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SUPPORT POINTS OF LOCALLY OPTIMAL DESIGNS FOR
NONLINEAR MODELS WITH TWO PARAMETERS

By Min Yang1 and John Stufken2

University of Missouri–Columbia and University of Georgia

We propose a new approach for identifying the support points
of a locally optimal design when the model is a nonlinear model.
In contrast to the commonly used geometric approach, we use an
approach based on algebraic tools. Considerations are restricted to
models with two parameters, and the general results are applied to
often used special cases, including logistic, probit, double exponential
and double reciprocal models for binary data, a loglinear Poisson
regression model for count data, and the Michaelis–Menten model.
The approach, which is also of value for multi-stage experiments,
works both with constrained and unconstrained design regions and
is relatively easy to implement.

1. Introduction. Generalized linear models (GLMs) and other nonlinear
models have found broad applicability during the last decades. Methods
of analysis and inference for these models are well established [for GLMs,
see, e.g., McCullagh and Nelder (1989), McCulloch and Searle (2001) and
Agresti (2002)], but results on optimal designs are more sparse.

In contrast to very general results on optimal designs for linear models
with normal errors, many optimality results for nonlinear models are for
specific optimality criteria and for specific cases in terms of the model, the
design region and the parameters of interest. The significance of our results
is their broad applicability, as will be demonstrated in the next sections. As
in much of the past work, our method focuses on locally optimal designs.
With nonlinear models, information matrices and optimal designs depend
on the unknown model parameters, and one way to deal with this is to
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2 M. YANG AND J. STUFKEN

identify locally optimal designs based on the best guess of the parameters.
There are other ways to address this issue, for example, by using a Bayesian
approach [see, e.g., Agin and Chaloner (1999), Chaloner and Larntz (1989)
and Chaloner and Verdinelli (1995)]. There is also some interesting work on
finding designs that are robust to the best guess of the parameters [see, e.g.,
Dror and Steinberg (2006)], in which case it would still be useful to know
locally optimal designs. As pointed out by Ford, Torsney and Wu (1992),
locally optimal designs are important if good initial parameters are avail-
able from previous experiments, but can also function as a benchmark for
designs chosen to satisfy experimental constraints. Hereafter, we omit the
word “locally” for simplicity.

We focus on nonlinear models with two regression parameters. These are
the most studied nonlinear models, and our results will unify and generalize
many of the available results. We will provide selected relevant references in
later sections, and refer the reader to Khuri et al. (2006) for an authoritative
recent review on design issues for GLMs.

There can be many design questions that lead to different optimal de-
signs. For example, a design, that is, D-optimal for a certain problem may
not be A-optimal. As another example, a design, that is, optimal for the
two parameters may not be optimal for some function of the parameters.
Moreover, optimality is a function of the design space, which is in many
problems a constrained space. For example, in a toxicity study, a high dose
level that exceeds safety limits is not acceptable. All these issues, coupled
with the dependence of a locally optimal design on a guess of the parame-
ters, complicate the optimal design problem tremendously. There are con-
sequently very few general results on this topic. Among the exceptions is
Biedermann, Dette and Zhu (2006), who obtained a series of excellent re-
sults for a specific function of the parameters under a constrained design
space and for various models and optimality criteria.

Our strategy will be to identify a class of relatively simple designs so that
for any design d that does not belong to this class, there is a design in the
class that has an information matrix that dominates that of d in the Loewner
ordering. Such a design will then also be no worse than d for most of the com-
mon optimality criteria and for many functions of the parameters. The class
of designs will depend on the design region—which can be constrained—and
the model, and whether a design belongs to the class or not will depend on
its support points. With these results, identifying an optimal design for a
specific optimality criterion will then either reduce to a simple optimization
problem or be solved by using the results of Pukelsheim and Torsney (1991).
For further discussion we refer to Biedermann, Dette and Zhu (2006). In
Section 6 we will observe that our approach is also useful in the context of
multi-stage designs, which is especially helpful in cases where no good initial



LOCALLY OPTIMAL DESIGNS 3

guess of the parameters is available. We refer to Sitter and Forbes (1997) for
further details.

This article is inspired by the work of Mathew and Sinha (2001), who
developed a unified approach to tackle optimality problems for the logistic
regression model. Our approach successfully characterizes optimal designs
under many commonly studied models. Moreover, the results apply for any
functions of the original parameters and any commonly used optimality
criteria. The results make finding optimal designs for nonlinear models with
two parameters a simple task.

For the layout of the remainder of the paper, we will introduce commonly
used GLMs and the Michaelis–Menten model in Section 2. In Section 3 we
will develop the main tools, which will then be applied to the introduced
models in Sections 4 and 5. Section 6 concludes with a brief discussion.

2. Statistical models and information matrices. All the models that we
will consider have two parameters, which we denote by α and β, and an
explanatory variable x. For a given model, the exact optimal design problem
consists of selecting distinct values for x, say x1, . . . , xk, and values for the
number of observations ni at xi so that the resulting design is best with
respect to some optimality criterion for a fixed number of observations n =∑k

i=1 ni. The xi’s are the support points of the design. This is a difficult
and often intractable optimization problem, which has led to the use of
approximate designs in which the ni’s are replaced by ωi’s that satisfy ωi > 0
and

∑k
i=1 ωi = 1. Thus a design can now be written as ξ = {(xi, ωi), i =

1, . . . , k}, and the problem of finding an optimal design becomes, once the
support points have been determined, a continuous optimization problem
rather than a discrete optimization problem. Identifying support points for
an optimal design is therefore extremely important, and the methodology
that we develop accomplishes precisely that for optimal designs with a small
support size.

For a given design ξ and a two-parameter model for independent observa-
tions, the Fisher information matrix for the parameters (α,β) can be written
as

Iξ(α,β) = AT (α,β)Cξ(α,β)A(α,β).(2.1)

Here,

Cξ(α,β) =




k∑

i=1

ωiΨ1(ci)
k∑

i=1

ωiΨ2(ci)

k∑

i=1

ωiΨ2(ci)
k∑

i=1

ωiΨ3(ci)




(2.2)
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is a matrix that depends on (α,β) (through the ci’s) and on design ξ
(through the ωi’s and ci’s), while A(α,β) is a matrix that depends only
on (α,β). The functions Ψj will differ depending on the model. The follow-
ing examples introduce popular models to illustrate the notation in (2.1)
and (2.2).

Example 1. In dose-response studies and growth studies, a subject re-
ceives a stimulus at a certain level x to study the relationship between the
level of the stimulus and a binary response. The dose level in a dose-response
study or the level of dilution in a growth study [see McCulloch and Searle
(2001), Chapter 5] can be controlled by the experimenter, and a judicious se-
lection of the levels must be made prior to the experiment. With Yi and xi as
the binary response and the stimulus for the ith subject, a basic generalized
linear regression model for this situation is of the form

Prob(Yi = 1) = P (α + βxi).(2.3)

Here, α and β are the intercept and slope parameters, and P (x) is a cu-
mulative distribution function. Commonly used models of this form are the
logistic, probit, double exponential and double reciprocal models. Most re-
sults in the optimal design literature for GLMs are for (2.3).

The information matrix for (α,β) for (2.3) is of the form given in (2.1)

and (2.2), where we may take A(α,β) =
(1 −α/β
0 1/β

)
, ci = α + βxi, Ψ1(ci) =

{P ′(ci)}2/[P (ci){1−P (ci)}], Ψ2(ci) = ciΨ1(ci), and Ψ3(ci) = c2
i Ψ1(ci).

Example 2. Generalized linear regression models, such as loglinear re-
gression models [Agresti (2002), Chapter 9], can be useful for count data. For
example, in a cancer colony-formation assay [Minkin (1993)], the capacity of
a drug to reduce the formation of cell colonies is studied. The number of cell
colonies observed at a certain concentrate level xi of the drug is assumed to
be a Poisson variable with mean θi and a loglinear model is used to describe
the relationship between θi and the concentrate level of the drug xi. Minkin
(1993) describes the model as

log θi = α + βxi.(2.4)

Compared to (2.3), the optimal design literature contains fewer results for
this model. Nevertheless, the information matrix for (α,β) for (2.4) is also
of the form given in (2.1) and (2.2) with the same choices as in Example 1,
except that now Ψ1(ci) = exp(ci).

Example 3. The Michaelis–Menten model is a nonlinear model that is
widely used in the biological sciences. It is given by

Yi =
αxi

β + xi
+ εi, εi ∼ N(0, σ2),(2.5)
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where α and β are positive and the explanatory variable xi can take values in
(0, x0] for some x0. Some results on optimal designs [e.g., Dette and Wong
(1999)] are available for this model. The information matrix for (α,β) is
again of the form given in (2.1) and (2.2), this time with the choices A(α,β) =(1/α −1/β
0 1/αβ

)
, ci = αxi/(β + xi), Ψ1(ci) = c2

i , Ψ2(ci) = c3
i and Ψ3(ci) = c4

i .

Our strategy is to identify a class of designs so that for any design ξ, and
for given α and β, there is a design ξ∗ in the class with Cξ∗(α,β) ≥ Cξ(α,β).
This inequality in the Loewner ordering implies the same inequality for
the corresponding information matrices in (2.1), and ξ∗ is, for these (α,β),
locally better than ξ under commonly used optimality criteria, such as Φp-
optimality, which includes D-, A- and E-optimality. Moreover, if the interest
is not in (α,β) but in some one-to-one transformation of these parameters,
say (τ1, τ2), then ξ∗ is also better than ξ in the Loewner ordering for (τ1, τ2).
This follows easily by observing that the information matrix for (τ1, τ2), say
Jξ(τ1, τ2), can be expressed as Jξ(τ1, τ2) = (BT (α,β))−1Iξ(α,β)B−1(α,β),
where Iξ(α,β) is as defined in (2.1) and

B(α,β) =




∂τ1

∂α

∂τ1

∂β
∂τ2

∂α

∂τ2

∂β


 .

Observe that this also implies that ξ∗ is better than ξ for τ1 if that is the only
parameter function of interest. For this strategy to be useful, the class of
designs that we identify must, of course, be a relatively small class consisting
of designs that have a small support size.

3. The main tools. The main algebraic tools are derived in this section
assuming certain properties for the Ψj ’s in (2.2). Applications to specific
models will be considered in Sections 4 and 5. We start with the following
lemma. In Lemma 1, as well as in Proposition A.1 in the Appendix, B could
be +∞, but A and the c’s must be finite.

Lemma 1. Assume that Ψ1(c), Ψ2(c) and Ψ3(c) are continuous func-
tions on [A,B], that they are three times differentiable on (A,B] and that
they satisfy the following conditions on the latter interval:

(a) Ψ′
1(c) < 0;

(b) (
Ψ′

2(c)
Ψ′

1(c))
′ > 0;

(c) ((
Ψ′

3(c)
Ψ′

1(c))
′/(

Ψ′
2(c)

Ψ′
1(c))

′)′ > 0;

(d) limc↓A
Ψ′

2(c)
Ψ′

1(c)(Ψ1(A)−Ψ1(c)) = 0.
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Then, for any c1 and c2 with A < c1 < c2 ≤ B and 0 < ω < 1, there exists a
unique pair cx, ωx, where cx ∈ (c1, c2) and 0 < ωx < 1, such that

ωΨ1(c1) + (1− ω)Ψ1(c2) = ωxΨ1(A) + (1− ωx)Ψ1(cx),(3.1)

ωΨ2(c1) + (1− ω)Ψ2(c2) = ωxΨ2(A) + (1− ωx)Ψ2(cx)(3.2)

and

ωΨ3(c1) + (1− ω)Ψ3(c2) < ωxΨ3(A) + (1− ωx)Ψ3(cx).(3.3)

For ω = 0 or 1, for cx ∈ [c1, c2], the unique pair that gives equality in (3.1)
and (3.2) is cx = c2 or c1, respectively, and ωx = 0. This solution also gives
equality in (3.3). Furthermore, cx is a strictly decreasing function of ω.

Proof. If ω = 0 or 1, then it follows from (A.1) and condition (a) that
cx = c2 or c1, respectively, and ωx = 0. This obviously also gives equality in
(3.3).

Next, let 0 < ω < 1. We will first show that there is a unique pair cx ∈
(c1, c2) and ωx ∈ (0,1) that satisfies (3.1) and (3.2). For c ∈ (c1, c2), define

ωA(c) =
ωΨ1(c1) + (1− ω)Ψ1(c2)−Ψ1(c)

Ψ1(A)−Ψ1(c)
.(3.4)

Notice that ωA(c) is an increasing function of c by observing that 1−ωA(c)
is a decreasing function of c. For any c ∈ (c1, c2), (3.1) holds for (cx, ωx) =
(c,ωA(c)) [although ωx may not be in (0,1)]. Define

F1(c) = ωA(c)Ψ2(A) + (1− ωA(c))Ψ2(c)− ωΨ2(c1)− (1− ω)Ψ2(c2)

=
ωΨ1(c1) + (1− ω)Ψ1(c2)−Ψ1(c)

Ψ1(A)−Ψ1(c)
(Ψ2(A)−Ψ2(c))

+ Ψ2(c)− ωΨ2(c1)− (1− ω)Ψ2(c2).

For c = Ψ−1
1 (ωΨ1(c1)+(1−ω)Ψ1(c2)) [Ψ−1

1 exists and c ∈ (c1, c2) since Ψ1(c)
is a monotone function by condition (a)],

F1(c) = Ψ2(c)− ωΨ2(c1)− (1− ω)Ψ2(c2) > 0,(3.5)

where we have used (A.1). On the other hand, for c = c2, we have

F1(c) =
ω(Ψ1(c1)−Ψ1(c2))

Ψ1(A)−Ψ1(c2)
(Ψ2(A)−Ψ2(c2))− ω(Ψ2(c1)−Ψ2(c2))

= ω

[
Ψ1(c1)−Ψ1(c2)

Ψ1(A)−Ψ1(c2)
Ψ2(A)(3.6)

+
Ψ1(A)−Ψ1(c1)

Ψ1(A)−Ψ1(c2)
Ψ2(c2)−Ψ2(c1)

]
< 0,
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where we have again used (A.1) in the last step. Since F1(c) is a continu-
ous function, by (3.5) and (3.6) there must be a cx ∈ (Ψ−1

1 (ωΨ1(c1) + (1 −
ω)Ψ1(c2)), c2) so that F1(cx) = 0. Then cx and ωA(cx), which we will abbre-
viate to ωx, satisfy (3.1) and (3.2). Note that ωx ∈ (0,1) for this choice.

We will now show that the pair (cx, ωx) is unique. Assume that (cy, ωA(cy) =
ωy) is another pair that satisfies (3.1) and (3.2). Without loss of generality

we may take cx < cy . By (3.4), this implies ωx < ωy, so that 0 < ωy−ωx

1−ωx
< 1.

Since both (cx, ωx) and (cy, ωy) satisfy (3.1), we have that

Ψ1(cx) =
ωy − ωx

1− ωx
Ψ1(A) +

1− ωy

1− ωx
Ψ1(cy).(3.7)

By (A.1) this implies

Ψ2(cx) >
ωy − ωx

1− ωx
Ψ2(A) +

1− ωy

1− ωx
Ψ2(cy).(3.8)

But since both (cx, ωx) and (cy, ωy) satisfy (3.2), we also have

Ψ2(cx) =
ωy − ωx

1− ωx
Ψ2(A) +

1− ωy

1− ωx
Ψ2(cy),(3.9)

which contradicts (3.8).
The next step consists of showing that the unique pair (cx, ωx) also sat-

isfies inequality (3.3). From (3.1) and (3.2), we obtain

ω = ((Ψ1(cx)−Ψ1(c2))(Ψ2(cx)−Ψ2(A))− (Ψ2(cx)−Ψ2(c2))

× (Ψ1(cx)−Ψ1(A)))

× [(Ψ1(c1)−Ψ1(c2))(Ψ2(cx)−Ψ2(A))

− (Ψ2(c1)−Ψ2(c2))(Ψ1(cx)−Ψ1(A))]−1 and
(3.10)

ωx = ((Ψ1(c1)−Ψ1(c2))(Ψ2(cx)−Ψ2(c2))

− (Ψ2(c1)−Ψ2(c2))(Ψ1(cx)−Ψ1(c2)))

× [(Ψ1(c1)−Ψ1(c2))(Ψ2(cx)−Ψ2(A))

− (Ψ2(c1)−Ψ2(c2))(Ψ1(cx)−Ψ1(A))]−1.

Note that the common denominator in these expressions is positive by (A.3).
Then inequality (3.3) is equivalent to (A.4), and the conclusion follows.

For the final step of the proof we establish that cx is a strictly decreasing
function of ω. For fixed c1 and c2, we have just established that for every ω ∈
(0,1) there exists a unique cx, such that (3.1), (3.2) and (3.3) are satisfied.
As seen in (3.10), we can express ω as a function of cx. This expression also
appears in (A.5), and we conclude from (v) of Proposition A.1 that ω is
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a strictly decreasing function of cx, which implies also that cx is a strictly
decreasing function of ω. �

The assumptions in Lemma 1 are sufficient to reach the conclusions of the
lemma, but certain modifications of the assumptions, which are useful for
later applications, can yield the same or similar conclusions. The next two
lemmas present variations on Lemma 1. Before we formulate these lemmas
we first introduce new terminology. We say that (Ψ1(c), Ψ2(c), Ψ3(c)) are
functions of type I on [A,B] if

(i) Ψ1(c), Ψ2(c) and Ψ3(c) are continuous functions on [A,B] that are
three times differentiable on (A,B];

(ii) Ψ′
1(c)(

Ψ′
2(c)

Ψ′
1(c))

′((
Ψ′

3(c)
Ψ′

1(c))
′/(

Ψ′
2(c)

Ψ′
1(c))

′)′ < 0 for c ∈ (A,B]; and

(iii) limc↓A
Ψ′

2(c)
Ψ′

1(c)(Ψ1(A)−Ψ1(c)) = 0.

Here B could be +∞, but A must be finite. We say that (Ψ1(c), Ψ2(c),
Ψ3(c)) are functions of type II on [A,B] if

(i) Ψ1(c), Ψ2(c) and Ψ3(c) are continuous functions on [A,B] that are
three times differentiable on [A,B);

(ii) Ψ′
1(c)(

Ψ′
2(c)

Ψ′
1(c))

′((
Ψ′

3(c)
Ψ′

1(c))
′/(

Ψ′
2(c)

Ψ′
1(c))

′)′ > 0 for c ∈ [A,B);

(iii) limc↑B
Ψ′

2(c)
Ψ′

1(c)(Ψ1(B)−Ψ1(c)) = 0.

In this case A could be −∞, but B must be finite. The conditions for
functions of type I and type II can generally be verified easily; for example,
by using symbolic computational software, such as Maple.

Suppose conditions (c) and (d) of Lemma 1 are met, but Ψ′
1(c) > 0 and

(
Ψ′

2(c)
Ψ′

1(c))
′ < 0. It is easily seen that −Ψ1(c), Ψ2(c) and Ψ3(c) satisfy all con-

ditions of the lemma, so that Lemma 1 holds for −Ψ1(c), Ψ2(c) and Ψ3(c).
But since (3.1) is an equality, this means that the conclusions of Lemma 1
hold for Ψ1(c), Ψ2(c) and Ψ3(c). Application of Lemma 1 with ±Ψ1(c) or
±Ψ2(c) yields the following conclusion:

Lemma 2. If (Ψ1(c), Ψ2(c), Ψ3(c)) are functions of type I on [A,B],
then the conclusions of Lemma 1 still hold.

If (Ψ1(c), Ψ2(c), Ψ3(c)) are functions of type II on [A,B], define Ψ̃1(c) =

Ψ1(−c), Ψ̃2(c) = Ψ2(−c) and Ψ̃3(c) = Ψ3(−c). It can be verified that (Ψ̃1(c),

Ψ̃2(c), Ψ̃3(c)) are now functions of type I on [−B,−A]. For any A≤ c < B,

Ψ1(c) = Ψ̃1(c̃), where c̃ = −c ∈ (−B,−A]. Thus, by applying Lemma 2, we
have the following result:
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Lemma 3. Suppose (Ψ1(c), Ψ2(c), Ψ3(c)) are functions of type II on
[A,B]. For any given A ≤ c1 < c2 < B and 0 < ω < 1, there exists a unique
pair cx, ωx, where cx ∈ (c1, c2) and ωx ∈ (0,1), such that (3.1), (3.2) and
(3.3) hold with A being replaced by B.

Lemmas 2 and 3 are the basis of this algebraic method. The following
two corollaries will be used in our main results. The first one can be derived
immediately from Lemma 2.

Corollary 1. Let (Ψ1(c), Ψ2(c), Ψ3(c)) be functions of type I on
[A,B]. For any given A < c1 < c2 ≤ B, ω1 > 0, and ω2 > 0, there exists
a unique pair cx, ωx, where cx ∈ (c1, c2) and ωx ∈ (0, ω1 + ω2), such that

ω1Ψ1(c1) + ω2Ψ1(c2) = ωxΨ1(A) + (ω1 + ω2 − ωx)Ψ1(cx),

ω1Ψ2(c1) + ω2Ψ2(c2) = ωxΨ2(A) + (ω1 + ω2 − ωx)Ψ2(cx)

and

ω1Ψ3(c1) + ω2Ψ3(c2) < ωxΨ3(A) + (ω1 + ω2 − ωx)Ψ3(cx).

Applying Corollary 1 repeatedly, we obtain the following result:

Corollary 2. Let (Ψ1(c), Ψ2(c), Ψ3(c)) be functions of type I on
[A,B]. Let ci ∈ (A,B] and ωi > 0, i = 1, . . . , k, k ≥ 2. Then there exists a
unique pair cx, ωx, where cx ∈ (A,B) and ωx ∈ (0,

∑k
i=1 ωi), such that

k∑

i=1

ωiΨ1(ci) = ωxΨ1(A) +

(
k∑

i=1

ωi − ωx

)
Ψ1(cx),(3.11)

k∑

i=1

ωiΨ2(ci) = ωxΨ2(A) +

( k∑

i=1

ωi − ωx

)
Ψ2(cx)(3.12)

and

k∑

i=1

ωiΨ3(ci) < ωxΨ3(A) +

(
k∑

i=1

ωi − ωx

)
Ψ3(cx).(3.13)

Similarly, Lemma 3 yields the following result:

Corollary 3. Let (Ψ1(c), Ψ2(c), Ψ3(c)) be functions of type II on
[A,B]. Let ci ∈ [A,B) and ωi > 0, i = 1, . . . , k, k ≥ 2. Then there exists a
unique pair cx, ωx, where cx ∈ (A,B) and ωx ∈ (0,

∑k
i=1 ωi), such that

k∑

i=1

ωiΨ1(ci) = ωxΨ1(B) +

(
k∑

i=1

ωi − ωx

)
Ψ1(cx),
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k∑

i=1

ωiΨ2(ci) = ωxΨ2(B) +

(
k∑

i=1

ωi − ωx

)
Ψ2(cx)

and

k∑

i=1

ωiΨ3(ci) < ωxΨ3(B) +

(
k∑

i=1

ωi − ωx

)
Ψ3(cx).

4. Application to (2.3). For (2.3) we have that Ψ1(c) = Ψ(c), Ψ2(c) =
cΨ(c) and Ψ3(c) = c2Ψ(c), where Ψ(c) = ec

(1+ec)2
for the logistic model, Ψ(c) =

φ2(c)
Φ(c)(1−Φ(c)) for the probit model, Ψ(c) = 1

2e|c|−1
for the double exponential

model and Ψ(c) = 1
(1+|c|)2(2|c|+1) for the double reciprocal model. Here, Φ(c)

and φ(c) are the c.d.f. and p.d.f. for the standard normal distribution. We
observe that all four Ψ(c)’s are even and positive functions. By routine al-
gebra, it can be shown that in each case (Ψ1(c), Ψ2(c), Ψ3(c)) are type I
functions on [A,B] whenever 0 ≤ A < B, including [0,∞). In addition, for
the logistic and probit models, for c > 0 it also holds that

(
Ψ′

3(c)

Ψ′
1(c)

)′

> 0.(4.1)

We will use these properties in the derivations of the key results in this
section.

We will distinguish between two possible types of constraints on the values
of the ci’s. For a symmetric constraint we will assume that ci ∈ [−D,D] for
some D > 0, while ci ∈ [D1,D2], where |D1| 6= |D2|, for a nonsymmetric
constraint. For the special case that D = ∞, there is no constraint at all
on the ci’s; if either D1 = −∞ or D2 = ∞, then there is only a one-sided
constraint. We need the following lemma:

Lemma 4. Consider (2.3) for the logistic, probit, double exponential or
double reciprocal model. Assume ci ∈ [D1,D2] where D1 < 0 < D2. For an ar-

bitrary design ξ = {(ci, ωi), i = 1, . . . , k}, there exists a design ξ̃ = {(c+, ω+),
(c−, ω−), (0,1− ω+ − ω−)}, such that Cξ ≤C

ξ̃
under the Loewner ordering.

Here, 0 < c+ ≤D2 and D1 ≤ c− < 0.

Proof. Consider all positive ci’s. If there are none, take c+ as any point
with 0 < c+ ≤D2 and ω+ = 0. If there is one such ci, take this as c+ and take
ω+ to be the corresponding ωi. For two or more positive ci’s, by Corollary 2
there exist (c+, ω+) and ω10, such that

∑

ci>0

ωiΨ(ci) = ω10Ψ(0) + ω+Ψ(c+),
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∑

ci>0

ωiciΨ(ci) = ω+c+Ψ(c+),

∑

ci>0

ωic
2
i Ψ(ci) < ω+[c+]2Ψ(c+).

Here, 0 < c+ ≤ D2 and ω10 + ω+ =
∑

ci>0 ωi. Since Ψ(c) is even, a similar
result holds for negative ci’s, if any. Let the corresponding values be (c−, ω−),

where D1 ≤ c− < 0. Let ξ̃ = (c+, ω+), (c−, ω−), (0,1− ω+ − ω−). Comparing
the two information matrices Cξ and C

ξ̃
, we can see that all elements are

the same except that the last diagonal element of the latter exceeds that of
the former unless ξ = ξ̃. The conclusion follows. �

Theorem 1. Let ξ = {(ci, ωi), i = 1, . . . , k} with k ≥ 2 and with ci ∈
[−D,D] for some D > 0. Then, for the logistic or probit model in (2.3),
there is a design ξ∗ based on two symmetric points with Cξ ≤ Cξ∗. For the
double exponential and double reciprocal model, the same conclusion holds
except that a third point, namely 0, may have to be included in the support
of ξ∗.

Proof. We first prove the result for the double exponential and double

reciprocal models. With ξ̃ as defined in Lemma 4, it is sufficient to show that
there exists a design ξ∗ with a support that is based on two symmetric points
plus the point 0 and with C

ξ̃
≤Cξ∗ . Since ci ∈ [−D,D], we have c+ ≤ D and

−c− ≤ D. If c+ = −c−, then we take ξ∗ = ξ̃ and the conclusion follows.
Otherwise, consider the pair {(c+, ω+), (−c−, ω−)} and recall that Ψ(c−) =
Ψ(−c−). Applying Corollary 1, there exists (cx, ωx), with cx between −c−

and c+, such that

ω−Ψ(−c−) + ω+Ψ(c+) = (ω− + ω+ − ωx)Ψ(0)

+ ωxΨ(cx),
(4.2)

−ω−c−Ψ(−c−) + ω+c+Ψ(c+) = ωxcxΨ(cx),

ω−[−c−]2Ψ(−c−) + ω+[c+]2Ψ(c+) < ωxc
2
xΨ(cx).

It is clear that cx ≤D. Define

2p =
ω−c−Ψ(c−) + ω+c+Ψ(c+)

−ω−c−Ψ(−c−) + ω+c+Ψ(c+)
+ 1.

Observe that 0 ≤ p ≤ 1. Let ξ∗ = {(cx, pωx), (−cx, (1 − p)ωx), (0,1 − ωx)}.
Using (4.2) and that Ψ is even, it follows that the corresponding elements
of C

ξ̃
and Cξ∗ are equal, except that the last diagonal element of Cξ∗ could
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be larger than that of C
ξ̃
. Therefore C

ξ̃
≤ Cξ∗ , and the conclusion follows

for the double exponential and double reciprocal models.
These arguments are also valid for the logistic and probit models. There-

fore, with ξ∗ as the design just constructed, for these models it suffices
to show that there exists a design ξ0 based on two symmetric points only
such that Cξ∗ ≤ Cξ0 . Since (4.1) holds for the logistic and probit models, by
Proposition A.2 there is a unique cx0 such that

Ψ(cx0) = (1− ωx)Ψ(0) + ωxΨ(cx),
(4.3)

[cx0]
2Ψ(cx0) > ωx[cx]2Ψ(cx).

Moreover, from (A.1) it follows that

cx0Ψ(cx0) > ωxcxΨ(cx).(4.4)

Define

2ωx0 =
ωx(2p− 1)cxΨ(cx)

cx0Ψ(cx0)
+ 1.

Observe that ωx0 ∈ (0,1). Let ξ0 = {(cx0, ωx0), (−cx0,1−ωx0)}. The conclu-
sion follows now as before. �

Almost all results on optimal designs for (2.3) that are currently avail-
able in the literature are for the situation that there is no restriction on
the design space. For example, for (α/β,β), optimal designs are found in
Abdelbasit and Plackett (1983) and Minkin (1987) (D-optimality);
Ford, Torsney and Wu (1992) (c- and D-optimality); Sitter and Wu (1993a,
1993b) (A- and F -optimality) and Sitter and Forbes (1997) (optimal two-
stage designs). Mathew and Sinha (2001) provided a unified algebraic ap-
proach for the logistic model for deriving A-, D- and E-optimal designs.
For (α,β), Dette and Haines (1994) investigate E-optimal designs, while
Mathew and Sinha (2001) obtained A-optimal designs for the logistic model
under the restriction of symmetry, which was removed by Yang (2006). All
these results show that optimal designs are based on two symmetric support
points for the logistic and probit models, with 0 as a possible additional
support point for the double exponential and double reciprocal models. The-
orem 1 unifies and extends these results. For example, from Theorem 1 it
follows that such results hold as long as the design space is symmetric, for
other functions of α and β, and under more general optimality criteria. We
note that Yang (2006) showed that an A-optimal design for (α,β) for the
double exponential and double reciprocal models could be based on two sym-
metric points only; this does not contradict Theorem 1, but simply shows
that the weight at the point 0 could sometimes be 0 for an optimal design.

The next result shows that for all four models, we can restrict attention
to designs with only two support points if the design region is entirely at
one side of the origin.
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Theorem 2. Let ξ = {(ci, ωi), i = 1, . . . , k} with k ≥ 2 and with ci ∈
[D1,D2] where either D1 ≥ 0 or D2 ≤ 0. Then, for the logistic, probit, double
exponential or double reciprocal model in (2.3), there is a design ξ∗ based on
two points with Cξ ≤ Cξ∗, and one of the two support points can be taken as
D1 if D1 ≥ 0 or as D2 if D2 ≤ 0.

We skip the proof since the arguments are similar to those resulting in
Lemma 4.

The next result covers the design regions not covered by Theorems 1
and 2.

Theorem 3. Let ξ = {(ci, ωi), i = 1, . . . , k} with k ≥ 2 and with ci ∈
[D1,D2], where D1 < 0 < D2 and −D1 6= D2. Then for the logistic or pro-
bit model in (2.3), there is a design ξ∗ based on two support points with
Cξ ≤ Cξ∗ . Moreover, the support points of ξ∗ are either two symmetric
points; or, if −D1 < D2, D1 and a point in (−D1,D2]; or, if −D1 > D2,
D2 and a point in [D1,−D2). The same conclusion holds for the double ex-
ponential or double reciprocal model, except that 0 may have to be used as a
third support point.

The strategy for a proof of Theorem 3 is not unlike that for Theorem 1,
but the details are more onerous and are presented in the Appendix.

While optimal designs for a constrained design space are of great practical
value, there are few published papers on this topic. Biedermann, Dette and Zhu
(2006) studied Φp-optimal designs for (

√
λα/β,

√
1− λβ) for 0 < λ < 1 un-

der (2.3). They showed that when the constrained design space is symmetric
about 0, then, for the logistic and probit models, the support for an opti-
mal design consists of two symmetric points. For a design space that is
not symmetric, depending on the values of D1 and D2, the support points
could consist either of two symmetric points or of two points with the one
with a smaller absolute value being D1 or D2. Theorem 3 confirms this.
Biedermann, Dette and Zhu (2006) further showed that one or both of the
support points are end points when the end points are within a certain range.
This also could be done using our approach. On the other hand, Bieder-
mann, Dette and Zhu’s (2006) approach worked for complementary log-log
and skewed logit models, while our approach can handle double exponential
and double reciprocal models.

For complementary log-log and skewed logit models, the corresponding
Ψ(c) is not an even function. The arguments in Theorems 1 and 3 can
therefore not be applied for these two models. However, Corollaries 2 or 3 can
be applied for certain design spaces. For example, using Ψ(c) = exp2c

exp(exp(c))−1

for the complementary log-log model, with Maple we find that (Ψ(c), cΨ(c),
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c2Ψ(c)) are type II functions for c ∈ (−∞, c0) and type I functions for c ∈
(c0, c1] or c ∈ (c1,∞). Here c0, which is around 0.0491, is the point at which

(( (c2Ψ(c))′

Ψ′(c) )′/( (cΨ(c))′

Ψ′(c) )′)′ = 0 and c1, which is around 0.4660, is the point at

which Ψ′(c) = 0. From Corollary 2 or 3, it follows that for any constrained
design region within one of the intervals above, all optimal designs are based
on two points and one of them is either the lower or upper end-point. (Note

that ( (cΨ(c))′

Ψ′(c) )′ does not exist when c = c1, so that we must separate the two

intervals (c0, c1] and (c1,∞).)

5. Application to (2.4), (2.5) and other models. For (2.4) we have that
Ψ1(c) = ec, Ψ2(c) = cec and Ψ3(c) = c2ec. It is easy to show that (Ψ1(c),
Ψ2(c), Ψ3(c)) are type II functions on [D1,D2] for any D1 < D2. By Corollary
3, we immediately have the following result:

Theorem 4. For (2.4), suppose that ξ is a design with support in the
design region [D1,D2] for some D1 < D2 < ∞. Then there is a design ξ∗

with its support based on two points, one of which is D2, so that Cξ ≤ Cξ∗.

By using the geometric approach, Ford, Torsney and Wu (1992) identified
c- and D-optimal designs under (2.4). They showed that an optimal design
has two support points and that one of them is D2. Minkin (1993) studied
optimal designs for 1/β under the same model. In our notation, he assumed
β < 0 and used the design space (−∞, α]. He concluded that the optimal
design has two support points, and that one of them is α. Theorem 4 confirms
and extends these results.

For (2.5) it is easily seen that Ψ1(c) = c2, Ψ2(c) = c3 and Ψ3(c) = c4. It
can be shown that (Ψ1(c), Ψ2(c), Ψ3(c)) are functions of type II on [D1,D2]
if 0 < D1 < D2. By Corollary 3, we obtain the following result:

Theorem 5. For (2.5), suppose that ξ is a design with support in the
design region [D1,D2], 0 < D1 < D2 < ∞. Then there is a design ξ∗ with its
support based on two points, one of which is D2, so that Cξ ≤ Cξ∗.

In our notation, with the design space (0, αx0/(β +x0)], Dette and Wong
(1999) identified D- and E-optimal designs for (α,β) under (2.5) that are
two-point designs, with one of them being αx0/(β + x0). Therefore, Theo-
rem 5 confirms and generalizes these results. Other work on this model can
be found in Dette and Biedermann (2003).

Our approach can also be applied to other models. Each time we need
to check whether (Ψ1(c),Ψ2(c),Ψ3(c)) are functions of type I or type II
on an appropriate interval. We will illustrate this for a few examples here.
For all of these examples, the information matrix for (α,β) can be written
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as in (2.1) with Ψ1(c) = Ψ(c), Ψ2(c) = cΨ(c) and Ψ3(c) = c2Ψ(c) for some
function Ψ(c).

Ford, Torsney and Wu (1992) also studied c- and D-optimal designs for
the case Ψ(c) = cm and the design region [D1,D2] for 0 < D1 < D2 < ∞.
They considered the cases (i) m > 0; (ii) −2 ≤ m ≤ 0; and (iii) m < −2.
For cases (i) and (ii), except for m = 0,−1, and −2, it is easily seen that
(Ψ1(c),Ψ2(c),Ψ3(c)) are functions of type II, while they are of type I for
case (iii). Thus, based on our results, we find that optimal designs for cases
(i) and (ii), except m = 0,−1, and −2, can be based on two support points,
one of them being D2; for case (iii) the same conclusion holds, except that
D1 is now one of the support points. We can further show that, for case
(ii), except for m = 0,−1, and −2, the two support points can be taken

as D1 and D2. This can be done by verifying that Ψ′
2(c)(

Ψ′
1(c)

Ψ′
2(c))

′ > 0 and

Ψ′
2(c)(

Ψ′
3(c)

Ψ′
2(c))

′ > 0 and applying (A.16) of Proposition A.3. When m = 0,−1,

or −2, then one of Ψ1(c), Ψ2(c), or Ψ3(c) is constant. The problem becomes
simpler in that case, and by applying (A.16) of Proposition A.3 we can show
that an optimal design can be based on D1 and D2. Thus this conclusion
holds for all m in case (ii). This confirms and extends the conclusions of
Ford, Torsney and Wu (1992) for c- and D-optimal designs (their Tables 2
and 3).

Hedayat, Yan and Pezzuto (2002) identified c-optimal designs based on

two symmetric points for a nonlinear model with Ψ(c) = exp(2c)
(1+exp(c))4

.

Hedayat, Zhong and Nie (2004) showed that D-optimal designs can be based
on two symmetric points for a class of two-parameter nonlinear models that
includes the following three examples: (i) Ψ(c) = (1 + c2)−m, m > 1; (ii)

Ψ(c) = e−c2 ; and (iii) Ψ(c) = (s+tc2)me−lc2 , s, t, l ≥ 0, and m = 0 or m ≤−1.
All of these Ψ(c)’s are even functions that satisfy the conditions of Lemma 1
as well as (4.1). Thus they have the same properties as the functions for the
logistic and probit models, and the conclusions of Theorems 1, 2 and 3
also hold for all of these models. This confirms and extends the results of
Hedayat, Yan and Pezzuto (2002) and Hedayat, Zhong and Nie (2004).

For any nonlinear model, if the corresponding functions Ψ1(c), Ψ2(c) and
Ψ3(c) are three times differentiable (which is a condition that is often met),
then we may be able to identify intervals so that in each interval (Ψ1(c),
Ψ2(c), Ψ3(c)) are functions of either type I or type II. If the constrained
design space falls entirely within one of the intervals, then either Corollary 2
or 3 can be applied to conclude that an optimal design can be based on two
points, with one of them either the lower or upper endpoint of the design
region. For example, Hedayat, Yan and Pezzuto (1997) studied D-optimal

designs for a nonlinear model with Ψ(c) = exp(2rc)
(1+exp(c))2r+2 for r > 0. If, as an

example, we take r = 0.5, then it can be shown that (Ψ(c), cΨ(c), c2Ψ(c))
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are functions of type II for c ∈ (−∞, c0) and that they are functions of type
I when c ∈ (c0, c1] and c ∈ (c1,∞). Here c0, which is around −0.9131, is the

solution to (( (c2Ψ(c))′

Ψ′(c) )′/( (cΨ(c))′

Ψ′(c) )′)′ = 0 and c1, which is around −0.6931, is

the solution to Ψ′(c) = 0.

6. Discussion. By Carathéodory’s theorem [cf. Silvey (1980)], for a non-
linear model with two parameters, there is an optimal design that is based on
at most three support points. However, identifying such points is very chal-
lenging. Most studies in this direction are based on the geometric approach,
following the seminal work by Elfving (1952), or, especially for D-optimal de-
signs, variations on the equivalence theorem by Kiefer and Wolfowitz (1960).
Unlike many of these studies, our approach yields very general results that
go beyond solving problems on a case by case basis. It helps to identify the
support of locally optimal designs for many of the commonly studied mod-
els and can be applied for all of the common optimality criteria based on
information matrices. It works both with a constrained and unconstrained
design region and the conditions needed to reach the conclusions formulated
in this paper can be easily verified using symbolic computational software
packages.

It is also worthwhile to note that this approach is of value for multi-stage
experiments, where an initial experiment may be used to get a better idea
about the unknown parameters. At a second or later stage, the question
then becomes how to add more design points in an optimal fashion. If d1

denotes the design used so far and d2 the design to be used at the next
stage, then the total information matrix is Cd1 + Cd2 . Since the first matrix
is fixed, an optimal choice for the second matrix (in the Loewner ordering)
is equivalent to making an optimal selection if there had been no prior
information through design d1. Therefore, the results in this paper can be
used to select d2 by simply ignoring d1.

While the results of this paper are far reaching, we believe that there is
potential to extend the approach to nonlinear models with more than two
parameters. There are currently very few results on this important practical
problem. For example, in a dose-response study, in addition to an explana-
tory variable x, the subjects might be grouped according to race, age, gender,
etc. A better model would use these factors to account for heterogeneity in
the response between the different groups. We are working on developing
tools and results for such problems.

Once the support points for an optimal design have been narrowed down
by the methods of this paper, finding an optimal design is a relatively easy
problem since we need to consider only the simple structure stated in our
results. At worst, a numerical search will now be feasible, but in many cases
an analytical solution can be obtained. For example, for the logistic model
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under (2.3) with a symmetric design region, Mathew and Sinha (2001) con-
jectured that there is an A-optimal design for (α,β) that has two symmetric
points as its support. Yang (2006) proved this conjecture using a compli-
cated and tedious algebraic approach. However, by our new approach, this
result follows immediately and we can easily find such an A-optimal design.

For the results with (2.3) and a design region that includes the origin in its
interior, we relied on the Ψ(c)’s being even functions. We have indicated in
Section 4 how partial results can be obtained for the complementary loglog
and skewed logit models. Whether our approach can be used to provide
complete answers for such models remains an open question.

APPENDIX

Proposition A.1. Let Ψ1(c), Ψ2(c) and Ψ3(c) be functions that satisfy
the assumptions and conditions formulated in Lemma 1. Then, for fixed
c1 and c2 with A < c1 < c2 ≤ B and any c ∈ (A,B] and cx ∈ (c1, c2), the
following properties hold:

(i) For any ω ∈ (0,1), if Ψ1(c) = ωΨ1(c1) + (1− ω)Ψ1(c2), then

Ψ2(c) > ωΨ2(c1) + (1− ω)Ψ2(c2).(A.1)

This statement remains valid if we allow c1 = A.
(ii)

Ψ′
2(c)

Ψ′
1(c)

>
Ψ2(A)−Ψ2(c)

Ψ1(A)−Ψ1(c)
.(A.2)

(iii)

(Ψ1(c1)−Ψ1(c2))(Ψ2(cx)−Ψ2(A))
(A.3)

− (Ψ2(c1)−Ψ2(c2))(Ψ1(cx)−Ψ1(A)) > 0.

(iv)

F2(A,c1, cx, c2)

:= [Ψ3(c1)−Ψ3(c2)][(Ψ1(cx)−Ψ1(c2))(Ψ2(cx)−Ψ2(A))

− (Ψ2(cx)−Ψ2(c2))(Ψ1(cx)−Ψ1(A))]

− [Ψ3(A)−Ψ3(cx)][(Ψ1(c1)−Ψ1(c2))(Ψ2(cx)−Ψ2(c2))
(A.4)

− (Ψ2(c1)−Ψ2(c2))(Ψ1(cx)−Ψ1(c2))]

+ [Ψ3(c2)−Ψ3(cx)][(Ψ1(c1)−Ψ1(c2))(Ψ2(cx)−Ψ2(A))

− (Ψ2(c1)−Ψ2(c2))(Ψ1(cx)−Ψ1(A))]

< 0.
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(v)

((Ψ1(cx)−Ψ1(c2))(Ψ2(cx)−Ψ2(A))

− (Ψ2(cx)−Ψ2(c2))(Ψ1(cx)−Ψ1(A)))
(A.5)

× [(Ψ1(c1)−Ψ1(c2))(Ψ2(cx)−Ψ2(A))

− (Ψ2(c1)−Ψ2(c2))(Ψ1(cx)−Ψ1(A))]−1

is a strictly decreasing function of cx.

Proof. (i) Fixing c1 ∈ [A,B) and ω ∈ (0,1), from condition (a) it follows
that for every c2 ∈ (c1,B] there is a unique c ∈ (c1, c2) so that Ψ1(c) =
ωΨ1(c1) + (1− ω)Ψ1(c2). Thus, keeping c1 and ω fixed, we can view c as a
function of c2. We have

Ψ′
1(c)

dc

dc2
= (1− ω)Ψ′

1(c2).(A.6)

Define

G1(c2) = Ψ2(c)− ωΨ2(c1)− (1− ω)Ψ2(c2).

Using (A.6), we obtain

G′
1(c2) = Ψ′

2(c)
dc

dc2
− (1− ω)Ψ′

2(c2)

(A.7)

= (1− ω)Ψ′
1(c2)

(
Ψ′

2(c)

Ψ′
1(c)

− Ψ′
2(c2)

Ψ′
1(c2)

)
.

Since c < c2, from conditions (a) and (b) we conclude that G′
1(c2) > 0 for

c2 > c1. The result follows by observing that limc2↓c1 G1(c2) = 0.
(ii) Define

G2(c) =
Ψ′

2(c)

Ψ′
1(c)

(Ψ1(A)−Ψ1(c)) − (Ψ2(A)−Ψ2(c)).

Then G′
2(c) = (

Ψ′
2(c)

Ψ′
1(c)

)′(Ψ1(A) − Ψ1(c)), so that G′
2(c) > 0 by (a) and (b).

Since limc↓A G2(c) = 0 by (d), it follows that G2(c) > 0, which is equivalent
to (A.2).

(iii) Define

G3(c1, cx, c2) = (Ψ1(c1)−Ψ1(c2))(Ψ2(cx)−Ψ2(A))

− (Ψ2(c1)−Ψ2(c2))(Ψ1(cx)−Ψ1(A)).
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For c2 > cx we have that

∂G3(c1, cx, c2)

∂c2
= Ψ′

1(c2)(Ψ1(cx)−Ψ1(A))

(A.8)

×
(

Ψ′
2(c2)

Ψ′
1(c2)

− Ψ2(A)−Ψ2(cx)

Ψ1(A)−Ψ1(cx)

)
> 0.

The inequality in (A.8) follows from conditions (a) and (b) and (ii) of this
proposition. The result follows if we show that G4(c1, cx) := G3(c1, cx, cx) > 0
for cx > c1. It is easily seen that G4(c1, c1) = 0 and

∂G4(c1, cx)

∂cx
= Ψ′

1(cx)(Ψ1(c1)−Ψ1(A))

(
Ψ′

2(cx)

Ψ′
1(cx)

− Ψ2(A)−Ψ2(c1)

Ψ1(A)−Ψ1(c1)

)
.

By the same argument as for (A.8), we conclude that ∂G4(c1, cx)/∂cx > 0,
which implies that G4(c1, cx) > 0 and yields the desired result.

(iv) Since F2(A,c1, cx, cx) = 0, it suffices to show that ∂F2(A,c1,cx,c2)
∂c2

< 0.
But

∂F2(A,c1, cx, c2)

∂c2
= Ψ′

3(c2)[(Ψ2(c1)−Ψ2(cx))(Ψ1(A)−Ψ1(cx))

+ (Ψ2(cx)−Ψ2(A))(Ψ1(c1)−Ψ1(cx))]

+ Ψ′
2(c2)[(Ψ3(c1)−Ψ3(cx))(Ψ1(cx)−Ψ1(A))

+ (Ψ3(cx)−Ψ3(A))(Ψ1(cx)−Ψ1(c1))]

+ Ψ′
1(c2)[(Ψ3(c1)−Ψ3(cx))(Ψ2(A)−Ψ2(cx))

+ (Ψ3(cx)−Ψ3(A))(Ψ2(c1)−Ψ2(cx))].

This expression is 0 when cx = c1, so that it suffices to show that ∂2F2(A,c1,cx,c2)
∂c2∂cx

<
0. But

∂2F2(A,c1, cx, c2)

∂c2 ∂cx

= Ψ′
3(c2)[Ψ

′
2(cx)(Ψ1(c1)−Ψ1(A)) + Ψ′

1(cx)(Ψ2(A)−Ψ2(c1))]

+ Ψ′
2(c2)[Ψ

′
3(cx)(Ψ1(A)−Ψ1(c1)) + Ψ′

1(cx)(Ψ3(c1)−Ψ3(A))]

+ Ψ′
1(c2)[Ψ

′
3(cx)(Ψ2(c1)−Ψ2(A)) + Ψ′

2(cx)(Ψ3(A)−Ψ3(c1))].

This expression is 0 for c1 = A, so that it suffices to show that ∂3F2(A,c1,cx,c2)
∂c2∂cx∂c1

<
0. Simple computation gives

∂3F2(A,c1, cx, c2)

∂c2∂cx∂c1
= Ψ′

3(c2)[Ψ
′
2(cx)Ψ′

1(c1)−Ψ′
1(cx)Ψ′

2(c1)]

+ Ψ′
2(c2)[Ψ

′
1(cx)Ψ′

3(c1)−Ψ′
3(cx)Ψ′

1(c1)]
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+ Ψ′
1(c2)[Ψ

′
3(cx)Ψ′

2(c1)−Ψ′
2(cx)Ψ′

3(c1)]

= Ψ′
1(c1)Ψ

′
1(cx)Ψ′

1(c2)F3(c1, cx, c2),

where

F3(c1, cx, c2) =
Ψ′

3(c2)

Ψ′
1(c2)

(
Ψ′

2(cx)

Ψ′
1(cx)

− Ψ′
2(c1)

Ψ′
1(c1)

)
+

Ψ′
2(c2)

Ψ′
1(c2)

(
Ψ′

3(c1)

Ψ′
1(c1)

− Ψ′
3(cx)

Ψ′
1(cx)

)

+
Ψ′

3(cx)Ψ′
2(c1)

Ψ′
1(cx)Ψ′

1(c1)
− Ψ′

2(cx)Ψ′
3(c1)

Ψ′
1(cx)Ψ′

1(c1)
.

By condition (a), Ψ′
1(c1)Ψ

′
1(cx)Ψ′

1(c2) < 0. Thus we need to show that F3(c1, cx,

c2) > 0. Since F3(c1, cx, cx) = 0, it suffices to show that ∂F3(c1,cx,c2)
∂c2

> 0. But

∂F3(c1, cx, c2)

∂c2
=

(
Ψ′

2(c2)

Ψ′
1(c2)

)′

F4(c1, cx, c2),

where

F4(c1, cx, c2) =
((Ψ′

3(c2))/(Ψ
′
1(c2)))

′

((Ψ′
2(c2))/(Ψ′

1(c2)))′

(
Ψ′

2(cx)

Ψ′
1(cx)

− Ψ′
2(c1)

Ψ′
1(c1)

)

+

(
Ψ′

3(c1)

Ψ′
1(c1)

− Ψ′
3(cx)

Ψ′
1(cx)

)
.

Using condition (b), it suffices to show that F4(c1, cx, c2) > 0. But using that
c1 < cx < c2 and conditions (b) and (c), we obtain that

F4(c1, cx, c2) >
((Ψ′

3(cx))/(Ψ′
1(cx)))′

((Ψ′
2(cx))/(Ψ′

1(cx)))′

(
Ψ′

2(cx)

Ψ′
1(cx)

− Ψ′
2(c1)

Ψ′
1(c1)

)

+

(
Ψ′

3(c1)

Ψ′
1(c1)

− Ψ′
3(cx)

Ψ′
1(cx)

)
.

The latter expression is 0 when cx = c1, and by using (b) and (c) we can
see that its partial derivative with respect to cx is positive. This yields the
desired conclusion.

(v) The expression in (A.5) is precisely ω as defined in (3.10). It suffices,
therefore, to show that ∂ω/∂cx < 0, which is equivalent to showing that

∂( ω
1−ω )/∂cx < 0. But ω

1−ω = G5(c1,cx,c2)
G4(c1,cx) , where G4(c1, cx) is defined as in the

proof of (iii) and

G5(c1, cx, c2) = (Ψ1(cx)−Ψ1(c2))(Ψ2(cx)−Ψ2(A))

− (Ψ2(cx)−Ψ2(c2))(Ψ1(cx)−Ψ1(A)).

Clearly ∂(G5(c1,cx,c2)
G4(c1,cx) )/∂cx < 0 is equivalent to

∂G5(c1, cx, c2)

∂cx
G4(c1, cx)−G5(c1, cx, c2)

∂G4(c1, cx)

∂cx
< 0.(A.9)
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Observing that

∂G5(c1, cx, c2)

∂cx
= Ψ′

2(cx)(Ψ1(A)−Ψ1(c2))−Ψ′
1(cx)(Ψ2(A)−Ψ2(c2))

and using (A.2) and condition (a), we see that ∂G5(c1,cx,c2)
∂cx

< 0 when c2 = cx.
Since G5(c1, cx, cx) = 0 and G4(c1, cx) > 0, we see that (A.9) holds when
c2 = cx. Hence, the result follows if we can show that the left-hand side of
(A.9) is a decreasing function of c2. Simple algebra shows that the partial
derivative of the left-hand side of (A.9) with respect to c2 is

Ψ′
1(cx)(Ψ1(cx)−Ψ1(A))

(
Ψ′

2(cx)

Ψ′
1(cx)

− Ψ2(A)−Ψ2(cx)

Ψ1(A)−Ψ1(cx)

)

(A.10)

Ψ′
1(c2)(Ψ1(A)−Ψ1(c1))

(
Ψ′

2(c2)

Ψ′
1(c2)

− Ψ2(A)−Ψ2(c1)

Ψ1(A)−Ψ1(c1)

)
.

In (A.10), Ψ′
1(cx), Ψ1(cx)−Ψ1(A) and Ψ′

1(c2) are negative while other terms
are positive [by (A.2) and conditions (a) and (b)]. Thus (A.10) is negative,
which completes the proof. �

Proposition A.2. Suppose that Ψ1(c) and Ψ3(c) are continuous func-

tions on [A,B] and that, for c ∈ (A,B], they satisfy Ψ′
1(c) < 0 and (

Ψ′
3(c)

Ψ′
1(c)

)′ >

0. Then, for any A ≤ c1 < c2 ≤ B and ω ∈ (0,1), there exists a unique
c ∈ (c1, c2) such that

Ψ1(c) = ωΨ1(c1) + (1− ω)Ψ1(c2) and
(A.11)

Ψ3(c) > ωΨ3(c1) + (1− ω)Ψ3(c2).

Furthermore, c is a strictly decreasing function of ω.

Proof. Since Ψ1 is a strictly decreasing function, Ψ−1
1 exists. Let c =

Ψ−1
1 (ωΨ1(c1)+(1−ω)Ψ1(c2)), then clearly c ∈ (c1, c2) and the first equation

of (A.11) holds. By the same argument as for (A.1), the inequality in (A.11)
holds. The uniqueness of c follows since Ψ1 is strictly decreasing. That c is
a strictly decreasing function of ω is a consequence of c1 < c2 and the fact
that both Ψ1 and Ψ−1

1 are strictly decreasing functions. �

We will now present a proof for Theorem 3.

Proof of Theorem 3. Since the Ψ’s are even, it suffices to consider
the case −D1 < D2. We will first prove the result for the double exponential
and double reciprocal models. It suffices to show that there exists a design
as in the statement of the theorem, say ξ∗, that satisfies C

ξ̃
≤ Cξ∗ , where ξ̃ =
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{(c+, ω+), (c−, ω−), (0,1−ω+−ω−)}, 0 < c+ ≤D2 is the design in Lemma 4.
With D = max{−c−, c+}, we obtain a design ξ∗0 from Theorem 1 with C

ξ̃
≤

Cξ∗0
. However, ξ∗0 may not have its support in [D1,D2]. If cx in the proof of

Theorem 1 is in [0,−D1], then we can take ξ∗ to be ξ∗0 .
Suppose that this is not the case, so that −c− < −D1 < cx < c+. By

Corollary 2, the monotonicity of cx in Lemma 1 and its continuity, there
exist 0 < p0 < 1 and 0 < ω1 < ω− + ω+p0 such that

ω−Ψ(−c−) + ω+p0Ψ(c+) = (ω− + ω+p0 − ω1)Ψ(0)

+ ω1Ψ(−D1),
(A.12)

−ω−c−Ψ(−c−) + ω+p0c
+Ψ(c+) = −ω1D1Ψ(−D1),

ω−[−c−]2Ψ(−c−) + ω+p0[c
+]2Ψ(c+) < ω1[−D1]

2Ψ(−D1).

Define

2p1 =
ω−c−Ψ(c−) + ω+p0c

+Ψ(c+)

−ω−c−Ψ(−c−) + ω+p0c+Ψ(c+)
+ 1.

Then 0 ≤ p1 ≤ 1, and the design ξ1 = {(D1, ω1(1 − p1)), (−D1, ω1p1), (c
+,

ω+(1− p0)), (0,1 − ω+(1 − p0)− ω1)} has a larger information matrix than

ξ̃. By applying Corollary 2, we can further improve the information matrix
by replacing the points −D1 and c+ by 0 and a point cx ∈ (−D1, c

+). The
resulting design with support points D1, cx, and 0 can be taken as design
ξ∗, giving the conclusion for the double exponential and double reciprocal
models.

These arguments are also valid for the logistic and probit models. Thus,
for these models, it suffices to show that there exists a design ξ0 based on two
symmetric points or on D1 and a point c0 ∈ (−D1,D2] so that Cξ∗ ≤ Cξ0 ,
where ξ∗ is as in the first part of this proof. If the support of ξ∗ consists
of the origin and two symmetric points in [D1,−D1], then by Theorem 1
we can find a better design based on two symmetric points only. Thus the
conclusion follows in that case.

Suppose therefore that ξ∗ = {(0, ω0), (cx, ωx), (D1,1 − ω0 − ωx)}, where
cx > −D1. As in the proof of Theorem 1, there exists a cx0 ∈ (0, cx) such
that

(ω0 + ωx)Ψ(cx0) = ω0Ψ(0) + ωxΨ(cx),

and so that two inequalities similar to those in (4.3) and (4.4) hold.
If cx0 ≤ −D1, then by a similar argument as in the proof of Theorem 1

we can improve design ξ∗ by replacing design points cx and 0 with design
points cx0 and −cx0 so that the information matrix is larger. The resulting
new design is based on D1, −cx0, and cx0, and by Theorem 1 we can find a
design with two symmetric points only that is at least as good.
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If, however, cx0 > −D1, by the monotonicity property in Proposition A.2
we use that there exists a px ∈ (0,1), such that

(ω0 + ωxpx)Ψ(−D1) = ω0Ψ(0) + ωxpxΨ(cx).

Again by a similar argument as in Theorem 1, we can obtain a design,
say ξ1, based on D1, −D1 and cx that is better than ξ∗. Let ω1 and ωx0 be
the weights for −D1 and cx, respectively, in ξ1. For any q,0 ≤ q ≤ 1, there
exists a cx1 ∈ (−D1, cx) such that

(ω1q + ωx0)Ψ(cx1) = ω1qΨ(−D1) + ωx0Ψ(cx),

(ω1q + ωx0)cx1Ψ(cx1) ≥−ω1qD1Ψ(−D1) + ωx0cxΨ(cx),(A.13)

(ω1q + ωx0)c
2
x1Ψ(cx1) ≥ ω1q[−D1]

2Ψ(−D1) + ωx0c
2
xΨ(cx).

For the two inequalities, equality holds only if q = 0. Form a new design,
say ξ2, obtained by replacing (−D1, ω1) and (cx, ωx0) with (D1, ω1(1 − q))
and (cx1, ω1q + ωx0). Comparing the information matrices for ξ1 and ξ2, by
(A.13), for any q the first diagonal elements are the same and Cξ2 has a
larger second diagonal element. The difference in the off-diagonal elements
of the two matrices is given by

(ω1q + ωx0)cx1Ψ(cx1) + ω1(2− q)D1Ψ(−D1)− ωx0cxΨ(cx).(A.14)

For q = 0, cx1 = cx and the expression in (A.14) is negative. For q = 1, by
the second inequality in (A.13) the expression in (A.14) is positive. By the
first equation of (A.13), cx1 is a continuous function of q. This implies that
(A.14) is also a continuous function of q. So there exists a q ∈ (0,1) such
that (A.14) is 0. Let ξ0 be as design ξ2 for that value of q. Then ξ0 is better
than ξ∗ and is based only on D1 and cx1. This completes the proof. �

Proposition A.3. Suppose Ψ1(c) and Ψ3(c) are twice differentiable on
[A,B] and satisfy

Ψ′
1(c)

(
Ψ′

3(c)

Ψ′
1(c)

)′

> 0(A.15)

for all c ∈ [A,B]. Then, for any c ∈ [A,B], there exists an ω ∈ (0,1), such
that

Ψ1(c) = ωΨ1(A) + (1− ω)Ψ1(B) and
(A.16)

Ψ3(c) ≤ ωΨ3(A) + (1− ω)Ψ3(B).

Proof. If (A.15) holds, then either Ψ′
1(c) > 0 and (

Ψ′
3(c)

Ψ′
1(c)

)′ > 0 or Ψ′
1(c) <

0 and (
Ψ′

3(c)
Ψ′

1(c))
′ < 0. Since the second case can be reduced to the first by defin-

ing Ψ̃1(c) =−Ψ1(c), it suffices to consider only the first case.
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Since Ψ′
1(c) > 0, Ψ1(c) is a strictly increasing function on [A,B]. Define

ω = Ψ1(B)−Ψ1(c)
Ψ1(B)−Ψ1(A) . Then 0 ≤ ω ≤ 1 for any c ∈ [A,B], and the equality in

(A.16) holds. We will show that the inequality in (A.16) also holds. When
c = A this is obvious. So take c > A. The inequality in (A.16) is equivalent
to G(A,c,B) ≥ 0, where

G(A,c,B) = (Ψ3(A)−Ψ3(B))(Ψ1(B)−Ψ1(c))
(A.17)

+ (Ψ3(B)−Ψ3(c))(Ψ1(B)−Ψ1(A)).

Since G(A,c,B) = 0 when B = c, it suffices to show that ∂G(A,c,B)/∂B > 0.
But

∂G(A,c,B)

∂B
= Ψ′

1(B)(Ψ1(c)−Ψ1(A))

(
Ψ′

3(B)

Ψ′
1(B)

− Ψ3(c)−Ψ3(A)

Ψ1(c)−Ψ1(A)

)

≥ Ψ′
1(B)(Ψ1(c)−Ψ1(A))

(
Ψ′

3(c)

Ψ′
1(c)

− Ψ3(c)−Ψ3(A)

Ψ1(c)−Ψ1(A)

)
> 0,

where the last inequality follows by the same argument as for (A.2) �
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