this case we have α− >

1, β− > 1, and

∆ =
{−∞, x = 0,
+1, x → ∞.

(3.31)

Fig.6(b) shows the general properties of ∆(r), from which
we can see that for any given λ, there always exists a
point r = rs where ∆(rs) = 0. When r > rs, ∆ is
always positive. Eq. (3.23) shows that now both K and
KijK

ij diverge at r = rs, while all three scalars become
unbounded as r → ∞. Thus, in the present case there are
two scalar curvature singularities, located, respectively,
at r = rs and r = ∞.
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1

0

∆

r

(r)

(a)

(b)

r s

FIG. 6: The function ∆(x) defined by Eq. (3.22) for the α−

branch with (a) λ = 3, α > 0; and (b) λ > 3 for any α.

IV. CONCLUSIONS

In this paper, we have studied singularities in the HL
theory, and classified them into three different kinds, the
scalar, non-scalar, and coordinate singularities, following
the classification given in GR [36]. Due to the restricted
diffeomorphisms (1.3), the number of the scalars that
can be constructed from the extrinsic curvature tensor
Kij , the 3-dimensional Riemann tensor Rijkl and their
derivatives is much larger than that constructed from
the 4-dimensional Riemann tensor Rσµνλ and its deriva-
tives. The latter is invariant under the general Lorentz
transformations (1.10). As a result, even for the same
spacetime, it may be singular in the HL theory, but not
singular in GR. One simple example is the anti-de Sitter
Schwarzschild solution written in the ADM form (3.1).
This solution is a solution of both HL theory and GR.
However, in the HL theory, there are two scalar singu-
larities located, respectively, at the origin r = 0 and
r = (3M/|Λ|)1/3, as the two scalars K and KijK

ij be-
come singular at these points. It is well-known that the
scalar singularity at r = (3M/|Λ|)1/3 is absent in GR.
This is because both K and KijK

ij are not scalars un-
der the general Lorentz transformations (1.10). Thus,
even they are singular at this point, it only represents a
coordinate singularity, and all scalars constructed from
the 4-dimensional Riemann tensor and its derivatives are
finite. On the other hand, due to the restricted transfor-
mations (1.3), K and KijK

ij are scalars in the HL the-
ory, and once they are singular, the resulting singularity
cannot be transferred away by the restricted transforma-
tions. As a result, in the HL theory it represents a real
spacetime singularity.

With the above in mind, we have studied the LMP so-
lutions [6], and found that their singularity behavior in
the orthogonal frame defined by (3.9) is different from
that in the ADM frame defined by (3.1) for the second

class of the LMP solutions. In particular, in the orthog-
onal frame, Kij vanishes, so do K and KijK

ij , while the
3-dimensional Ricci scalar R [cf. Eq. (3.18)] can be sin-
gular at the origin or infinity, depending on the choice of
the parameter λ. However, in the ADM frame at least
one of the three scalars K, KijK

ij and R is always sin-
gular at two different points, either r = 0 and r = rs > 0,
or r = r1 and r = r2 with r2 > r1 > 0, or r = rs > 0 and
r = ∞, depending on the choice of the free parameter λ,
where rs is a finite non-zero positive constant. This dif-
ferent singular behavior originates from the fact that the
two frames are related by the coordinate transformations
(3.11), which is not allowed by the foliation-preserving
diffeomorphisms (1.3), or in other words, K, KijK

ij and
R are not scalars under such transformations. In fact,
in the framework of the HL theory, the two frames actu-
ally represent two different HL theories, one is with the
projectability condition, while the other is without. In
particular, the second class of the LMP solutions in the
orthogonal frame satisfy the vacuum HL equations, while
in the ADM frame they satisfy the HL equations coupled
with an anisotropic fluid with heat flow, as shown explic-
itly in the Appendix.
Our above results show clearly that the problem of

singularities in the HL theory is a very delicate prob-
lem, due to the restricted diffeomorphisms (1.3), which
preserve the ADM foliations (1.2). Further investiga-
tions are needed, in particular, in terms of the strength
of these singularities. In the examples studied in this
paper, all singularities indicated by the two scalars K
and KijK

ij at r = rs > 0, including that of the anti-de
Sitter Schwarzschild solution, seems weak in the sense
of tidal forces and distortions experiencing by observers.
Therefore, it is not clear whether or not the spacetime is
extendable across such a singularity [37].
Finally, we would like to note that the ADM form (3.1)

can be considered as a particular case of the HL theory
without projectability condition. Therefore, restricting
ourselves only to the HL theory without projectability
condition does not solve the singularity problem occur-
ring at r = rs.
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Appendix: The Generalized LMP Solutions with
Projectability Condition

The second class of the LMP solutions with pro-
jectability condition takes the form of Eq. (3.1) with
µ and ν given by Eq. (3.21). Unlike the first class,
this one does not satisfy the HL vacuum equations with
projectability condition, due to the fact that HL actions
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are not invariant under the coordinate transformations
(3.11). In particular, under these transformations, we
have

Rij → Rij + δRij . (A.1)

For spherically symmetric static solutions, the extra term
δRij in general gives rise to an anisotropic fluid with heat
flow [38], possibly subjected to some energy conditions
[31]. In particular, for the LMP solutions of Eqs. (3.1)
and (3.21), the energy density J t, defined by

J t = 2

(

N
δLM
δN

+ LM
)

, (A.2)

is given by the Hamiltonian equation,

∫

d3x
√
g (LK + LV ) = 8πG

∫

d3x
√
g J t, (A.3)

where

LK = −ΛW e2(µ−ν)

4x2∆

{

ξx2∆′2 − 8(1− ξ)x∆∆′

−8(1− 2ξ)x∆2
}

,

LV =
ΛW
x2

[

2 + 3x2 + 2
(

1− 4α±

)

x2β±

]

+
ΛW

x8(1−α±)

{

[

8ξα2
± − 8(1− ξ)

(

1− α±

)

+ 3
]

+2
[

4(1− ξ)(1− α±)− 1
]

x2(1−2α±)

+(1− 2ξ)x4(1−2α±)
}

,

(A.4)

where ∆ is given by Eq. (3.22), and ∆′ ≡ d∆/dx. The
quantity v, defined by

J i ≡ −N
δLM
δNi

= e−(µ+ν)
(

v, 0, 0
)

, (A.5)

which is related to heat flow [38], is given by

v =
ΛW e2(µ−ν)

32πGx2∆2

{

ξx
[

2x∆∆′′ + x∆′2 − 2β±∆∆′
]

+4∆
[

ξx∆′ − 2(1− ξ)β±∆
]

− 8ξ∆2

}

. (A.6)

On the other hand, the corresponding stress part τ ij

defined by,

τ ij =
2√
g

δ
(√

gLM
)

δgij
, (A.7)

can be written in the form,

τij = e2νprδ
i
rδ
j
r + r2pθΩij , (A.8)

where Ωij ≡ δθi δ
θ
j + sin2 θδφi δ

φ
j , and

pr =
ΛW e2(µ−ν)

64πGx2∆2

{

ξx
[

4x∆∆′′ − 3x∆′2 + 4β±∆∆′
]

+8∆
[

x∆′ − 2(1− ξ)β±∆
]

+ 8(1− 4ξ)∆2

}

−e−2ν

8πG
Frr,

pθ =
ΛW e2(µ−ν)

16πGx2∆2

{

(1− ξ)x2∆∆′′ +
1

4
ξx2∆′2

+(1− ξ)β±x∆∆′ + 2(1− 2ξ)
(

x∆′ + β±∆
)

∆

}

+
ΛW

8πGx2
Fθθ, (A.9)

with

Frr =
ΛW
2x2

[

2− 2x−2β± − 3x2(1−β±)
]

− ΛW
4x4−2β±

[

(

19− 32ξ
)

+4(3− 5ξ)
(

2− 3β±

)

β±

−2
(

7− 12ξ
)

x−2β± −
(

5− 8ξ
)

x−4β±

]

,

Fθθ =
3

2
x2 − β±x

2β± +
1

2x2−4β±

{

(1 + 2ξ)

+2(11− 16ξ)β± − 2ξ
(

7− 6β±

)

β2
±

−2
(

1− β±

)

x−2β± + (1− 2ξ)x−4β±

}

.(A.10)

Clearly, to interpret the above as an anisotropic fluid
with heat flow, some energy conditions [31] might need to
be imposed. Since in this paper we are mainly concerned
with the nature of singularities, we shall not study these
conditions here.
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